
On the Reuse of Existing Configurations
for Testing Evolving Feature Models

Andrea Bombarda

andrea.bombarda@unibg.it

Department of Engineering
University of Bergamo

Bergamo, Italy

Silvia Bonfanti

silvia.bonfanti@unibg.it

Department of Engineering
University of Bergamo

Bergamo, Italy

Angelo Gargantini

angelo.gargantini@unibg.it

Department of Engineering
University of Bergamo

Bergamo, Italy

ABSTRACT
Software Product Lines (SPLs) are used for representing a variety

of highly configurable systems or families of systems. They are

commonly represented by feature models (FMs). Starting from FMs,

configurations, used as test cases, can be generated to identify the

products of interest for further activities. As the other types of

software, SPLs and their FMs may evolve due to changing require-

ments or bug-fixing. However, no guidance is usually given on

what to do with derived configurations when an FM evolves. The

common approach is based on generating all configurations from

scratch, which is not optimal since a greater effort is required for

concretizing the new tests, and some of the old ones may be still

applicable.

In this paper, we present the use of a technique for generating

combinatorial tests for evolving feature models: this technique in-

crementally builds the new combinatorial configuration set starting

from the one generated from the previous model. Furthermore,

we present a novel definition of dissimilarity among configuration

sets that can be used to evaluate how much an evolved test suite

differs from the previous one and thus allows evaluating the effort

required for adapting old test cases to the new ones.

Our experiments confirm that using the proposed technique, in

general, leads to lower dissimilarity and test suite size w.r.t. the

generation of tests from scratch.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation; Feature interaction.

ACM Reference Format:
Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini. 2023. On the

Reuse of Existing Configurations for Testing Evolving Feature Models. In

27th ACM International Systems and Software Product Line Conference -
Volume B (SPLC ’23), August 28-September 1, 2023, Tokyo, Japan. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3579028.3609017

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0092-7/23/08

https://doi.org/10.1145/3579028.3609017

1 INTRODUCTION
Software Product Lines (SPLs) are increasingly used in practice for

representing systems having some common aspects and variability

parameters. In an SPL, the different members of a family of similar

software products are explicitly distinguished by means of their

features. A feature is defined as a user-visible aspect or charac-

teristic of a software system [1]. Features in a product line have

different relations that can be described compactly by means of

Feature Models (FMs). Product samples, to be used as tests, can be

derived from FMs by using several criteria [2, 3] and they are used

for testing actual products of the SPL [4]. In the following, we will

use simply the terms test to refer to a configuration sample and test
suite to indicate a set of possible product configurations generated
from a given FM. In this work, we focus on combinatorial testing

criteria which is one of the most used criteria [2].

Establishing an SPL is generally considered a long-term invest-

ment since it can be complex to represent all the products of interest.

During their lifetime, FMs can evolve, with the introduction or re-

moval of features or the change of constraints among them, in order

to meet ever-changing requirements [5]. Existing research mostly

focuses on techniques and case studies regarding the evolution of

variability models alone [5–8], while little attention has been given

to the coevolution of the test suites, which are an important asset

of the SPL. The evolution of tests is normally tackled for code [9],

where the information available in existing test cases is used and,

through a set of heuristics, they are repaired and adapted to the

evolved software. However, the evolution can involve models of

the systems, from which tests have been derived. It is recognized

that an open problem in model-based testing is what to do with

the derived test cases when a system model evolves because some

faults are found or new requirements are set by the users.

Testing techniques for FMs do not consider their history and the

evolution in SPLs [2]. When a model is modified, a new configura-

tion set is generated from the new model, and the testing activity

restarts. We call this basic technique Generation From Scratch (GFS).

This approach has two main drawbacks:

(1) the generation itself may be time-consuming, since every

time a new complete test suite is generated;

(2) existing tests are discarded together with all what is attached

to them.

While the former problem may require only some additional com-

putation time (although the test generation itself may require some

human intervention as well), the latter can increase the cost of

testing activities significantly. Indeed, there are generally other

artifacts linked to existing configuration sets. For instance, test

suites are commonly translated into concrete tests and then used

https://orcid.org/0000-0003-4244-9319
https://orcid.org/0000-0001-9679-4551
https://orcid.org/0000-0002-4035-0131
https://doi.org/10.1145/3579028.3609017
https://doi.org/10.1145/3579028.3609017

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini

to build actual products and/or perform real experiments and these

activities can come with higher costs. All the activities performed

so far on the existing feature model risk being lost, if the test suite

is completely discarded and a new one is generated. For this reason,

we first contribute by devising a technique, called Generation From

Existing tests (GFE), supported by a tool, that is able to reuse an

existing test suite, by repairing existing tests or their parts, and to

extend it only by those tests that are really required by the new

feature model.

GFS and GFE can be compared in terms of the number of tests

and time required to generate the tests, which give a first approxi-

mate measure of the effort required to update the testing activities

related to the evolution of the model. However, we are interested

in introducing a measure of how much the new test suite differs

from the old one. The idea behind this endeavor is that if the final

test suite built for the evolved model obtained by evolution is very

dissimilar to the original one, then a great effort will be required

to perform test concretization. On the contrary, if the evolved test

suite is very similar (even equal) to the original one, then the effort

to reuse the existing tests will be minimal. Hence, the second con-

tribution of this paper is the formal definition of the dissimilarity
among test suites and the introduction of a simple greedy algorithm

which computes it.

The experiments we have carried out, confirm that using GFE

instead of GFS, in general, leads to lower test suites size and dissim-

ilarity, but for big models can require some extra time.

The paper is structured as follows. Section 2 presents the back-

ground on FMs and on the GFS technique used to generate tests

from them. Section 3 introduces the GFE technique and the tool

which we have extended in order to support it. Section 4 reports the

measures used to compare the test generation strategies and the

novel concept of dissimilarity. Then, in Section 5 we report the ex-

periments carried out in order to evaluate the proposed techniques,

and in Section 6 we discuss possible threats to validity. Finally,

Section 7 presents related work on FMs and tests evolution, while

Section 8 concludes the paper.

2 BACKGROUND
SPL and Feature models. In software product line engineering,

feature models [10, 11] are a special type of information model

representing all possible products of an SPL in terms of features

and relations among them. Specifically, a feature model FM is a

hierarchically arranged set of features 𝐹 , where each parent-child

relation between them is a constraint of one of the following types:

• Or : at least one of the sub-features must be selected if the parent

is selected. • Alternative (xor): exactly one of the children must

be selected whenever the parent feature is selected. • And: if the
relation between a feature and its children is neither an Or nor an
Alternative, it is called and. Each child of an and must be either:

– Mandatory: the child feature is selected whenever its respective

parent feature is selected. – Optional: the child feature may or may

not be selected if its parent feature is selected.

Only one feature in 𝐹 , which is the root of FM , has no parent and

it is selected in every product. In addition to parental relations, it

is possible to add cross-tree constraints, i.e., relations that cross-cut
hierarchy dependencies. Simple cross-tree constraints are:

root

CBA

A or B

(a) Initial feature model FM

root

CB

A

D

(b) Evolved feature model FM′

Figure 1: Example of a feature model evolution

• A requires B: the selection of a feature A in a product implies

the selection of feature B. We also indicate it as 𝐴→ 𝐵.

• A excludes B: A and B cannot be part of the same product.

We also indicate it as 𝐴→ ¬𝐵.
In this work, we allow feature models to contain complex cross-

tree constraints (i.e., given by general propositional formulas).

A feature model can contain dead features, i.e., those that cannot

be selected, and core features, i.e., those mandatory in every valid

product, like the root.
An example of feature model is shown in Figure 1a. It has 4

features: one is the root (root), one is mandatory (C) while the other
two (A and B) are optional. Moreover, it contains the constraint

A or B which requires at least one of the specified features to be

selected in every valid product. In that example, root and C are core

features.

2.1 Feature model evolution
SPLs and their feature models evolve over time [5]. Features can

be added, removed, moved, and constraints modified. Each change,

however small, is likely to change the set of legal feature combi-

nations: certain configurations can be no longer valid, and others

could become valid instead.

Consider the featuremodel shown in Figure 1a, which is modified

as shown in Figure 1b by moving the feature A as a sub-feature

of C, removing the mandatory constraint on the C feature, by

removing the cross-tree constraint, and by adding the mandatory

D feature. While in the original FM all the configurations without

C are not admissible, in the new model FM′, such configurations

may represent valid products. Moreover, D is not present in any of

the valid configurations for the original FM , while it must be added

in all valid products of FM′.

2.2 Test suites for Feature Models
When working with a feature model 𝐹𝑀 , each (abstract) test speci-

fies which features of 𝐹𝑀 are selected and which are not. Since the

feature set can evolve, we want to distinguish when a test does not

select a feature by choice (so the product identified by that test will

have that feature unselected) or because simply that feature does

not exist. We will use a test 𝑡 as a function that returns the status

of a feature 𝑓 in 𝑡

𝑡 (𝑓) =

⊤ if 𝑓 is selected in t

⊥ if 𝑓 is not selected in t

_ if 𝑓 does not exist in the feature model

Reuse of Existing Configurations for Testing Evolving Feature Models SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

Table 1: Example of a test suite for FM and one for FM′. The
meaning of 𝑡� and 𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 will be presented in Section 4

A B C D A B C D 𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 (𝑡𝑖 , 𝑡 ′𝑖)
TS for FM TS′ for FM′

𝑡1 ⊥ ⊤ ⊤ _ 𝑡 ′
1
⊥ ⊥ ⊤ ⊤ 2

𝑡2 ⊤ ⊥ ⊤ _ 𝑡 ′
2
⊤ ⊥ ⊤ ⊤ 1

𝑡3 ⊤ ⊤ ⊤ _ 𝑡 ′
3
⊤ ⊤ ⊤ ⊤ 1

𝑡� _ _ _ _ 𝑡 ′
4
⊥ ⊤ ⊥ ⊤ 4

𝑡� _ _ _ _ 𝑡 ′
5
⊥ ⊥ ⊥ ⊤ 4

For example, Table 1 reports two test suites for the models shown

in Figure 1. In particular, all the 𝑡𝑖 represent tests of the test suite

generated starting from the original model (see Figure 1a), while all

the 𝑡 ′
𝑖
represent the tests appertaining to the test suite generated

starting from its evolution (Figure 1b). Note that, for easier inter-

pretation, Table 1 reports the same features and the same number

of tests for both feature models, even if the former has only 3 real

tests and does not have the feature D. In this case, we consider the

test cases and features added as being unavailable and we mark

them as _. Note that the root feature is omitted in tests since it must

be selected by each valid product.

Since the number of tests for a feature model is normally too

high for performing exhaustive testing, the literature reports several

techniques for creating test suites for featuremodels such as product

sampling [2], search-based algorithms [12, 13] and combinatorial

testing, which allows testers to select only valid products.

2.3 Generation From Scratch (GFS)
Once the considered feature model evolves, the common current

solution, for obtaining a new test suite, is based on test generation

from scratch (GFS) [14]: the evolved feature model is given as input

to a test generator and a completely new test suite is generated.

This technique is trivial but has the following drawbacks:

• regenerating the whole test suite does not take into account

some of the old tests that may be still valid for the evolved

feature model;

• regenerating the whole test suite may require considerable

time, especially when feature models are complex;

• the old test suite may contain some specific tests that were

written in order to test critical configurations of the system;

if the test suite is regenerated, these tests may be lost, while

it would be better to keep them and, possibly modify them

if they became invalid;

• old tests should be kept as long as possible in order to be

used as a solid base for regression testing.

In order to address these limitations, in the following, we propose

a method that allows reusing, completely or partially, the tests from

the old test suite and evolving them in order to be adapted to the

evolved feature model.

3 REUSE OF EXISTING TEST SUITES
As discussed in the previous sections, reusing existing test suites can

provide several advantages. In this section, we introduce a simple

way to adapt old test suites, by adopting an incremental technique

that we call Generation From Existing tests (GFE). There are several

approaches for the generation of combinatorial test suites starting

from existing tests, called seed tests. For instance, already in [15], the
authors highlight the importance that testers could guarantee the

inclusion of their favorite test cases by specifying them as seed tests.

Generating test sets from seeds is also supported by several tools

such as ACTS [16], jenny [17], PICT [18], and pMEDICI [19]. Some

of them allow the use of partial tests, i.e. tests that do not assign

value to each parameter. However, all of them assume that seed tests

are valid tests, since they are not intended to be applied to evolving

models or for reusing test suites generated for different models. In

our case, though, some tests may become partial due to the addition
of new features as well as invalid due to the change in the structure

of the feature model or of its constraints. For this reason, the use of

existing tools as they are now implemented is not feasible. We have

decided to extend pMEDICI, which is open source
1
, produces one

test at a time, and is able to deal with constraints among parameters

of Boolean and enumerated types, in the following way.

pMEDICI test generation strategy: During test generation,

pMEDICI builds one test at a time trying to cover many tuples in

each test. It stores each test case in a structure called test context
that contains all the assignments committed so far for that sin-

gle test under construction and all the constraints by means of a

Multi-Valued Decision Diagram (MDD) which is an extension of

the classical Binary Decision Diagram (BDD). The pMEDICI regular

process have been modified, for this work, as follows.

Test suite pre-processing and repairing: At the beginning of

the generation for the feature model FM′, we add all the tests given
in an existing test suite TS (likely for a different previous feature

model FM): for each test 𝑡 in TS we build a test context containing

only all the valid assignments of 𝑡 . To do this, we consider one

feature 𝑥 at a time. If 𝑥 is no longer present in FM′, we skip it. If

the current assignment to 𝑥 in 𝑡 is still valid (easily checked by

using the MDD), we add it to the current context, otherwise, we

skip it (only that assignment). At the end, we will have a set of test

contexts partially filled with the old tests of TS and then the actual

generation of pMEDICI can start.

Test suite completion: pMEDICI considers all the tuples for

the new model FM′ that need to be covered and for each tuple, if

it is not already covered, it is added to an existing test context (if

possible) or a new test context (and hence a test) is built. At the

end, pMEDICI produces a test suite TS′ that is valid and reaches

the combinatorial coverage of FM′, but it reuses the old test suite

TS as much as possible.

4 HOW TO COMPARE TEST GENERATION
STRATEGIES

When it comes to choosing a test generation strategy or tool, it may

be difficult to find the most suitable one for the specific situation.

In the following, we present three measures we use in this paper

for comparing test generation strategies: generation time, test suite

size, and dissimilarity.

4.1 Generation time and test suite size
We consider two of the most common measures, namely the time
required for test suite generation and the number of tests in the test

1
https://github.com/fmselab/ct-tools/tree/main/pMEDICI

https://github.com/fmselab/ct-tools/tree/main/pMEDICI

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini

suite [20]. Reducing the former is normally preferred when tests

can be executed in a short amount of time (i.e., the generation time

impacts more than the test execution time) while reducing the latter

is preferred for systems where tests require a considerable effort

for being executed (i.e., testers prefer to have fewer test cases). For

instance, if tests need to be translated, as often done in model-based

testing for concretizing abstract tests [21], a lower number of test

cases is normally preferred.

4.2 Dissimilarity between test suites
When feature models evolve, tests representing valid products must

evolve, too. Here, we want to evaluate the “effort” required to testers

when concretizing the evolved test suite by modifying the previous

one. For this reason, we propose a definition of dissimilarity that

allows for evaluating the difference between two test suites, gener-

ated starting from a feature model FM and its evolution FM′. This
definition is inspired by [13, 22] which examined various types of

distance measurement in the context of SPL testing and reported

that Hamming distance (i.e., the number of points at which two

corresponding tests are different [23]) is generally more effective

than other distance measures. Because we want to somehow count

how many feature values change when tests evolve, first we want

to identify the features of interest that could change:

Definition 1 (Changeable Features). Let 𝐷FM and 𝐶FM be
the set of dead and core features of a feature model FM , FM and
FM′ be two feature models, 𝐹 and 𝐹 ′ be their feature sets. The set of
changeable features is defined as:
𝑐ℎ𝑛𝑔𝐹 (FM, FM′) = (𝐹 ∪ 𝐹 ′) \ ((𝐷FM ∩ 𝐷FM′) ∪ (𝐶FM ∩𝐶FM′))

We consider changeable all the features, except those that are

dead or core in both models. Now, we introduce the definition of

distance between two generic test cases.

Definition 2 (Distance between test cases). Let FM and FM′

be two feature models and chngF(FM, FM′) its changeable features
set. The distance between two tests 𝑡 and 𝑡 ′ derived, respectively, from
FM and FM′, can be computed as follows:

𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 (𝑡, 𝑡 ′) = |{𝑓 | 𝑓 ∈ 𝑐ℎ𝑛𝑔𝐹 (FM, FM′) ∧ 𝑡 (𝑓) ≠ 𝑡 ′ (𝑓)}|

This distance counts the number of features in which two prod-

ucts are different. Each feature 𝑓 that could change is counted in

the distance when it is either selected or not by only one of the two

test cases, or when it is present only in FM or FM′. Note that the
𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 is symmetric, i.e. 𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 (𝑡1, 𝑡2) = 𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 (𝑡2, 𝑡1).

The maximum distance between two tests is obtained when

all the features that could change are actually different in the

two test cases. Thus, the maximum possible 𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 is equal to

|𝑐ℎ𝑛𝑔𝐹 (FM, FM′) |.
Our distance always counts newly added (or removed) features,

since they belong to 𝑐ℎ𝑛𝑔𝐹 and cannot keep the same value in the

test. For this reason, any test 𝑡 ′ of a feature model that introduces

𝑛 new features will have a minimum distance of 𝑛 to any test of

the original model. This is desired because 𝑡 ′ is different for those
new features to any test for the old feature model, regardless if new

features are selected or not.

Example 1. Let’s consider the two feature models in Figure 1, 𝑡1 a

test case for the feature model FM in Figure 1a, and 𝑡 ′
1
a test case

for the feature model FM′ in Figure 1b, as reported in Table 1. The

distance between these two test cases can be computed as follows.

First, we compute the set 𝑐ℎ𝑛𝑔𝐹 = {𝐴, 𝐵,𝐶, 𝐷}.
Then, we fetch each feature 𝑓 ∈ 𝑐ℎ𝑛𝑔𝐹 and count for how many

𝑡1 (𝑓) ≠ 𝑡 ′
1
(𝑓):

𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 (𝑡1, 𝑡 ′1) = |{𝑓 | 𝑓 ∈ 𝑐ℎ𝑛𝑔𝐹 ∧ 𝑡1 (𝑓) ≠ 𝑡 ′
1
(𝑓)}| = |{𝐵, 𝐷}| = 2

Distance among test suites
Having defined the distance between two test cases, we can now

introduce the concept of distance and dissimilarity between test

suites. Intuitively, to measure the distance between two test suites

TS and TS′, we sum the distances between the tests in TS and TS′

taken one by one.

Definition 3 (Distance between test suites). Given two ar-
bitrarily ordered test suites TS = {𝑡1 ...𝑡𝑛} and TS′ = {𝑡 ′

1
...𝑡 ′𝑛}, respec-

tively derived from the feature models FM and FM′, and having equal
size 𝑛, the distance between TS and TS′ is defined as

𝑡𝑒𝑠𝑡𝑆𝑢𝑖𝑡𝑒𝐷𝑖𝑠𝑡 (TS, TS′) =
𝑛∑︁
𝑖=1

𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 (𝑡𝑖 , 𝑡 ′𝑖)

Definition 3 assumes that both test suites have equal size. In

case one test suite is smaller than the other, we complement it with

as many inexistent test cases 𝑡� as needed. In a 𝑡�, any feature 𝑓

belonging to either FM or FM′, is not existing:

∀𝑓 ∈ (𝐹 ∪ 𝐹 ′), 𝑡� (𝑓) = _

Note that our definition of distance among test suites is able to

distinguish the case in which a feature 𝑓 is not selected by a test

case from that in which 𝑓 does not exist, and the case in which a

test case is composed only by not selected features from that in

which the test case is empty. This is the reason why we do not use

more classical definitions of distances based on sets, such as Jaccard

distance. We will motivate this choice in Section 6.

Since the distance between test suites is computed by summing

the distances between test cases taken one by one, it depends on

the order in which the test cases are considered. For this reason,

we define the dissimilarity between test suites as follows:

Definition 4 (Dissimilarity between test suites). Let TS
and TS′ be two test suites derived respectively from two feature models
FM and FM′. The dissimilarity between the two test suites is defined
as the minimum distance and it is computed as follows:

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (TS, TS′) = min 𝑡𝑒𝑠𝑡𝑆𝑢𝑖𝑡𝑒𝐷𝑖𝑠𝑡 (TS, TS′)

In order to scale all dissimilarities in the same range, one may

want to compare test suites using the percentage dissimilarity, which
computes the ratio between the actual dissimilarity and the ones

of the worst scenario. Considering two feature models FM and

FM′, 𝐹 and 𝐹 ′ the set of all the features respectively of FM and

FM′ (excluding not existing features), TS and TS′ two test suites

derived respectively from two feature models FM and FM′, and
𝑐ℎ𝑛𝑔𝐹 (FM, FM′) the set of changeable features, the worst case dis-
similarity is computed as follows:

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑤𝑜𝑟𝑠𝑡 (TS, TS′) = max(|TS |, |TS′ |) × |𝑐ℎ𝑛𝑔𝐹 (FM, FM′) |
Indeed, considering that when a test suite has fewer tests than

the other we complement it with the inexistent test case 𝑡�, both

Reuse of Existing Configurations for Testing Evolving Feature Models SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

test suites will result in having max(|TS |, |TS′ |) tests, each one with

a maximum distance of |𝑐ℎ𝑛𝑔𝐹 (FM, FM′) |, as previously discussed.

The percentage dissimilarity is obtained as follows:

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦% (TS, TS′) =
𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (TS, TS′)

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑤𝑜𝑟𝑠𝑡 (TS, TS′)
· 100%

In the following example, we show the calculation of the per-

centage dissimilarity for the feature models shown in Fig 1.

Example 2. Given the two test suites in Table 1, the distances be-

tween the tests are those reported in the 𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 (𝑡𝑖 , 𝑡 ′𝑖) column. As

reported in Definition 3, in order to compute the distance between

TS and TS′, the two test suites must have the same number of test

cases. For this reason, we append to TS two inexistent test cases 𝑡�.
In this way, we can compute the distance between the two test sets

as follows:

𝑡𝑒𝑠𝑡𝑆𝑢𝑖𝑡𝑒𝐷𝑖𝑠𝑡 (TS, TS′) =
5∑︁

𝑖=1

𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 (𝑡𝑖 , 𝑡 ′𝑖) = 2 + 1 + 1 + 4 + 4 = 12

Considering that, based on our experiments, the proposed order

in which to consider the tests is the one leading to the lowest

distance, the computed distance is the dissimilarity we are looking

for. Furthermore, the percentage dissimilarity between the two test

suites is

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦% (TS, TS′) =
12

5 × 5

· 100% = 48%

4.3 A greedy approach to compute the
dissimilarity function

Since the dissimilarity between two test suites depends on the order

in which tests are considered, its computation can be represented

as an optimization problem: choose the best tests ordering that

minimizes the distance. We were able to represent this problem

using a matrix (containing all the distances among tests in the two

test suites) as Mixed Integer Programming with all the constraints

to force the function to be (partially) one-to-one. We were able

to solve this problem using GAMS
2
(General Algebraic Modeling

System), which is a high-level modeling system for mathematical

optimization, and it is designed for modeling and solving linear,

nonlinear, and mixed-integer optimization problems. However, we

found that even to solve a simple problem, our GAMS program

required minutes of elaboration. Moreover, each feature model evo-

lution may require a different GAMS program, and the automation

of the generation of the correct GAMS program is a challenging

problem. For this reason, we decided to implement a greedy algo-

rithm, inspired by the Hungarian algorithm proposed in [22], to

compute the minimal distance between two test suites.

Alg. 1 computes an alleged minimal distance between TS and TS′.
It compares each test in TS to one of TS′, and finds the matching

between test cases having the lowest distance. Initially, the distance

is set to the worst case, i.e., to the total number of changeable

features nChgFeats (line 2). Then, each pair ⟨𝑡, 𝑡 ′⟩, where 𝑡 ∈ TS
and 𝑡 ′ ∈ TS′, is checked and the distance between the two tests

is evaluated (line 4). When the minimum distance between 𝑡 and

𝑡 ′ is found, the value of 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 is updated and the two tests

are removed from the two test suites (lines 9-10). This process is

repeated until one of the two test suites is completely empty. Then,

2
https://www.gams.com

Algorithm 1 Greedy algorithm for computing the dissimilarity

Require: TS the old test suite

Require: TS′ the new test suite

Require: nChgFeats the total number of changeable features, i.e.,

|𝑐ℎ𝑛𝑔𝐹 (FM, FM′) |
Ensure: dissimilarity the dissimilarity between TS and TS′

1: while TS ≠ ∅ and TS′ ≠ ∅ do
2: 𝑚𝑖𝑛 ← 𝑛𝐶ℎ𝑔𝐹𝑒𝑎𝑡𝑠

3: for all 𝑡 ∈ TS and 𝑡 ′ ∈ TS′ do ⊲ Find the closest pair

4: if 𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 (𝑡, 𝑡 ′) ≤ 𝑚𝑖𝑛 then
5: 𝑚𝑖𝑛 ← 𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 (𝑡, 𝑡 ′)
6: 𝑡𝑚𝑖𝑛 ← 𝑡 ; 𝑡 ′

𝑚𝑖𝑛
← 𝑡 ′

7: end if
8: end for
9: 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 +𝑚𝑖𝑛

10: TS ← TS − 𝑡𝑚𝑖𝑛 ; TS′ ← TS′ − 𝑡 ′
𝑚𝑖𝑛

⊲ Remove 𝑡𝑚𝑖𝑛 and 𝑡 ′
𝑚𝑖𝑛

11: end while
⊲ Compute the dissimilarity due to remaining tests

12: if TS ≠ ∅ then
13: 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + (𝑛𝐶ℎ𝑔𝐹𝑒𝑎𝑡𝑠 · |TS |)
14: else if TS′ ≠ ∅ then
15: 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + (𝑛𝐶ℎ𝑔𝐹𝑒𝑎𝑡𝑠 · |TS′ |)
16: end if

Table 2: List of the FM evolution examples from the literature

Example V #F #P Ref. Example V #F #P Ref.

AmbAssistLiving 2 24-32 9.8·10
4
-5.0·10

7
[25] SmartHotel 2 6-8 6-30 [26]

AutomotiveMult. 3 6-13 5-192 [27] Smartwatch 2 12-15 96-192 [28]

Boeing 3 5-6 2-2 [29] WeatherStat. 2 22-23 528-660 [30]

CarBody 4 6-13 4-40 [31] MobileMedia 6 11-26 2-272 [32]

Linux (Simple) 3 5-10 7-33 [24] HelpSystem 2 25-26 672-10
3

[33]

ParkingAssistant 5 6-16 1-32 [8] SmartHome 2 38-61 9.0·10
5
-3.9·10

9
[34]

Pick&PlaceUnit 9 5-11 3-81 [35] ERP 2 42-57 2.6·10
4
-2.6·10

5
[36]

BCS 3 13-17 128-768 [22]

if a test suite has some remaining test, all of them contributes to the

dissimilarity with the highest distance between test cases possible

(lines 12-15).

Example 3. Let’s consider the feature model of the Linux Kernel

presented in [24], which has two evolutions. We have generated

the test suite TS from the LinuxKernelv2 model and TS′ from the

LinuxKernelv3, and then we have repeatedly calculated the dissimi-

larity between TS and TS′ by using the proposed algorithm. Every

time, before applying the greedy computation of the dissimilarity by

Alg. 1, we shuffled both test suites. We have found that depending

on the order of test cases in the test suites, the computed percent-

age dissimilarity may vary from 16.19% to 18.10%. This proves that

the greedy algorithm could return dissimilarity that is close to the

minimum but it is not the minimum.

5 EXPERIMENTS
In this section, we present the experiments and the results obtained

by comparing the GFS and GFE test generation techniques for evolv-

ing feature models. In particular, we are interested in answering

the following research questions:

Which is the test generation technique leading to ...
RQ1 ... the lowest generation time?

RQ2 ... the lowest test suite size?

https://www.gams.com

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini

Original FM Evolved

pMEDICI

Original Test Suite
TS

pMEDICI+

Test suite size
and Gen. TimeDissimilarity

Data Analysis

pMEDICI

GFSGFE

Evolution

Evolved Test Suite
 TS'GFE

Evolved Test Suite
 TS'GFS

1 23

FM'

Figure 2: Experimental methodology - pMEDICI+ is the ex-
tended version of pMEDICI used for GFE.

RQ3 ... a lower dissimilarity of the new test suite w.r.t. the original

test suite?

Experimental methodology
In order to answer the research questions listed above, we have

gathered a set of 15 feature models and their evolutions, for a total

of 50 models coming from real case studies. Table 2 reports the list

of the FMs we have used in our experiments, the number of versions

(V), the minimum and maximum number of features (including the

core and dead ones) across all the evolutions (#F), the minimum

and the maximum number of products (#P), and the reference to

the article where the models come from. Note that, for the models

having more than a single evolution, we consider evolutions only

between two consecutive steps (i.e., we compare the version 𝑣1 with

the version 𝑣2, then 𝑣2 with 𝑣3, and so on). In total, we consider 35

evolutions.

The replication package, containing the feature models, the eval-

uation script, the results of our experiments, and an executable jar

for repeating the experiments is available online [37].

For each model and its evolution, we apply the process depicted

in Figure 2 and explained in the following, with strength 𝑡 = 2,

i.e., applying pairwise test generation. First, we use pMEDICI for

computing the test suite TS achieving the intended combinatorial

coverage on the original feature model (step 1 in Figure 2). Then, we

generate the test suite TS′𝐺𝐹𝑆 from the evolved model by applying

GFS (step 2 in Figure 2). Afterward, we proceed with the evaluation

of GFE based on the incremental generation of tests starting from

partial test seeds (step 3 in Figure 2) using pMEDICI+: starting from
the evolved feature model and the original test suite, we generate

the evolved test suite TS′𝐺𝐹𝐸 as explained in Section 3. Then we

compare both test suites TS′𝐺𝐹𝐸 and TS′𝐺𝐹𝑆 by analyzing their

size and their generation time. Moreover, we can compare them

both with the original test suite TS in terms of dissimilarity.

We have repeated the experiments 10 times on a PC using a

Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz (16 physical cores,

32 logical cores) with 256 GB RAM. Note that, even if pMEDICI

supports multithreading [38], each experiment has been carried

out using only 1 thread, but the approach would work with higher

number of threads as well. In this way, we isolate the effect of the

chosen generation technique from that of the number of threads

used.

ERP

SmartHomeV2

Figure 3: Test suite TS′ generation times with GFS and GFE.
The 𝑥 axis is on a log. scale.

In order to compare the results obtained by each test generation

strategy, we use the Wilcoxon Signed-Rank test [39], a general test

that compares the distributions in paired samples and that does not

require data to be normally distributed. Given 𝑥 the measure to be

compared between the two techniques, the test is performed using

a significance level 𝛼 = 0.05 and the null hypothesis 𝐻0 stating that

the distributions of 𝑥 in the two techniques are equal. Besides the

Wilcoxon Signed-Rank test, we have evaluated the effect size by

computing the Cliff’s delta 𝛿𝑐 . The effect of a technique is small if

|𝛿𝑐 | < 0.147, medium if 0.147 ≤ |𝛿𝑐 | < 0.33 or large if |𝛿𝑐 | ≥ 0.33.

5.1 RQ1: Test suite generation time analysis
As presented in Section 3, one of the most common measures used

to evaluate a test generation strategy is the test suite generation

time.

For this reason, in this research question, we evaluate GFS and

GFE by comparing the time 𝑡 required for generating a test suite.

We have obtained 𝑡𝐺𝐹𝑆 = 570.75 ms, and 𝑡𝐺𝐹𝐸 = 874.77 ms, but

𝑝𝑣𝑎𝑙𝑢𝑒 = 0.45 by using a Wilcoxon Signed-Rank test. Therefore,

we cannot reject the null hypothesis even if 𝑡𝐺𝐹𝑆 < 𝑡𝐺𝐹𝐸 , as also

suggested by a 𝛿𝑐 = 0.03.

A box plot with the test generation times is shown in Figure 3
3
.

We can observe that in many cases GFE performs better than GFS

(see the median value and the box of the plot); for small models,

GFE is faster than GFS (but by a negligible amount of time, consid-

ering that these generation times are small) while for the biggest

models (namely ERP and SmartHome) GFE requires much more

time than GFS. It is apparent that for big models, pre-processing

is not worthwhile and GFS is the best solution. For these reasons,

we would recommend the use of GFS regarding the generation

time, but we plan to find a useful and validated measure of the

complexity of feature models that could suggest when the use of

GFE is preferable instead.

5.2 RQ2: Test suite size analysis
One of the most pursued objectives in software testing is the reduc-

tion in test suite size. Thus, for comparing the proposed techniques

we have gathered the test suite size 𝑠 obtained in all the performed

experiments. The results of our experiments on the feature models

taken from the literature are shown in Figure 4.

We have compared the results of the two techniques by using a

Wilcoxon Signed-Rank test and we have obtained 𝑝𝑣𝑎𝑙𝑢𝑒 = 1.74 ·
10
−7
, 𝑠𝐺𝐹𝑆 = 9.72 test cases, and 𝑠𝐺𝐹𝐸 = 9.27 test cases (with an

effect size 𝛿𝑐 = 0.20).

3
The box-plots include lines linking the corresponding points with the two techniques;

the green triangles show the mean values.

Reuse of Existing Configurations for Testing Evolving Feature Models SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

5 10 15 20 25 30
Test suite size (number of test cases)

GFS

GFE

Figure 4: Test suite TS′ sizes with GFS and GFE.

0 25 50 75 100 125 150 175
Dissimilarity (%)

GFS

GFE

Figure 5: Dissimilarity between TS and TS′ with GFS and GFE.

Therefore, since 𝑝𝑣𝑎𝑙𝑢𝑒 < 𝛼 , we can reject the null hypothesis

and claim that the average size of GFE is smaller than that of GFS,

as highlighted, in the most of cases in Figure 4. This is somehow

unexpected, andmitigates less positive results on the test generation

time for more complex models. In those cases in which minimizing

the test suite size is more important than saving some time during

test generation, GFE is preferable w.r.t. GFS.

5.3 RQ3: Dissimilarity analysis
Given the definition of dissimilarity as explained in Section 4.2, we

here analyze the percentage dissimilarity of the test suites produced

by using GFS and GFE.

As for the previous measures, we have compared the dissimilari-

ties 𝑑 obtained on the feature models in Table 2, with the two tech-

niques, using the Wilcoxon Signed-Rank test and we have obtained

𝑝𝑣𝑎𝑙𝑢𝑒 = 1.81 · 10
−15

,
¯𝑑𝐺𝐹𝑆 = 59.37, and

¯𝑑𝐺𝐹𝐸 = 55.91. There-

fore, we can reject the null hypothesis and, since
¯𝑑𝐺𝐹𝑆 > ¯𝑑𝐺𝐹𝐸 ,

we can conclude that GFE generally outperforms GFS in terms of

dissimilarity. This is confirmed by the plot in Figure 5 where we can

observe that the dissimilarity of the test suite produced with GFE is

lower, in terms of mean value, than that of the test suite produced

with GFS. The difference on average is around 3.46 over values of

around 59, so it is not negligible (∼5%). Moreover, the Cliff’s delta

𝛿𝑐 = 0.30 confirms the correlation between the chosen techniques

and the difference in the dissimilarity.

The experiments and the analysis we have performed show that

GFE may takemore time for big models, but it produces smaller
test suites that are above all more similar to the original test

suites produced for the original model. Smaller size and higher

similarity can reduce the cost of adapting existing configurations

for evolving feature models.

6 THREATS TO VALIDITY
In this section, we discuss the threats to validity [40] and all the

strategies we have undertaken to mitigate them.

Internal validity refers to the fact that the different outcomes

obtained with the two techniques (GFS and GFE) are actually caused

by the techniques themselves and by the way the experiments were

carried out, and not by methodological errors. To mitigate this risk,

we have carefully checked the code to see if there could be other

factors that have caused the outcome, such as errors in the tools

or particular combinations or ordering of tests or test sequences.

For instance, the result may depend on the order in which tests

are first generated and then extended (see Example 3). To mitigate

this risk, we have applied a shuffling procedure in several parts and

performed the experiments many times.

A possible threat to the construct validity comes from the as-

sumption that our definition of test suites’ dissimilarity is suitable

to measure the distance among test suites (provided that the greedy

algorithm is accurate enough). We rely on the literature for this,

where similar distances are often used like in [13]. Given the way in

which we compute the dissimilarity, adding or removing a test case

to the old test suite contributes to increasing the dissimilarity. This

is motivated by the fact that adding a new test case requires the

effort for its concretization linear with the number of features. Also

removing a test case increases the dissimilarity, because it requires

the old test suite to be modified. However, note that by applying

GFE, a test is never completely discarded unless it contains no valid

assignment. Furthermore, we have simulated how a test suite could

be translated in JUnit code, and we confirm that our definition is

valuable and captures the effort required by a test modification.

For instance, in FeatureIDE, every feature of the model must be set

in the test case, even if it is unselected, as in the following Java code:

configuration.setManual(feature, Selection.UNSELECTED).
This justifies that, if a feature is added or removed (so it causes a

dissimilarity), the test must be modified regardless of whether it

is selected or not. We recognize that there may be cases in which

our distance does not capture the real effort required to modify

an existing test suite. For instance, we consider the modification

of a test to be much less costly than writing a new test, but there

are some cases in which a modified test or a new one require the

same effort, so any change of one test has the same weight. Our

generation techniques could still be used by a designer who wants

to define his/her own distance and then decide which test suite is

preferable (GFS and GFE) according to his own metric.

External validity is concerned with whether we can generalize

the results outside the scope of our study. One threat to external

validity refers to the case studies we have used in the experiments.

We have tried to collect as many examples as possible, and we be-

lieve that they are representative enough of the possible evolutions

of FMs (different number of products and features). However, the

use of MDDs in pMEDICI may make our technique not scalable

when considering models with a great number of features.

Another generalization regards the testing criteria we used, since

the approach may be not suitable for other criteria besides the pair-

wise combinatorial one. We believe that our algorithm and tool

could be extended to be used with any testing criteria that can be

represented by formal testing requirements that can be translated

to MDDs. For other testing criteria, however, the incremental build-

ing may become more expensive than the generation from scratch.

In our experiments, we use pMEDICI, also for GFS, whereas any

combinatorial tool could be used to generate the initial test suite (to

be amended later using GFE). We have actually tried another tool

(ACTS) and obtained exactly the same statistical conclusions (not

reported here), with an even longer running time for GFS, but fur-

ther experiments are needed. Moreover, we recognize that our work

is focused only on changes in FMs and not on other artifacts [41].

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini

However, these changes are out of the scope of this paper and we

plan to investigate how to apply the methodology proposed when

other changes beyond the FM occur. Finally, the last generaliza-

tion threat regards the number of threads used by pMEDICI for

generating test suites. Indeed, in [38], we have found that the test

suite size and generation time may vary when a different number

of threads is used. Instead, in this paper, we have reported only

experiments using only a single thread for generating test cases,

both with GFS and GFE, in order to evaluate the impact of the test

generation technique without the influence of the multithreading.

7 RELATEDWORK
Test case evolution is a well-known problem in software engineer-

ing, normally studied when the code of the system under test is

modified for any reason [42]: test cases designed for the early ver-

sions of the system may become obsolete and possibly fail during

the software lifecycle. This happens even more frequently when

software requirements are subject to frequent changes, such as

during agile processes. A way to avoid this is to repair the tests.
In [9], the authors identify a series of common actions the devel-

opers perform in order to update the tests and through a series

of heuristics devise an automatic method capable of repairing test

cases invalidated by changes in the software. This technique can

successfully repair up to 90% of the broken test cases [43], although

there is no guarantee that it will repair completely the test suite.

In [44], the authors present a test-suite augmentation technique,

based on dependence analysis and partial symbolic execution for

regression testing, which can signal if existing test suites are ade-

quate for the changes introduced in a program and, if not, provide

guidance for creating new test cases that specifically target the

changes in the program. This can be extremely useful but leaves

the tester the burden of writing new tests for the evolved software.

Regression testing is challenging also in the context of SPLs since

it must be made efficient through a test case selection method that

selects and, somehow, reuses only the test cases relevant to the

changes [45]. In [46], the authors propose an approach to reducing

the repetition of test cases during regression testing. To a certain

extent, the goal is the same as the approach we propose in this

paper, since by reusing test cases we aim at reducing repetitions as

well.

Test scripts repairing is a widespread practice in the context of

Capture-Replay testing. The scripts obtained by Capture–Replay

tools are very sensitive to changes in web applications, so they need

to be constantly updated and possibly automatically repaired. In

that area, there are attempts to devise techniques that try to extract,

whenever possible, models of the web application. For instance,

in [47], the authors try to build a DOM-model which represents

the modifications of the web interface. Then they try to use that

model to distinguish tests that are retestable but need a repair,

those that are obsolete to be discarded, and those that are reusable

without modification. Repair can then be performed either by hand

or automatically thanks to a series of strategies.

Reusing test cases is recommended by many. In [48], the au-

thors have conducted empirical studies with industrial developers,

and observed that repairing test suites is more cost-effective than

rewriting or regenerating them from scratch.

There are some approaches that study the evolution of tests when

a model-based testing approach is applied. In [49], UML class/object

diagrams and statecharts, augmented with OCL constraints, are

used to model a critical system. Upon an evolution of these models,

an automated process classifies tests as outdated, unimpacted, or

re-testable ones, which need to be updated and adapted. These

concepts can be mapped to our measure of test distance 𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 .

For instance, 𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡 = 0 means that the test is unimpacted. Their

methodology, however, does not propose a way to repair existing

tests, leaving this task to the test generation tool.

In this paper, we propose the use of the dissimilarity for evalu-

ating the impact of test suites evolution. The measurement of the

difference between test suites, in the field of model-based testing,

has been proposed by [13, 50]. In [13], the authors use a dissimilarity

distance very similar to our definition, but only among tests in the

same test suite. In their case, higher dissimilarity is pursued, since

it indicates that tests are effectively covering products. In [50], the

authors study the use of distance functions and machine learning

to help to reduce the discard of MBT tests when use case specifi-

cations given in CLARET language are updated. They have tried

many distance measures, and they claim that using the Hamming

function (very close to our definition) between test suites allows

testers to decide in a more effective way which tests should be

kept after the requirements of the system have changed. A similar

definition of similarity is proposed in [51] among tests from the

same feature model. That definition is extended by [22] and used

to evaluate algorithms for product sampling during Continuous

Integration. In [22], the authors consider the possibility that the

feature set changes. However, unlike the definition proposed in

that paper, we focus on the differences among tests and we consider

only features whose value could actually change. This means that

our dissimilarity is more sensitive to changes. For example, two test

suites can have a distance of 100% in our approach (i.e., similarity

equals to 0), while the similarity defined in [22] is always greater

than | (𝐷FM ∩ 𝐷FM′) ∪ (𝐶FM ∩𝐶FM′) |/|𝐹 ∪ 𝐹 ′ |.
Reusing artifacts upon FeatureModels evolution is tackled also in

[52], where the authors aim at updating Modal Implication Graphs

(MIGs) when constraints are added or removed (while feature sets

remain stable). They present an algorithm able to incrementally

compute updated MIGs after FMs evolution, and this incremental al-

gorithm is much faster (but the expected MIG is unique). In our case,

we allow the evolution of the feature set too, and the computation

speed is only one of the possible advantages we evaluate.

Incremental test generation for feature models is presented in

[53–55], but in all cases the test suite is incrementally built from

scratch, without considering test seeds or existing test suites. All

approaches are similar to pMEDICI without any extension since it

incrementally combines tuples in order to build test suites.

8 CONCLUSIONS
In this paper, we have proposed the GFE technique which is imple-

mented in pMEDICI+ and allows for the incremental generation

of combinatorial test suites for FMs. When an FM evolves, GFE

exploits the previous test suite and keeps those tests (or their parts)

that are still applicable to the evolved FM. In this way, testers may

avoid the common problems of the GFS technique, which instead

Reuse of Existing Configurations for Testing Evolving Feature Models SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

generates test cases from scratch. Furthermore, in this paper, we

have introduced the concept of dissimilarity that can be used for

evaluating the distance between two test suites, e.g., the one ob-

tained from the old FM and the one from the evolved model.

To evaluate the performance of GFE w.r.t. those of GFS, we

have used 50 FMs coming from real case studies and compared the

dissimilarity, the test suite size, and generation time for each model

evolution. Through a series of three research questions, we have

shown that using GFE instead of GFS, in general, may impact on

generation time but leads to lower dissimilarity and test suite size.

As future work, other measures among evolving test suites could

be introduced, for better estimating the cost/benefits of retaining

and repairing old tests. For instance, the cost of updating a test may

be not linearly linked to the number of features changed in it.

Acknowledgment. Wewould like to thank Luca Parimbelli for the

preliminary work done for this project during his master’s thesis.

REFERENCES
[1] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-oriented domain

analysis (foda) feasibility study,” Software Engineering Institute, Carnegie Mellon

University, Tech. Rep. CMU/SEI-90-TR-21, Nov. 1990.

[2] M. Varshosaz, M. Al-Hajjaji, T. Thüm, T. Runge, M. R. Mousavi, and I. Schaefer,

“A classification of product sampling for software product lines,” in Proceedings
of the 22nd International Systems and Software Product Line Conference - Volume 1.
ACM, sep 2018.

[3] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. Le Traon,

“Bypassing the combinatorial explosion: Using similarity to generate and priori-

tize t-wise test configurations for software product lines,” IEEE Transactions on
Software Engineering, vol. 40, no. 7, pp. 650–670, 2014.

[4] I. D. C. Machado, J. D. Mcgregor, Y. a. C. Cavalcanti, and E. S. De Almeida, “On

strategies for testing software product lines: A systematic literature review,”

Inf. Softw. Technol., vol. 56, no. 10, p. 1183–1199, oct 2014. [Online]. Available:
https://doi.org/10.1016/j.infsof.2014.04.002

[5] T. Thüm, D. Batory, and C. Kästner, “Reasoning about edits to feature models,” in

2009 IEEE 31st International Conference on Software Engineering. IEEE, 05 2009,

p. 11.

[6] J. Guo, Y. Wang, P. Trinidad, and D. Benavides, “Consistency maintenance for

evolving feature models,” Expert Systems with Applications, vol. 39, no. 5, pp.
4987–4998, apr 2012.

[7] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wąsowski, “Evolution of the

linux kernel variability model,” in Software Product Lines: Going Beyond. Springer

Berlin Heidelberg, 2010, pp. 136–150.

[8] G. Botterweck, A. Pleuß, D. Dhungana, A. Polzer, and S. Kowalewski, “Evofm:

feature-driven planning of product-line evolution,” in PLEASE ’10. ACM Press,

2010.

[9] M. Mirzaaghaei, F. Pastore, andM. Pezze, “Supporting test suite evolution through

test case adaptation,” in 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, 2012, pp. 231–240.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-oriented domain

analysis (foda) feasibility study,” Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA, Tech. Rep. CMU/SEI-90-TR-021, 1990. [Online].

Available: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

[11] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A classification and survey

of analysis strategies for software product lines,” ACM Computing Surveys, vol. 47,
no. 1, pp. 1–45, Jun. 2014. [Online]. Available: https://doi.org/10.1145/2580950

[12] F. Ensan, E. Bagheri, and D. Gašević, “Evolutionary search-based test generation

for software product line feature models,” in Notes on Numerical Fluid Mechanics
and Multidisciplinary Design. Springer International Publishing, 2012, pp.

613–628. [Online]. Available: https://doi.org/10.1007/978-3-642-31095-9_40

[13] X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and P. Heymans, “Search-

based similarity-driven behavioural SPL testing,” in Proceedings of the Tenth
International Workshop on Variability Modelling of Software-Intensive Systems, ser.
VaMoS ’16. New York, NY, USA: Association for Computing Machinery, 2016,

pp. 89–96. [Online]. Available: https://doi.org/10.1145/2866614.2866627

[14] A. Calvagna, A. Gargantini, and P. Vavassori, “Combinatorial testing for feature

models using CitLab,” in 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops. IEEE, Mar. 2013. [Online].

Available: https://doi.org/10.1109/icstw.2013.45

[15] D. Cohen, S. Dalal, M. Fredman, and G. Patton, “The AETG system: an approach to

testing based on combinatorial design,” IEEE Transactions on Software Engineering,

vol. 23, no. 7, pp. 437–444, jul 1997.

[16] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Acts: A combinatorial test generation

tool,” in 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation, 2013, pp. 370–375.

[17] “Jenny website,” http://burtleburtle.net/bob/math/jenny.html.

[18] “PICT GitHub page,” https://github.com/microsoft/pict.

[19] A. Bombarda and A. Gargantini, “Incremental generation of combinatorial test

suites starting from existing seed tests,” in 2023 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). Los Alamitos,

CA, USA: IEEE Computer Society, 2023.

[20] A. Bombarda, E. Crippa, and A. Gargantini, “An environment for benchmarking

combinatorial test suite generators,” in 2021 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), 2021, pp. 48–56.

[21] M. Utting and B. Legeard, Eds., Practical Model-Based Testing. San Francisco:

Morgan Kaufmann, 2007.

[22] T. Pett, S. Krieter, T. Runge, T. Thüm, M. Lochau, and I. Schaefer, “Stability

of product-line sampling in continuous integration,” in Proceedings of the 15th
International Working Conference on Variability Modelling of Software-Intensive
Systems, ser. VaMoS ’21. New York, NY, USA: Association for Computing

Machinery, feb 2021. [Online]. Available: https://doi.org/10.1145/3442391.3442410

[23] H. Hemmati and L. Briand, “An industrial investigation of similarity measures

for model-based test case selection,” in 2010 IEEE 21st International Symposium
on Software Reliability Engineering, 2010, pp. 141–150.

[24] M. Nieke, “Consistent feature-model driven software product line evolution,”

Ph.D. dissertation, Technische Universität Braunschweig, 2021.

[25] N. Gámez and L. Fuentes, “Software product line evolution with cardinality-

based feature models,” in Top Productivity through Software Reuse, K. Schmid, Ed.

Berlin, Heidelberg: Springer Berlin Heidelberg, 06 2011, pp. 102–118.

[26] L. Arcega, J. Font, Ø. Haugen, and C. Cetina, “Achieving knowledge evolution in

dynamic software product lines,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1, 2016, pp. 505–516.

[27] C. Seidl, F. Heidenreich, and U. Aßmann, “Co-evolution of models and feature

mapping in software product lines,” in Proceedings of the 16th International
Software Product Line Conference - Volume 1, ser. SPLC ’12. New York, NY,

USA: Association for Computing Machinery, 2012, pp. 76–85. [Online]. Available:

https://doi.org/10.1145/2362536.2362550

[28] N. Ali and J.-E. Hoing, “Your opinions let us know: Mining social network sites

to evolve software product lines,” KSII Transactions on Internet and Information
Systems, vol. 13, p. 21, 08 2019.

[29] J. White, J. A. Galindo, T. Saxena, B. Dougherty, D. Benavides, and

D. C. Schmidt, “Evolving feature model configurations in software product

lines,” J. Syst. Softw., vol. 87, pp. 119–136, jan 2014. [Online]. Available:

https://doi.org/10.1016/j.jss.2013.10.010

[30] pure::variants User’s Guide, pure-systems GmbH, 2022. [Online]. Avail-

able: https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/

pv-user-manual.pdf

[31] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski, “Model-

driven support for product line evolution on feature level,” Journal of Systems
and Software, vol. 85, no. 10, pp. 2261–2274, 2012.

[32] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia,

S. Soares, F. Ferrari, S. Khan, F. Castor Filho, and F. Dantas, “Evolving software

product lines with aspects: An empirical study on design stability,” in Proceedings
of the 30th International Conference on Software Engineering, ser. ICSE ’08. New

York, NY, USA: Association for Computing Machinery, 2008, p. 261–270. [Online].

Available: https://doi.org/10.1145/1368088.1368124

[33] V. Štuikys, R. Burbaitė, K. Bespalova, and G. Ziberkas, “Model-driven processes

and tools to design robot-based generative learning objects for computer

science education,” Science of Computer Programming, vol. 129, pp. 48–71,
2016, special issue on eLearning Software Architectures. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0167642316300247

[34] A. R. Santos, R. P. de Oliveira, and E. S. de Almeida, “Strategies for consistency

checking on software product lines: A mapping study,” in Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering,
ser. EASE ’15. New York, NY, USA: Association for Computing Machinery,

2015. [Online]. Available: https://doi.org/10.1145/2745802.2745806

[35] J. Bürdek, T. Kehrer, M. Lochau, D. Reuling, U. Kelter, and A. Schürr, “Reasoning

about product-line evolution using complex feature model differences,” Auto-
mated Software Engineering, vol. 23, no. 4, p. 67, oct 2016.

[36] S.P.L.O.T., “Repository of real feature models,” [Online; accessed 08-September-

2022]. [Online]. Available: http://http://52.32.1.180:8080/SPLOT/feature_model_

repository_depot.html

[37] A. Bombarda, S. Bonfanti, and A. Gargantini, “Replication package for the paper

"On the Reuse of Existing Configurations for Evolving Feature Models",” Jun.

2023. [Online]. Available: https://doi.org/10.5281/zenodo.8038553

[38] A. Bombarda and A. Gargantini, “Parallel test generation for combinatorial

models based on multivalued decision diagrams,” in 2022 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).

https://doi.org/10.1016/j.infsof.2014.04.002
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
https://doi.org/10.1145/2580950
https://doi.org/10.1007/978-3-642-31095-9_40
https://doi.org/10.1145/2866614.2866627
https://doi.org/10.1109/icstw.2013.45
http://burtleburtle.net/bob/math/jenny.html
https://github.com/microsoft/pict
https://doi.org/10.1145/3442391.3442410
https://doi.org/10.1145/2362536.2362550
https://doi.org/10.1016/j.jss.2013.10.010
https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
https://doi.org/10.1145/1368088.1368124
https://www.sciencedirect.com/science/article/pii/S0167642316300247
https://doi.org/10.1145/2745802.2745806
http://http://52.32.1.180:8080/SPLOT/feature_model_repository_depot.html
http://http://52.32.1.180:8080/SPLOT/feature_model_repository_depot.html
https://doi.org/10.5281/zenodo.8038553

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini

Los Alamitos, CA, USA: IEEE Computer Society, 4 2022, pp. 74–81. [Online].

Available: https://doi.ieeecomputersociety.org/10.1109/ICSTW55395.2022.00027

[39] R. F. Woolson, “Wilcoxon signed-rank test,” Sep. 2008. [Online]. Available:

https://doi.org/10.1002/9780471462422.eoct979

[40] R. Feldt and A. Magazinius, “Validity threats in empirical software engineering

research - an initial survey,” in SEKE, 2010.
[41] C. Kröher, L. Gerling, and K. Schmid, “Identifying the intensity of variability

changes in software product line evolution,” in Proceedings of the 22nd
International Systems and Software Product Line Conference - Volume 1. ACM,

Sep. 2018. [Online]. Available: https://doi.org/10.1145/3233027.3233032

[42] R. Tzoref-Brill and S. Maoz, “Modify, enhance, select: Co-evolution of

combinatorial models and test plans,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA:

Association for Computing Machinery, 2018, p. 235–245. [Online]. Available:

https://doi.org/10.1145/3236024.3236067

[43] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Automatic test case evolution,” Softw.
Test. Verif. Reliab., vol. 24, no. 5, p. 386–411, aug 2014. [Online]. Available:

https://doi.org/10.1002/stvr.1527

[44] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J. Harrold,

“Test-suite augmentation for evolving software,” in 2008 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2008, pp. 218–227.

[45] P. A. da Mota Silveira Neto, I. do Carmo Machado, Y. C. Cavalcanti, E. S.

de Almeida, V. C. Garcia, and S. R. de Lemos Meira, “A regression testing

approach for software product lines architectures,” in 2010 Fourth Brazilian
Symposium on Software Components, Architectures and Reuse. IEEE, Sep. 2010.

[Online]. Available: https://doi.org/10.1109/sbcars.2010.14

[46] P. Jung, S. Kang, and J. Lee, “Automated code-based test selection for software

product line regression testing,” Journal of Systems and Software, vol. 158, p.
110419, Dec. 2019. [Online]. Available: https://doi.org/10.1016/j.jss.2019.110419

[47] J. Imtiaz, M. Z. Iqbal, and M. U. khan, “An automated model-based

approach to repair test suites of evolving web applications,” Journal
of Systems and Software, vol. 171, p. 110841, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121220302314

[48] S. Makady and R. J. Walker, “Debugging and maintaining pragmatically reused

test suites,” Information and Software Technology, vol. 102, pp. 6–29, 2018. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0950584917302872

[49] E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon, “Selective test generation

method for evolving critical systems,” in 2011 IEEE Fourth International Conference
on Software Testing, Verification and Validation Workshops. IEEE, mar 2011.

[50] T. Diniz, E. L. Alves, A. G. Silva, and W. L. Andrade, “Reducing the discard of

MBT test cases using distance functions,” in Proceedings of the XXXIII Brazilian
Symposium on Software Engineering. ACM, Sep. 2019. [Online]. Available:

https://doi.org/10.1145/3350768.3350790

[51] M. Al-Hajjaji, T. Thüm, M. Lochau, J. Meinicke, and G. Saake, “Effective product-

line testing using similarity-based product prioritization,” Software & Systems
Modeling, vol. 18, no. 1, pp. 499–521, dec 2016.

[52] S. Krieter, R. Arens, M. Nieke, C. Sundermann, T. Heß, T. Thüm, and C. Seidl, “In-

cremental construction of modal implication graphs for evolving feature models,”

in Proceedings of the 25th ACM International Systems and Software Product Line
Conference - Volume A. ACM, sep 2021.

[53] E. Uzuncaova, S. Khurshid, and D. Batory, “Incremental test generation for soft-

ware product lines,” IEEE Transactions on Software Engineering, vol. 36, no. 3, pp.
309–322, 2010.

[54] S. Oster, F. Markert, and P. Ritter, “Automated incremental pairwise testing of

software product lines,” in Software Product Lines: Going Beyond. Springer Berlin

Heidelberg, 2010, pp. 196–210.

[55] M. Al-Hajjaji, S. Krieter, T. Thüm, M. Lochau, and G. Saake, “Incling:

Efficient product-line testing using incremental pairwise sampling,” SIGPLAN
Not., vol. 52, no. 3, p. 144–155, oct 2016. [Online]. Available: https:

//doi.org/10.1145/3093335.2993253

https://doi.ieeecomputersociety.org/10.1109/ICSTW55395.2022.00027
https://doi.org/10.1002/9780471462422.eoct979
https://doi.org/10.1145/3233027.3233032
https://doi.org/10.1145/3236024.3236067
https://doi.org/10.1002/stvr.1527
https://doi.org/10.1109/sbcars.2010.14
https://doi.org/10.1016/j.jss.2019.110419
https://www.sciencedirect.com/science/article/pii/S0164121220302314
https://www.sciencedirect.com/science/article/pii/S0950584917302872
https://doi.org/10.1145/3350768.3350790
https://doi.org/10.1145/3093335.2993253
https://doi.org/10.1145/3093335.2993253

	Abstract
	1 Introduction
	2 Background
	2.1 Feature model evolution
	2.2 Test suites for Feature Models
	2.3 Generation From Scratch (GFS)

	3 Reuse of existing test suites
	4 How to compare test generation strategies
	4.1 Generation time and test suite size
	4.2 Dissimilarity between test suites
	4.3 A greedy approach to compute the dissimilarity function

	5 Experiments
	5.1 RQ1: Test suite generation time analysis
	5.2 RQ2: Test suite size analysis
	5.3 RQ3: Dissimilarity analysis

	6 Threats to validity
	7 Related work
	8 Conclusions
	References

