
A scenario-based validation language for ASMs

A. Carioni2 A. Gargantini1 E. Riccobene2 P. Scandurra2

1 Dip. di Ing. Informatica e Metodi Matematici, Università di Bergamo, Italy
angelo.gargantini@unibg.it

2 Dip. di Tecnologie dell'Informazione, Università di Milano, Italy
{carioni,riccobene,scandurra}@dti.unimi.it

Abstract. This paper presents theAValLa language, a domain-speci�c
modelling language for scenario-based validation of ASM models, and
its supporting tool, the AsmetaVvalidator. They have been developed
according to the model-driven development principles as part of the as-
meta(ASM mETAmodelling) toolset, a set of tools around ASMs. As
a proof-of-concepts, the paper reports the results of the scenario-based
validation for the well-known LIFT control case study.

1 Introduction

The success of developing complex systems depends on the use of a pertinent
method for identifying the requirements on the target system and to make sure
that the produced system will actually meet these requirements. Validation is in-
tended as the process of investigating a model (intended as formal speci�cation)
with respect to its user perceptions, in order to ensure that the speci�cation
really re�ects the user needs and statements about the application, and to de-
tect faults in the speci�cation as early as possible with limited e�ort. Validation
should precede the application of more expensive and accurate methods, like for-
mal requirements analysis and veri�cation of properties, that should be applied
only when a designer has enough con�dence that the speci�cation captures all
informal requirements. Techniques for validation include scenarios generation,
development of prototypes, animation, simulation, and also testing [28].

In [21], we de�ned the AsmetaL language as concrete syntax to write Abstract
State Machine (ASM) models and the AsmetaS simulator to execute AsmetaL
programs. In order to validate AsmetaL speci�cations, we here investigate the
scenario-based approach for system validation. In this context, scenarios describe
the behavior of a system from a global perspective by looking at the observ-
able interactions between the system and its environment in speci�c situations.
Scenarios are useful to ensure correct capture of informal requirements and to
explore system functionalities and alternative design solutions. To make this ap-
proach e�ective by allowing the designer to interact with the speci�cation, we
de�ne a language, called AValLa (ASM Validation Language), which provides
suitable commands to express, at ASM model level, the interaction between a
system and its environment (in the sense of UML use-cases) and the interaction

between a system and an external observer who likes to play with the system
model and check the system state.

AValLa has been developed according to the model-driven language engi-
neering principles which require the abstract syntax of a language be de�ned in
terms of an (object-oriented) model, called metamodel, characterizing syntax el-
ements and their relationships. A concrete notation can be then (automatically)
derived from the abstract syntax. The language semantics is given in terms of
ASMs, here used as formal semantic framework to express the operational se-
mantics of metamodel-based languages.

AValLa is supported by the AsmetaV (ASM Validator) tool to execute
AValLa scenarios. Both have been developed within the asmeta(ASM mETA-
modelling) tool-set [17,19,4] by exploiting the metamodelling approach.

In this paper, we �rst motivate in Sect. 2 our work on scenario-based system
validation in relation to other similar approaches. In Sect. 3, we present our
basic idea on how targeting validation in the ASM context. In Sect. 4 we present
the AValLa language to build scenarios for ASM models, and we describe how
AValLa has been de�ned following the model-driven engineering process. In
Sect. 5, we provide the semantics of the AValLa constructs exploiting the ASM-
based semantic framework for metamodel-based languages. Our scenario-based
validator AsmetaVis presented in Sect. 6, while Sect. 7 presents a case study.
Conclusions are given in Sect. 8.

2 Motivations and related work

The scenarios technique has been applied in di�erent research areas and a variety
of de�nitions, ways of use and ways of interaction with the user are given. In
particular, scenarios have been used in the area of Software Engineering [33,2,32],
Business-process reengineering [3], User Interface Design [9], Documentation and
demonstration of software and many more. In addition, the term �script� used in
Arti�cial Intelligence [35] and in Object-behavior Analysis [36], is very similar
to the various de�nitions of scenarios.

Authors in [8] classify scenarios according to their use in systems development
ranging from requirements analysis, user-designer communication, examples to
motivate design rationale, envisionment (imagined use of a future design), soft-
ware design, through to implementation, training and documentation.

The telecommunication system development is one of the main �eld where
scenarios have been successfully applied [1]. Message Sequence Charts (MSCs)
[31] is one of the most used (graphical) notation by telecommunications compa-
nies and standard bodies. MSCs can be adapted to describe embedded systems
and software, although, for software, UML notations are more used. The Life Se-
quence Charts (LSCs) [11] extend the MSCs by providing the "clear and usable
syntax and a formal semantics" MSCs lack of.

In the object-oriented community, scenarios are intended as instances of a use
case [39] de�ning a goal-oriented set of interactions between external actors (i.e.
parties outside the system that interact with the system) and the system under

2

consideration. The system is treated as a black box, and the interactions with it,
including system responses, are perceived as outside the system. A complete set
of use cases speci�es all di�erent ways to use the system, and therefore de�nes
all required behavior, bounding the scope of the system. For complex systems,
the complete set of use cases might be unfeasible, and in this case it is useful to
proceed in an incremental way.

The idea of using scenarios as a means for validating a speci�cation has been
extensively adopted in the past, but its application has been mostly of infor-
mal nature. [37] provides a mini tutorial explaining the concepts and process of
scenario-based requirements engineering. The relationships between scenarios,
speci�cations and prototypes are explored, and the SCRAM method (Scenario-
based Requirements Analysis Method), where scenarios are used with early pro-
totypes to elicit requirements in reaction to a preliminary design, is presented.
In [26], a systematic way to analyze and validate requirements is proposed and
applied to a simple PBX system. This formal-approach to scenario analysis views
the user as the starting point to form scenarios and uses prototyping in order
to validate the scenarios and re�ne the speci�cations. In [27], a case study is
presented to show how functional requirements can be successfully decomposed
and analyzed using scenarios. In [30], authors show the CineVali approach in
which scenarios are formal and automatically generated by the user and by the
analyst in accordance with their purposes.

The main obstacles to an e�ective use of scenarios for formal validation are
mainly due to the non executable nature of formal models, or in the case of ex-
ecutable speci�cations, due to the lack of simulation engines and suitable tools
allowing the designer to interact with the (complete or only sketched) speci�ca-
tion in order to observe the system behavior and/or check the system states.

A method for constructing a formal description of the system from scenarios
expressing the stakeholders' requirements, is presented in [25]. The authors use
the Albert II formal language and scenarios are represented by MSCs. A re-
quirements validation tool that stakeholders can use to explore di�erent possible
behaviors of the system to develop, is presented. These behaviors are automati-
cally checked against the formal requirements speci�cation.

In the context of ASMs, the authors in [22,5] show how SpecExplorer and its
language Spec#, can be applied for scenario-oriented modelling. They describe
how Spec# models can be instrumented for validation purposes by a set of in-
structions, which allow SpecExplorer to execute scenarios. They also describe
scenarios in an algorithmic way with the ultimate goal to have a tailored no-
tation, like MSCs, as front-end for scenarios description. Grieskamp et al. also
provide an engine within the SpecExplorer tool for checking conformance of
implementation against models.

Our approach is targeted to build scenarios for ASM ground models written
in AsmetaL. We like to keep the algorithmic vision of building scenarios as in
Spec#/SpecExplorer, since we consider this view closer to the view of program-
ming and able to show the temporal sequence of steps between the system and
its external environment. We keep the view of scenarios as paths through the

3

use cases as inherited from the object-oriented community. Therefore, in our
view a scenario will express interaction sequences of external actor actions and
reactions of the machine to be analyzed.

From a practical point of view, we believe that a validation activity in which
the designer has a black box view of the system might be complemented by a
testing activity requiring an internal view of the system. As in [10], we argue
that a scenario notation should be also able to describe internal details of the
system. MSCs and LSCs are very useful to describe lengthy black-box interac-
tions between system components in a graphical way, while we want scenarios
to be also able of describing, by means of a textual notation, possibly white-box
interactions in a component independent way. To this regard our approach is
more similar to the classical unit testing. Note that several scenario notations
are derived form testing notations, for example the Use Case Maps, for which
and ASM based semantics exists [24], and Use Case Trees are strongly related
to the TTCN testing notation.

Therefore, in our scenario-based approach, we support two kinds of external
actors: the user, who has a black box view of the system, and the observer having,
instead, a gray box view. By allowing di�erent actions to the two actors, we are
able to build scenarios useful for classical validation (those including user actions
and machine reactions), and scenarios useful for testing activity (those including
also observer actions) requiring the inspection of the internal con�gurations of
the machine. Therefore, our scenario-based validation approach goes behind the
UML use-cases it was inspired from, and has the twofold goal of model validation
and model testing.

3 Scenario-based validation of ASM models

In our approach of scenario-based validation of ASM models, we start from the
idea of UML use-cases and their descriptions in terms of scenarios. A scenario
is a description of external actor actions and reactions of the system. The for-
malization (complete or incomplete) of the system behavior is given in terms of
an ASM speci�cation. We extend the concept of actor (here called user actor)
in UML use-cases with the concept of observer actor (see Fig. 1(a)). A user
actor is able to interact with the system by setting the values of the external
environment, so asking for a particular service, waits for a step of the machine
as reaction to his/her request, and can check the values only of system outputs.
A user actor has, therefore, a black box view of the system. An observer actor
has the further capabilities of inspecting the internal state of the system (i.e.
values of machine functions and locations), to require the execution of particu-
lar system (sub-)services of the machine, and to check the validity of possible
invariants of a certain scenario. Therefore, an observer actor has a gray box view
of the system under development.

Use-cases are described by a set of scenarios and each scenario represents a
single path through the use case. Usually, in the UML, scenarios are depicted
using sequence diagrams describing the actor(s)-system interaction, but also the

4

check �oor(lift1) = 0;
// external request for UP
set existsCallFromTo(0, UP) := true;
// internal request to �oor 4
set hasToDeliverAt(lift1, 4) := true;
// start moving
step

check ctlState(lift1) = MOVING;
check dir(lift1) = UP;
check existsCallFromTo(0, UP) = false;

(B)

Fig. 1. Use cases (A) and a scenario (B) for the Lift model

system components interaction to provide a certain service. We prefer to describe
scenarios in an algorithmic way as interaction sequences consisting of actions,
where each action in turn is an activity of a user actor who sets the environ-
ment (i.e. the values of monitored/shared functions) and checks for the machine
outputs (i.e. the values of out functions), possibly combined with an activity of
the observer actor who has the extra ability to check the machine (also internal)
state and ask for the execution of given transition rules, and an activity of the
machine which makes one step as reaction of the actor actions.

Fig. 1(b) shows a script relative to a scenario of the LIFT case study taken
from [6] and encoded in AsmetaL. The scenario shows the interaction between a
lift lying at ground �oor and a user stating at the same �oor and asking for the lift
to go up. Once getting into, he/she asks for reaching �oor 4. The observer initially
checks (�rst check) that the lift is at the ground �oor before the interaction
takes place, and upon the machine makes a step, he/she checks that the lift is
moving in the up direction and that the (external) request has been removed.
Note that existsCallFromTo(floor,dir) speci�es an external request function
(re�ecting the user action of pressing the up or down button outside the lift at
a certain floor), while hasToDeliverAt(lift,floor) formalizes an internal
request function (re�ecting the user action of pressing a button inside the lift).

4 The AValLa language

The AValLa language has been de�ned as a domain-speci�c language (DSL) in
the context of scenario-based validation of ASM models written in AsmetaL. As
required for model-driven language de�nition, the abstract syntax of AValLa
is de�ned in terms of an (object-oriented) model which is usually referred in the
MDE context [29] to as Domain De�nition MetaModel (DDMM). The DDMM
represents concepts and their relations of the underlying domain and allows the
separation of the abstract syntax and semantics of the language constructs from
their di�erent and alternative concrete notations (textual, visual, or mixed) for
various goals. A concrete syntax is usually de�ned by a transformation that maps
the DDMM onto a �display surface� metamodel (like XML, EBNF, etc.) [29].

5

Fig. 2. AValLa metamodel (MM)

Domain De�nition Metamodel (abstract syntax) The MM (Meta Model)
of the AValLa is speci�ed in EMF/Ecore [12]. Fig. 2 shows the metamodel using
a UML class diagram. This metamodel captures concepts and their relations of
the ASMs-based scenario modelling domain mentioned in Sect. 3.

An instance of the class Scenario represents a scenario of a provided ASM
speci�cation. Basically, a scenario has an attribute name, an attribute spec de-
noting the ASM speci�cation to validate, and a list of target commands of type
Command . Additionally, a scenario may contain the speci�cation of some critical
properties, here referred to as scenario invariants, that should always hold (and
therefore veri�ed) for the particular scenario � to not be confused with general
axioms one speci�es for an ASM spec as invariants over functions or domains
constraining the ASM states. The composite associations between the Scenario
class (the whole) and its component classes (the parts) Invariant and Command

assures that each part is included in at most one Scenario instance.
The abstract class Command and its concrete sub-classes provide a classi�-

cation of scenario commands. The Set command updates monitored or shared
function values that are supplied by the user actor as input signals to the system.
Commands Step and StepUntil represent the reaction of the system, which can
execute one single ASM step and one ASM step iteratively until a speci�ed con-
dition becomes true. The Check class represents commands supplied by the user
actor to inspect external property values and/or by the observer actor to further
inspect internal property values in the current state of the underlying ASM. Fi-
nally, an Exec command executes an ASM transition rule when required by the
observer actor.

Concrete Syntax A concrete syntax for AValLa has been implemented as
textual notation according to the model-to-grammar mapping described in [16]
and already used for deriving the AsmetaL notation [4] from the ASM Meta-
model (AsmM) representing the abstract syntax of the ASM language as given
in [4,17]. A grammar (written in JavaCC) and a parser [4] are derived from the
AValLa MM to automatically parse textual scenario scripts into scenario mod-
els. Other tools, as TEF (Textual Editing Framework) [38] allowing creation of
textual editors for EMF-based languages, could be exploited for the same goal.

6

Abstract syntax Concrete syntax

Scenario scenario name
load spec_name
Invariant* Command*

spec_name is the spec to load; invariants and commands are the script content

Invariant invariant name `:' expr `;'
expr is a boolean term made of function and domain symbols of the underlying ASM

Command (Set | Exec | Step | StepUntil | Check)

Set set loc := value `;'
loc is a location term for a monitored function, and value is a term denoting
a possible value for the underlying location

Exec exec rule `;'
rule is an ASM rule (e.g. a choose/forall rule, a conditional if, a macro call rule, ect.)

Step step `;'

StepUntil step until cond `;'
cond is a boolean-valued term made of function and domain symbols of the ASM

Check check expr `;'
expr is a boolean-valued term made of function and domain symbols of the ASM

Table 1. The AValLa textual notation

Table 1 reports the AValLa concrete syntax in a EBNF form, in which terminal
symbols are in bold and elements in the �rst column represent non terminals.
Examples of scenario scripts are provided in Sect. 7 for the Lift case study.

5 The AValLa semantics

Currently, metamodelling environments (like Eclipse/Ecore, GME/MetaGME,
AMMA/KM3, XMF-Mosaic/Xcore, etc.) allow to cope with most syntactic and
transformation de�nition issues in the speci�cation of a DSL, but they lack of any
standard and rigorous support to provide the dynamic semantics of metamod-
els and metamodel-based languages, which is usually given in natural language
(the most well-known example is the UML [39]). Below, we brie�y present the
approach we adopted to de�ne the AValLa semantics.

An ASM-based semantic framework for DDMMs A language has a well-
de�ned semantics if a semantic domain S is identi�ed and a semantic map-
ping MS from the language syntax to S is provided [23]. As semantic do-
main S, we assume the semantic domain SAsmM of the ASM language, namely
the �rst-order logic extended with a logic for function updates and for transi-
tion rule constructors formally de�ned in [6]. Therefore, the semantic mapping
MS : DDMM → SAsmM which associates a well-formed terminal model3 m

3 According to the de�nition in [29], a terminal model is a model written in the lan-
guage L and conforming to the language metamodel.

7

conforming to DDMM with its semantic model MS(m), can be de�ned as

MS = MSAsmM
◦M

where MSAsmM
is the semantic mapping (of the ASM language) that associates

a theory conforming to the SAsmM logic with a model conforming to AsmM

(representing the abstract syntax of the ASM language), and the function

M : DDMM −→ AsmM

associating an ASM to a terminal model m. The M function hooks the semantics
of a metamodel to the SAsmM domain and, therefore, the problem of giving
the language semantics is reduced to de�ne the function M . Exploiting this
approach, the semantics of a metamodel-based language is expressed in terms of
ASM transition rules.

Language Semantics According to the approach explained above, to endow
the AValLa language with a semantics we have to de�ne a function M :MM −→
AsmM associating an ASM (i.e. a model conforming to the AsmM metamodel)
with a scenario model m conforming to the AValLa MM. This ASM machine
is automatically induced from the elements of the source scenario model m and
their typing elements in theAValLa MM, and from the original ASM to validate
(which is linked to a scenario by its attribute spec). The resulting ASM is
obtained from the original ASM in the following way.

A scenario (instance of the Scenario class) is mapped into the original ASM
to validate (instance of the Asm class in AsmM), except that: monitored and
shared functions are turned into controlled functions; a new 0-ary controlled
function currentRule of Rule type is added to the signature to denote the
current rule of the original ASM being executed; for notifying check-command's
property violations, a boolean-valued 0-ary function all_checks_OK is added to
the signature together with an axiom stating that �ag all_checks_OK is always
true; the original initial state is extended to set currentRule to an initial rule
r_step_0 and for setting all_checks_OK to true; �nally, the main rule consists
only into invoking the value of the currentRule.

Invariants and commands of the particular scenario are then taken into con-
sideration in order to further modify the structure of the ASM (see Table 2).
Scenario invariants are mapped into axioms of the �nal ASM. The commands list
is then partitioned into groups: each group is a block of consecutive commands
terminated with either a step-command, a step-group, or a stepUntil-command,
stepUntil-group. For each group one or two rules are added to the �nal ASM
according to the following directives. The i-th step-group [C1 . . . Cn step] is
mapped into a macro rule declaration of form:

r_step_i = seq

R1 . . . Rn

old_main[]
currentRule :=� r_step_i + 1�

endseq

(1)

8

AValLa AsmM

A Invariant instance An Axiom instance

A Set instance l:=v An UpdateRule instance l:=v

A Check instance with expression expr A ConditionalRule with guard expr
and then-body all_checks_OK:=false

A Exec instance for a rule R A Rule instance

A step-group C1 . . . Cn step A MacroDeclaration instance r_step_i
as in (1)

A stepUntil-group C1 . . . Cn step until cond Two MacroDeclaration instances
r_step_i and r_step_i_until as in (2)

Table 2. Mapping from AValLa to AsmM

where Ri are rules generated from the corresponding commands Ci, old_main
is the invocation of the main rule of the original ASM, and the last rule is the
update for the currentRule variable. The i-th stepUntil-group [C1 . . . Cn step

until cond] leads to two rules of form:

r_step_i=
seq

R1 . . . Rn

r_step_i_until[]
endseq

r_step_i_until =
if cond then currentRule :=� r_step_(i + 1)�
else par

old_main[]
currentRule :=� r_step_i_until�

endpar

endif

(2)

where symbols Ri and old_main take the same meaning as above. Note that
the starting rule r_step_0 is produced by the �rst command group. The ASM
rules Ri for the remaining commands are produced as follows. A set-command is
directly mapped into an update rule. An exec-command is a request for executing
a rule R of the original ASM, and therefore it is mapped into an instance of Rule
class of AsmM . A check-command is mapped into a conditional rule having as
guard the expression to check and as then-body an update for setting the all_-
checks_OK �ag to false (and therefore causing an axiom violation).

6 The AsmetaV validator

The AsmetaV validator is a simple Java application based on a transformation
engine which automatically maps any scenario model conforming to the AValLa
metamodel into an AsmM instance as described in Sect. 5, and on the AsmetaS
simulator [18]. AsmetaV reads a scenario written by the user (see Fig. 3) in the
AValLa language, builds the scenario as instance of the AValLa metamodel
by means of the AValLa parser, and transforms the scenario and the AsmetaL
speci�cation which the scenario refers to, to an executable AsmM model.

Then, AsmetaV invokes the interpreter to simulate the scenario. During
simulation the user can pause the simulation and observe, through a watching

9

Fig. 3. AsmetaV validator

window, the current state and value of the update set produced at every step.
During simulation, AsmetaV captures any check violation and if none occurs it
�nishes with a �PASS� verdict.

Besides a �PASS�/�FAIL� verdict, AsmetaV collects also some information
about the coverage of the original model, obtained by running the scenario. Cur-
rently, AsmetaV keeps track of all the rules that have been called and evaluated
and it prints the list of them at the end. This is useful to check if the scenario
has exercised all transition rules of the original model. We plan to further re�ne
this feature in order to monitor also which rules have actually contributed to the
update set, which conditions in conditional rules have been tested true and/or
false and eventually to apply the de�nition of coverage criteria as in [14,13].

7 The LIFT case study

To illustrate the use of the AsmetaVtool to validate an ASM speci�cation by
means of some input AValLa scenarios, we use the Lift example (see [6], Sect.
2.3) concerning the logic of moving n lifts between m �oors.

For the sake of simplicity, we restrict to the case of one lift (lift1) for
m = 5 �oors. Moreover, we assume that the level of abstraction at which the
Lift ground model is de�ned includes also the re�nement step for the request

manipulations (see [6], Sect. 2.3, pag. 57). In the intermediate model that we con-
sider, the monitored function hasToDeliverAt(L, floor) formalizes an internal
request (re�ecting requirement 1 when inside the lift a button is pressed), while
an external request is modelled by the function existsCallFromTo(floor, dir)
(re�ecting requirement 2 when on a �oor outside the lift the up or down but-
ton is pressed). These two functions are shared between the lift user (who sets
them, being part of the environment) and the lift control (which has to reset
them in the CancelRequest macro to satisfy requirements 1 and 2). We do
not consider, instead, to handle exceptional cases when the given machine either
has no well-de�ned behavior or should be prevented from executing; we suppose
therefore that the machine describes the functionality of faultless behavior.

Table 3 summarizes some of the scenarios used to validate the ASM speci�-
cation of the Lift control. A more detailed description of these scenarios follows.

10

Scenario Description Req. # Commands Inv. Coverage

s0 No requests at all 3 19 � 6/8
s1 An external request 1 24 � 7/8
s2 An external request plus an internal one 2.(a) 22 � 8/8
s3 All external buttons pushed 2.(a) 4 1 8/8

Table 3. Some validation scenarios for the Lift control

s0 Description: The lift is halted at ground �oor (# 0) with no requests at all.
Requirements coverage: 3. The lift should remain in its �nal position.

1 // setting initial state
2 check �oor(lift1) = 0;
3 check ctlState(lift1) = HALTING;
4 check dir(lift1) = UP;

7 step

8 check �oor(lift1) = 0;
9 check ctlState(lift1) = HALTING;

10 check dir(lift1) = UP;

commands: set(14), check (4), step (1)
Rule coverage: 6/8 Verdict : PASS

s1 Description: The lift is halted at ground �oor. A user gets into the lift and
asks for reaching �oor 4.
Requirements coverage: 2. The lift should move in the up direction and the
external request at ground �oor should be cancelled (as being satis�ed). See
Fig. 1(b) in Sect. 3.
commands: set(16), check (5), step (3)
Rule coverage: 7/8 Verdict : FAIL (see remark below for explanation)

s2 Description: The lift is halted at ground �oor. A user calls the lift at �oor 4
and once getting into the lift he/she asks for reaching �oor 2.
Requirements coverage: 2.(a) The lift satis�es the user request by reaching
�oor 4 and then reaching �oor 2. Once satis�ed, the requests must be re-
moved:

1 // setting initial state
2 // An external request to �oor 4
3 set existsCallFromTo(4, DOWN) := true;
4 // The lift goes to �oor 4
5 step until ctlState(lift1) = HALTING
6 and �oor(lift1) = 4;
7 // A request to �oor 2
8 set hasToDeliverAt(lift1, 2) := true;
9 step

11 // must go down to �oor 2, down dir
12 check dir(lift1) = DOWN;
13 // the request at �oor 4 is cancelled
14 check not existsCallFromTo(4, DOWN);
15 // goes to �oor 2
16 step until ctlState(lift1) = HALTING
17 and �oor(lift1) = 2;
18 // request to �oor 2 is cancelled
19 check not hasToDeliverAt(lift1, 2);

commands: set(16), check (3), step (1), step-until (2)
Rule coverage: 8/8 Verdict : PASS

s3 Description: The lift is halted at ground �oor. All external buttons (UP and
DOWN) have been pushed.
Requirements coverage: 2.(a) The lift should move sequentially in the up

11

direction from the ground �oor 0 to the top �oor 4. After reaching �oor 4,
all UP requests should be canceled, while the DOWN ones should be still
pending.
Scenario invariants: The lift should not change direction while going up:
dir(lift1) != DOWN;
commands: check (2), step-until(1), exec (1)
Rule coverage: 8/8 Verdict : FAIL (see remark below for explanation)

scenario s3
load lift.asm
invariant neverDown: dir(lift1) != DOWN;
exec //set �oor requests (all external buttons UP and DOWN have been pushed)

forall $i in {0..4} do

par

hasToDeliverAt(lift1, $i) := false
if $i != top then existsCallFromTo($i, UP) := true endif
if $i != ground then existsCallFromTo($i, DOWN) := true endif

endpar;
//the lift goes up to �oor 4, then goes down to complete existsCallFromTo(0, DOWN)
step until ctlState(lift1) = HALTING and �oor(lift1) = 4;
check (forall $i in {0..4} with existsCallFromTo($i, DOWN) = true);
check (forall $i in {0..4} with existsCallFromTo($i, UP) = false);

Remark Scenarios s1 and s3 fail since the Lift speci�cation fails to cancel an
external request when it occurs at a given �oor where the lift is halted, and
the lift has already the same requested direction. This fault can be corrected
either by constraining external requests, or by cancelling this kind of external
request when the lift departs. We preferred to include a CancelRequest rule
invocation within the Depart rule (see [6], Sect. 2.3), rather than to add further
constraints.

8 Conclusions

This work is part of our ongoing e�ort in developing a set of tool around ASMs
for model validation and veri�cation. In this paper, we proposed a scenario-based
approach for ASM model validation.

We have been testing our validation methodology on case studies from the
embedded systems domain [20,7]. The ASMs are used as formal support to de-
liver formal analysis techniques for visual models developed with the UML pro-
�le for SystemC [34] � an UML extension for high-level modelling of embedded
systems on chip.

In the future, we plan to integrate AsmetaV with the ATGT tool [15] in
order to be able to automatically generate some scenarios by using ATGT and
ask for a certain type of coverage (rule coverage, fault detection, etc.).

12

References

1. D. Amyot and A. Eberlein. An evaluation of scenario notations and construc-
tion approaches for telecommunication systems development. Telecommunication
Systems, 24(1):61�94, 2003.

2. J. S. Anderson and B. Durney. Using scenarios in de�ciency-driven requirements
engineering. In Proceedings of the International Symposium on Requirements En-
gineering, pages 134�141. IEEE, 1993.

3. A. I. Anton, W. M. McCracken, and C. Potts. Goal decomposition and scenario
analysis in business process reengineering. Lecture Notes in Computer Science,
811:94�104, 1994.

4. The Abstract State Machine Metamodel website. http://asmeta.sf.net/, 2006.
5. M. Barnett, W. Grieskamp, W. Schulte, N. Tillmann, and M. Veanes. Validating

use-cases with the asmL test tool. In 3rd International Conference on Quality Soft-
ware (QSIC 2003), 6-7 November 2003, Dallas, TX, USA, pages 238�246. IEEE
Computer Society, 2003.

6. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

7. A. Carioni, A. Gargantini, E. Riccobene, and P. Scandurra. Scenario-based Vali-
dation of Embedded Systems. In FDL '08: Proceedings of Forum on Speci�cation
and Design Languages, 2008.

8. J. M. Carroll. Five reasons for scenario-based design. Interacting with Computers,
13(1):43�60, 2000.

9. J. M. Carroll and M. B. Rosson. Getting around the task-artifact cycle: How to
make claims and design by scenario. ACM Transactions on Information Systems,
10(2):181�212, Apr. 1992.

10. P. Chandrasekaran. How use case modeling policies have a�ected the success of
various projects (or how to improve use case modeling). In Addendum to the 1997
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lanuages,
and Applications, pages 6�9, 1997.

11. W. Damm and D. Harel. LCSs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1):45�80, 2001.

12. Eclipse Modeling Framework. http://www.eclipse.org/emf/, 2008.
13. A. Gargantini. Using model checking to generate fault detecting tests. In Interna-

tional Conference on Tests And Proofs (TAP), number 4454 in Lecture Notes in
Computer Science (LNCS), pages 189�206. Springer, 2007.

14. A. Gargantini and E. Riccobene. Asm-based testing: Coverage criteria and auto-
matic test sequence. J. of Universal Computer Science, 7(11):1050�1067, 2001.

15. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using spin to generate tests from
ASM speci�cations. In Abstract State Machines, Advances in Theory and Practice,
number 2589 in LNCS, pages 263�277. Springer, 2003.

16. A. Gargantini, E. Riccobene, and P. Scandurra. Deriving a textual notation
from a metamodel: an experience on bridging Modelware and Grammarware. In
3M4MDA'06 workshop at the European Conference on MDA, 2006.

17. A. Gargantini, E. Riccobene, and P. Scandurra. Metamodelling a Formal Method:
Applying MDE to Abstract State Machines. Technical Report 97, DTI Dept.,
University of Milan, 2006.

18. A. Gargantini, E. Riccobene, and P. Scandurra. A metamodel-based simulator for
ASMs. In A. Prinz, editor, Proceedings of the 14th International ASM Workshop,
2007.

13

19. A. Gargantini, E. Riccobene, and P. Scandurra. Ten reasons to metamodel ASMs.
In Rigorous Methods for Software Construction and Analysis - Papers Dedicated to
Egon Börger on the Occasion of His 60th Birthday, volume 5115 of LNCS. Springer,
2007.

20. A. Gargantini, E. Riccobene, and P. Scandurra. A Model-driven Validation &
Veri�cation Environment for Embedded Systems. In Proc. of the IEEE third Sym-
posium on Industrial Embedded Systems (SIES'08). IEEE, 2008.

21. A. Gargantini, E. Riccobene, and P. Scandurra. A language and a simulation engine
for abstract state machines based on metamodelling. JUCS (accepted), 2008.

22. W. Grieskamp, N. Tillmann, and M. Veanes. Instrumenting scenarios in a
model-driven development environment. Information & Software Technology,
46(15):1027�1036, 2004.

23. D. Harel and B. Rumpe. Meaningful modeling: What's the semantics of "seman-
tics"? IEEE Computer, 37(10):64�72, 2004.

24. J. Hassine, J. Rilling, and R. Dssouli. An ASM operational semantics for use
case maps. In 13th IEEE International Conference on Requirements Engineering
(RE 2005), 29 August - 2 September 2005, Paris, France, pages 467�468. IEEE
Computer Society, 2005.

25. P. Heymans and E. Dubois. Scenario-based techniques for supporting the elab-
oration and the validation of formal requirements. Requir. Eng, 3(3/4):202�218,
1998.

26. P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen. Formal approach
to scenario analysis. IEEE Software, 11(2):33�41, Mar. 1994.

27. H. Kaindl, S. Kramer, and R. Kacsich. A case study of decomposing functional
requirements using scenarios. In 3rd International Conference on Requirements
Engineering (ICRE '98), pages 156�163. IEEE Computer Society, 1998.

28. R. Kemmerer. Testing formal speci�cations to detect design errors. IEEE Trans.
Soft. Eng., 11(1):32�43, Jan. 1985.

29. I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-based DSL frameworks.
In OOPSLA Companion, pages 602�616, 2006.

30. V. Lalioti and B. Theodoulidis. Visual scenarios for validation of requirements
speci�cation. In SEKE'95, The 7th Int. Conference on Software Engineering and
Knowledge Engineering, pages 114�116. Knowledge Systems Institute, 1995.

31. Message sequence chart (MSC). ITU-T Recommendation Z.120, International
Telecommunications Union, Nov. 1996.

32. J. Nielsen. Scenario-Based Design, chapter Scenarios in discount usability engi-
neering, pages 59�83. John Wiley & Sons, 1995.

33. C. Potts, K. Takahashi, and A. I. Anton. Inquiry-based requirements analysis.
IEEE Software, 11(2):21�32, Mar. 1994.

34. E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A UML 2.0 pro�le for
SystemC: toward high-level SoC design. In EMSOFT '05: Proceedings of the 5th
ACM international conference on Embedded software, pages 138�141. ACM Press,
2005.

35. E. Rich and K. Knight. Arti�cial Intelligence. McGraw Hill, 1991.
36. K. S. Rubin and A. Goldberg. Object behavior analysis. Communications of the

ACM, 35(9):48�62, 1992.
37. A. Sutcli�e. Scenario-based requirements engineering. In 11th IEEE Joint Int.

Conference on Requirements Engineering (RE'03), pages 320�329, 2003.
38. Textual Editing Framework. http://www2.informatik.hu-berlin.de/sam/meta-

tools/tef/tool.html, 2007.
39. OMG. The Uni�ed Modeling Language (UML), v2.1.2. http://www.uml.org, 2007.

14

	A scenario-based validation language for ASMs
	 A. Carioni *1cm A. Gargantini *1cm E. Riccobene *1cm P. Scandurra

