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Abstract. Safety-critical systems require development methods and
processes that lead to provably correct systems in order to prevent catas-
trophic consequences due to system failure or unsafe operation. The use
of models and formal analysis techniques is highly demanded both at
design-time, to guarantee safety and other desired qualities already at
the early stages of the system development, and at runtime, to address
requirements assurance during the system operational stage.

In this paper, we present the modeling features and analysis tech-
niques supported by ASMETA (ASM mETAmodeling), a set of tools for
the Abstract State Machines formal method. We show how the model-
ing and analysis approaches in ASMETA can be used during the design,
development, and operation phases of the assurance process for safety-
critical systems, and we illustrate the advantages of integrated use of
tools as that provided by ASMETA.

1 Introduction

Failures of safety-critical systems could have potentially large and catastrophic
consequences, such as human hazards or even loss of human life, damage to
the environment, or economic disasters. There are many well-known examples
of critical failures in application areas such as medical devices, aircraft flight
control, weapons, and nuclear systems [40,41].

To assure safe operation and prevent catastrophic consequences of system
failure, safety-critical systems need development methods and processes that lead
to provably correct systems. Rigorous development processes require the use of
formal methods, which can guarantee, thanks to their mathematical foundation,
model preciseness, and properties assurance.
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Fig. 1. Assurance process during system’s life cycle

However, modern safety-critical software systems usually include physical
systems and humans in the loop, as for example Cyber-Physical Systems (CPSs),
and, therefore, “system safety” is not only “software safety” but may depend
on the use of the software within its untrusted and unreliable environment.
Reproducing and validating real usage scenarios of such systems at design- or
at development- time is not always possible. Their behavior under certain cir-
cumstances cannot be completely validated without deploying them in a real
environment, where all relevant uncertainties and unknowns caused by the close
interactions of the system with their users and the environment can be detected
and resolved [28,41]. Therefore, an important aspect of the software engineering
process for safety-critical systems is providing evidence that the requirements are
satisfied by the system during the entire system’s life cycle, from inception to
and throughout operation [49]. As envisioned by the Models@run.time research
community, the use of models and formal analysis techniques is fundamental at
design-time to guarantee reliability and desired qualities already at the early
stages of the system development, but also at runtime to address requirements
assurance during the system operational stage.

Providing assurances that a system complies with its requirements demands
for an analysis process spanning the whole life cycle of the system. Figure 1 out-
lines such a process, showing the three main phases of Design, Development,
and Operation of a system life cycle. During the system development phase,
models created, validated, and verified during the design phase are eventually
used to derive correct-by-construction code/artifacts of the system and/or to
check that the developed system conforms to its model(s). During the opera-
tion phase, models introduced at design-time are executed in tandem with the
system to perform analysis at runtime. In this assurance process, stakeholders
and the system jointly derive and integrate new evidence and arguments for
analysis (Δ); system requirements and models are eventually adapted according
to the collected knowledge. Hence, requirements and models evolve accordingly
throughout the system life cycle.
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This assurance process requires the availability of formal approaches having
specific characteristics in order to cover all the three phases: models should pos-
sibly be executable for high-level design validation and endowed with properties
verification mechanisms; operational approaches are more adequate than denota-
tional ones to support (automatic) code generation from models and model-based
testing; state-based methods are suitable for co-simulation between model and
code and for checking state conformance between model state and code state
at runtime. In principle, different methods and tools can be used in the three
phases; however, the integrated use of different tools around the same formal
method is much more convenient than having different tools working on input
models with their own languages.

This article presents, in a unified manner, the distinctive modeling features
and analysis techniques supported by ASMETA (ASM mETAmodeling) [13,17],
a modeling and analysis framework based on the formal method Abstract State
Machines (ASMs) [26,27], and how they can be used in the three phases of the
assurance process (see Fig. 1). ASMETA adopts a set of modeling languages and
tools for not only specifying the executable behavior of a system but also for
checking properties of interest, specifying and executing validation scenarios,
generating prototype code, etc. Moreover, runtime validation and verification
techniques have been recently developed as part of ASMETA to allow runtime
assurance and enforcement of system safety assertions.

The remainder of this article is organized as follows. Section 2 explains the
origin of the ASMETA project, recalls some basic concepts of the ASM method,
and overviews the ASMETA tools in the light of the assurance process. The
subsequent sections describe analysis techniques and associated tooling strategies
supported by ASMETA for the safety assurance process: Sect. 3 for the design
phase, Sect. 4 for the development phase, and Sect. 5 for the operation phase.
Section 6 concludes the paper and outlines future research directions.

2 The ASMETA Approach

This section recalls the origin of the ASMETA project [17] and the basic concepts
of the ASM method it is based on; we also overview the set of tools in the light
of the assurance process.

2.1 Project Description

The ASMETA project started roughly in 2004 with the goal of overcoming the
lack of tools supporting the ASMs. The formal approach had already shown
to be widely used for the specification and verification of a number of software
systems and in different application domains (see the survey of the ASM research
in [27]); however, the lack of tools supporting the ASM method was perceived
as a limitation, and there was skepticism regarding its use in practice.
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The main goal when we started the ASMETA project, encouraged by the
Egon Börger suggestion, was to develop a textual notation for encoding ASM
models. We exploited the (at that time) novel Model-driven Engineering (MDE)
approach [45] to develop an abstract syntax of a modeling language for ASMs [36]
in terms of a metamodel, and to derive from it a user-facing textual notation
to edit ASM models. Then, from the ASM metamodel – called Abstract State
Machine Metamodel (AsmM) – and by exploiting the runtime support for models
and model transformation facility of the open-source Eclipse-based MDE IDE
EMF, ASMETA has been progressively developed till now as an Eclipse-based
set of tools for ASM model editing, visualization, simulation, validation, property
verification, and model-based testing [13].

In order to support a variety of analysis activities on ASM models, ASMETA
integrates different external tools, such as the NuSMV model checker for per-
forming property verification and SMT solvers to support correct model refine-
ment verification and runtime verification. To this purpose, ASMETA mainly
supports a black-box model composition strategy based on semantic map-
ping [35,39], i.e., model transformations realize semantic mappings from ASM
models (edited using the textual user-facing language AsmetaL) to the input for-
malism of the target analysis tool depending on the purpose of the analysis, and
then lift the analysis results back to the ASM level.

ASMETA is widely used for research purposes (also by groups different from
the development teams [1,14,19,48]) and as teaching support in formal methods
courses at the universities of Milan and Bergamo in Italy.

Case Studies. ASMETA has been applied to different case studies in several
application domains; moreover, a wide repository of examples, many of which
are benchmarks presented by Egon Börger in his dissemination work on the
ASM method, are available on line1. Specifically, ASMETA has been applied
in the context of medical devices (PillBox [20], hemodialysis device [3], ambly-
opia diagnosis [2], PHD Protocol [21]), software control systems (Landing Gear
System [12], Automotive Software-Intensive Systems [5], Hybrid European Rail
Traffic Management System [37]), cloud- [14] and service-based systems [42,43],
Self-adaptive systems [15,16].

2.2 Abstract State Machines: Background Concepts

The computational model at the base of the ASMETA framework is that of the
Abstract State Machines (ASMs) formal method. It was originally introduced by
Yuri Gurevich as Evolving Algebras [38], but it was Egon Börger who renamed
the approach as ASMs – viewed as an extension of Finite State Machines (FSMs)
–, and disseminated it as a method for the high-level design and analysis of
computing systems [26,27].

ASM states replace unstructured FSM control states by algebraic structures,
i.e., domains of objects with functions and predicates defined on them. An ASM
location, defined as the pair (function-name, list-of-parameter-values), represents

1 Repository https://github.com/asmeta/asmeta/tree/master/asm examples.

https://github.com/asmeta/asmeta/tree/master/asm_examples
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the ASM concept of basic object container, and the couple (location, value) is a
memory unit; an ASM state can be thus viewed as a set of abstract memories.

State transitions are performed by firing transition rules, which express the
modification of functions interpretation from one state to the next one and,
therefore, they change location values. Location updates are given as assignments
of the form loc := v, where loc is a location and v its new value. They are the basic
units of rules construction. By a limited but powerful set of rule constructors,
location updates can be combined to express other forms of machine actions
as: guarded actions (if-then, switch-case), simultaneous parallel actions (par
and forall), sequential actions (seq), non-deterministic actions (choose).

Functions that are not updated by rule transitions are static. Those updated
are dynamic, and distinguished in monitored (read by the machine and modified
by the environment), controlled (read and written by the machine), shared (read
and written by the machine and its environment).

An ASM computation (or run) is defined as a finite or infinite sequence S0, S1,
. . . , Sn, . . . of states of the machine, where S0 is an initial state and each Sn+1

is obtained from Sn by firing the set of all transition rules invoked by a unique
main rule, which is the starting point of the computation.

It is also possible to specify state invariants as first-order formulas that must
be true in each computational state. A set of safety assertions can be specified
as model invariants, and a model state is safe if state invariants are satisfied.

ASMs allow modeling different computational paradigms, from a single
agent to distributed multiple agents. A multi-agent ASM is a family of pairs
(a,ASM(a)), where each a of a predefined set Agent executes its own machine
ASM(a) (specifying the agent’s behavior), and contributes to determine the next
state by interacting synchronously or asynchronously with the other agents.

ASMs offer several advantages w.r.t. other automaton-based formalisms:
(1) due to their pseudo-code format, they can be easily understood by practition-
ers and can be used for high-level programming; (2) they offer a precise system
specification at any desired level of abstraction; (3) they are executable mod-
els, so they can be co-executed with system low-level implementations [43]; (4)
model refinement is an embedded concept in the ASM formal approach; it allows
for facing the complexity of system specification by starting with a high-level
description of the system and then proceeding step-by-step by adding further
details till a desired level of specification has been reached; each refined model
must be proved to be a correct refinement of the previous one, and checking of
such relation can be performed automatically [11]; (5) the concept of ASM modu-
larization, i.e., an ASM without the main firing rule, facilitates model scalability
and separation of concerns, so tackling the complexity of big systems specifica-
tion; (6) they support synch/async multi-agent compositions, which allows for
modeling distributed and decentralized software systems [16].

2.3 Tool-Support for Safety Assurance

Figure 2 gives an overview of the ASMETA tools by showing their use to support
the different activities of the safety assurance process depicted in Fig. 1.
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Fig. 2. ASMETA tool-set

At design-time, ASMETA provides a number of tools for model editing
and visualization (the modeling language AsmetaL and its editor and compiler,
plus the model visualizer AsmetaVis for graphical visualization of ASM mod-
els), model validation (e.g., interactive or random simulation by the simulator
AsmetaS, animation by the animator AsmetaA, scenario construction and vali-
dation by the validator AsmetaV), and verification (e.g., static analysis by the
model reviewer AsmetaMA, proof of temporal properties by the model checker
AsmetaSMV, proof of correct model refinement by AsmRefProver).

At development-time, ASMETA supports automatic code and test case gen-
eration from models (the code generator Asm2C++, the unit test generator ATGT,
and the acceptance test generator AsmetaBDD for complex system scenarios).

Finally, at operation-time, ASMETA supports runtime simulation (the sim-
ulator AsmetaS@run.time) and runtime monitoring (the tool CoMA).

The analysis techniques and associated tooling strategies supported by
ASMETA are described in more detail in the next sections and they are applied
to the one-way traffic light case study introduced in [27].

3 ASMETA@design-time

In order to assure the safety of software systems, system design is the first activity
supported by ASMETA. During this phase, users can model the desired system
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asm oneWayTrafficLight
import StandardLibrary
signature:

enum domain LightUnit = {LIGHTUNIT1 | LIGHTUNIT2}
enum domain PhaseDomain = { STOP1STOP2 | GO2STOP1 |

STOP2STOP1 | GO1STOP2 }
enum domain Time = {FIFTY | ONEHUNDREDTWENTY | LESS}
dynamic controlled phase: PhaseDomain
dynamic controlled stopLight: LightUnit −> Boolean
dynamic controlled goLight: LightUnit −> Boolean
dynamic monitored passed: Time

definitions:
rule r stop1stop2 to go2stop1 =

if phase=STOP1STOP2 then
if passed = FIFTY then

par
goLight(LIGHTUNIT2) :=

not(goLight(LIGHTUNIT2))
stopLight(LIGHTUNIT2) :=

not(stopLight(LIGHTUNIT2))
phase := GO2STOP1

endpar
endif

endif

rule r go2stop1 to stop2stop1 = ...

rule r stop2stop1 to go1stop2 = ...

rule r go1stop2 to stop1stop2 =
if phase=GO1STOP2 then

if passed = ONEHUNDREDTWENTY then
par

goLight(LIGHTUNIT1) :=
not(goLight(LIGHTUNIT1))

stopLight(LIGHTUNIT1) :=
not(stopLight(LIGHTUNIT1))

phase := STOP1STOP2
endpar

endif
endif

main rule r Main =
par

r stop1stop2 to go2stop1[]
r go2stop1 to stop2stop1[]
r stop2stop1 to go1stop2[]
r go1stop2 to stop1stop2[]

endpar

default init s0:
function stopLight($l in LightUnit) = true
function goLight($l in LightUnit) = false
function phase = STOP1STOP2

Fig. 3. Example of AsmetaL model for a one-way traffic light

using the AsmetaL language, exploiting its features, and refine every model which
can be visualized in a graphical manner and analyzed with several verification
and validation tools.

3.1 Modeling

Starting from the functional requirements, ASMETA allows the user to model
the system using, if needed, model composition and refinement.

3.1.1 Modeling Language
System requirements can be modeled in ASMETA by using the AsmetaL lan-
guage and the AsmetaXt editor.

Figure 3 shows the AsmetaL model2 of the one-way traffic light : two traffic
lights (LIGHTUNIT1 and LIGHTUNIT2), equipped with a Stop (red) and a Go
(green) light, that are controlled by a computer, which turns the lights go and
stop, following a four phases cycle: for 50 s both traffic lights show Stop; for
120 s only LIGHTUNIT2 shows Go; for 50 s both traffic lights show again the Stop
signal; for 120 s only LIGHTUNIT1 shows Go.

The model, identified by a name after the keyword asm, is structured into
four sections:

– The header, where the signature (functions and domains) is declared, and
external signature is imported (see Modularization below);

– The body, where transitions rules are defined (plus concrete domains and
derived functions definitions, if any);

– A main rule, which defines the starting rule of the machine;
– The initialization, where a default initial state (among a set of) is defined.

2 Note that $x denotes the variable x in the AsmetaL notation.
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Each AsmetaL rule can be composed by using the set of rule constructors (see
Sect. 2.2) to express the different machine action paradigms.

Modularization. ASMETA modeling supports the modularization and informa-
tion-hiding mechanism, by the module notation. When requirements are complex
or when separation of concerns is desired, users can organize the model in several
ASM modules and join them, by using the import statement, into a single main
one (also defined as machine), declared as asm, which imports the others and
may access to functions, rules, and domains declared within the sub-modules.
Every ASM module contains definitions of domains, functions, invariants, and
rules, while the ASM machine is a module that additionally contains an initial
state and the main rule representing the starting point of the execution.

3.1.2 Refinement
The modeling process of an ASM is usually based on model refinement [25]: the
designer starts with a high-level description of the system and proceeds through a
sequence of more detailed models each introducing, step-by-step, design decisions
and implementation details. At each refinement level, a model must be proved
to be a correct refinement of the more abstract one.

ASMETA supports a special case of 1−n refinement, consisting in adding
functions and rules in a way that one step in the ASM at a higher level can
be performed by several steps in the refined model. We consider the refinement
correct if any behavior (i.e., run or sequence of states) in the refined model can
be mapped to a run in the abstract model.

To automatically prove the correctness of the model refinement process, users
can exploit the AsmRefProver tool [11], which is based on a Satisfiability Modulo
Theories (SMT) solver. With the execution of this software, one can specify two
refinement levels and ensure that an ASM specification ASM i is a correct refine-
ment of a more abstract one ASM i−1. Then, AsmRefProver confirms whether the
refinement is correctly performed with two different outputs: Initial states
are conformant and Generic step is conformant.

Figure 4 shows a refinement of the one-way traffic light model (see Fig. 3)
in which pulsing lights (rPulse and gPulse) are introduced and a different
management method for the time is used, based on a timer function mapping
each phase to a timer duration. Thus, the behavior of the system modeled in
Fig. 3 is preserved and expanded during the refinement process.

Modeling by refinement allows adding to the model requirements of increasing
complexity only when the developer has gained enough confidence in the basic
behaviors of the modeled system. This can be done by alternating modeling and
testing activities, as presented in [21], with different refinement levels.

3.1.3 Visualization
Model visualization is a good means for people to communicate and to get a com-
mon understanding, especially when model comprehension can be threatened by
the model size. ASMETA supports model visualization by a visual notation
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asm oneWayTrafficLight refined

import StandardLibrary

signature:
enum domain LightUnit = {LIGHTUNIT1 | LIGHTUNIT2}
enum domain PhaseDomain = { STOP1STOP2 | GO2STOP1

| STOP2STOP1 | GO1STOP2 | STOP1STOP2CHANGING
| GO2STOP1CHANGING | STOP2STOP1CHANGING
| GO1STOP2CHANGING }

dynamic controlled phase: PhaseDomain
dynamic controlled stopLight: LightUnit −> Boolean
dynamic controlled goLight: LightUnit −> Boolean
static timer: PhaseDomain −> Integer
dynamic monitored passed: Integer −> Boolean
dynamic controlled rPulse: LightUnit −> Boolean
dynamic controlled gPulse: LightUnit −> Boolean

definitions:
function timer($p in PhaseDomain) = switch($p)

case STOP1STOP2 : 50
case GO2STOP1 : 120
case STOP2STOP1 : 50
case GO1STOP2 : 120

endswitch

rule r switchToStop1 =
par

r emit[rPulse(LIGHTUNIT1)]
r emit[gPulse(LIGHTUNIT1)]

endpar

rule r switchToGo2 = ...
rule r switchToStop2 = ...
rule r switchToGo1 = ...

rule r stop1stop2 to stop1stop2changing =
if(phase=STOP1STOP2) then

if(passed(timer(STOP1STOP2))) then
par

r switchToGo2[]
phase:=STOP1STOP2CHANGING

endpar
endif

endif

rule r go2stop1 to go2stop1changing = ...
rule r stop2stop1 to stop2stop1changing = ...

rule r go1stop2 to go1stop2changing = ...
macro rule r switch($l in Boolean) = $l := not($l)
macro rule r emit($pulse in Boolean) = $pulse := true

rule r pulses =
forall $l in LightUnit with true do

par
if(gPulse($l)) then

par
r switch[goLight($l)]
gPulse($l) := false

endpar
endif
if(rPulse($l)) then

par
r switch[stopLight($l)]
rPulse($l) := false

endpar
endif

endpar

macro rule r changeState =
par

if(phase=STOP1STOP2CHANGING) then
phase := GO2STOP1

endif
if(phase=GO2STOP1CHANGING) then ... endif
if(phase=STOP2STOP1CHANGING) then ... endif
if(phase=GO1STOP2CHANGING) then ... endif

endpar

main rule r Main =
par

r stop1stop2 to stop1stop2changing[]
r go2stop1 to go2stop1changing[]
r stop2stop1 to stop2stop1changing[]
r go1stop2 to go1stop2changing[]
r pulses[]
r changeState[]

endpar

default init s0:
function stopLight($l in LightUnit) = true
function goLight($l in LightUnit) = false
function phase = STOP1STOP2
function rPulse($l in LightUnit) = false
function gPulse($l in LightUnit) = false

Fig. 4. Example of a refined AsmetaL model for a one-way traffic light

defined in terms of a set of construction rules and schema that give a graphical
representation of an ASM and its rules [4]. The graphical information is repre-
sented by a visual graph in which nodes represent syntactic elements (like rules,
conditions, rule invocations) or states, while edges represent bindings between
syntactic elements or state transitions. The AsmetaVis tool supports two types
of visualization: basic visualization, which represents the syntactic structure of
the model and returns a visual tree obtained by recursively visiting the ASM
rules; semantic visualization, which introduces visual patterns that permit to
capture some behavioral information as control states. An example of semantic
visualization of the one-way traffic light case study (see Fig. 3) is shown in Fig. 5:
it displays how the four macro rules in the model change the phase of the system.

3.2 Validation and Verification

Once the AsmetaL model is available, the user can perform validation and veri-
fication activities.
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Fig. 5. AsmetaVis semantic visualization

Insert a boolean constant for passed(50):
true
<State 0 (monitored)>
passed(50)=true
</State 0 (monitored)>
<UpdateSet − 0>
goLight(lightUnit2)=true
phase=GO2STOP1
stopLight(lightUnit2)=false
</UpdateSet>
<State 1 (controlled)>
LightUnit={lightUnit1,lightUnit2}
goLight(lightUnit2)=true
phase=GO2STOP1
stopLight(lightUnit2)=false
</State 1 (controlled)>
Insert a boolean constant for passed(120):
false
<State 1 (monitored)>
passed(120)=false
</State 1 (monitored)>
<UpdateSet − 1>
</UpdateSet>

<State 2 (controlled)>
LightUnit={lightUnit1,lightUnit2}
goLight(lightUnit2)=true
phase=GO2STOP1
stopLight(lightUnit2)=false
</State 2 (controlled)>
Insert a boolean constant for passed(120):
true
<State 2 (monitored)>
passed(120)=true
</State 2 (monitored)>
<UpdateSet − 2>
goLight(lightUnit2)=false
phase=STOP2STOP1
stopLight(lightUnit2)=true
</UpdateSet>
<State 3 (controlled)>
LightUnit={lightUnit1,lightUnit2}
goLight(lightUnit2)=false
phase=STOP2STOP1
stopLight(lightUnit2)=true
</State 3 (controlled)>
Insert a boolean constant for passed(50):

Fig. 6. Simulation of one-way traffic light using AsmetaS

3.2.1 Simulation
This is the first validation activity usually performed to check the AsmetaL model
behavior during its development and it is supported by the AsmetaS tool [13].
Given a model, at every step, the simulator builds the update set according to
the theoretical definitions given in [27] to construct the model run. The simulator
supports two types of simulation: random and interactive. In random mode, the
simulator automatically assigns values to monitored functions choosing them
from their codomains. In interactive mode, instead, the user inserts the value
of monitored functions and, in case of input errors, a message is shown inviting
the user to insert again the function value. In case of invariant violation or
inconsistent updates, a message is shown in the console and the simulation is
interrupted. In Fig. 6, we show the result of the simulation for the one-way traffic
light AsmetaL model (see Fig. 3). When the desired time is passed, 50 or 120 s,
the phase of the system changes.

3.2.2 Animation
The main disadvantage of the simulator is that it is textual, and this makes
sometimes difficult to follow the computation of the model. For this reason,
ASMETA has a model animator, AsmetaA [22], which provides the user with
complete information about all the state locations, and uses colors, tables, and
figures over simple text to convey information about states and their evolution.
The animator helps the user follow the model computation and understand how
the model state changes at every step.
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Fig. 7. Animation of one-way traffic light using AsmetaA

Similarly to the simulator, the animator supports random and interactive ani-
mation. In the interactive animation, the insertion of input functions is achieved
through different dialog boxes depending on the type of function to be inserted
(e.g., in case of a Boolean function, the box has two buttons: one if the value is
true and one if the value is false). If the function value is not in its codomain,
the animator keeps asking until an accepted value is inserted. In random anima-
tion, the monitored function values are automatically assigned. With complex
models, running one random step each time is tedious; for this reason, the user
can also specify the number of steps to be performed and the tool performs the
random simulation accordingly. In case of invariant violation, a message is shown
in a dedicated text box and the animation is interrupted (as it also happens in
case of inconsistent updates). Once the user has animated the model, the tool
allows exporting the model run as a scenario (see Sect. 3.2.3), so that it can
be re-executed whenever desired. Figure 7 shows the animation of the one-way
traffic light model using the same input sequence of the simulator. The result is
the same, but the tabular view makes it easier to follow the state evolution.

3.2.3 Scenario-Based Simulation
AsmetaS and AsmetaA tools require that the user executes the AsmetaL model step
by step, each time the model has to be validated. Instead, in scenario-based simu-
lation, the user writes a scenario, a description of external actor actions and reac-
tions of the system [29], that can be executed whenever needed to check the model
behavior. Scenarios are written in the Avalla language and executed using the
AsmetaV tool. Each scenario is identified by its name and must load the ASM to
be tested. Then, the user may specify different commands depending on the oper-
ation to be performed. The set command updates monitored or shared function
values that are supplied by the user as input signals to the system. Commands
step and step until represent the reaction of the system, which can execute one
single ASM step and one ASM step iteratively until a specified condition becomes
true. Then, the check command is used to inspect property values in the current
state of the underlying ASM. Figure 8 shows an example of Avalla scenario for
the one-way traffic light case study. The scenario reproduces the first two steps of
the cycle: when 50 s are over, the second traffic light changes from Stop to Go; and
only when 120 s are passed, the two traffic lights show Stop signal.

To simulate scenarios, AsmetaV invokes the simulator. During the simula-
tion, AsmetaV captures any check violation and, if none occurs, it finishes with
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scenario scenario1
load oneWayTrafficLight.asm

set passed(50) := true;
step
check phase = GO2STOP1;
check goLight(lightUnit2) = true;
check goLight(lightUnit1) = false;

set passed(120) := false;

step
check phase = GO2STOP1;
check goLight(lightUnit2) = true;
check goLight(lightUnit1) = false;

set passed(120) := true;
step
check phase = STOP2STOP1;
check goLight(lightUnit2) = false;
check goLight(lightUnit1) = false;

Fig. 8. Example of Avalla scenario for the one-way traffic light case study

</State 1 (controlled)>
check succeeded: phase = GO2STOP1
check succeeded: stopLight(lightUnit2) = false
check succeeded: goLight(lightUnit2) = true
<UpdateSet − 1>

</State 1 (controlled)>
check succeeded: phase = GO2STOP1
CHECK FAILED: stopLight(lightUnit2) = true at step 1
check succeeded: goLight(lightUnit2) = true
<UpdateSet − 1>

Fig. 9. AsmetaV output of one-way traffic light

a “PASS” verdict (“FAIL” otherwise). Moreover, the tool collects information
about the coverage of the AsmetaL model, in particular, it keeps track of all the
rules that have been called and evaluated, and it lists them at the end. Figure 9
shows the output of the validator upon executing the scenario in Fig. 8: in the
first column, all the functions assume the expected value, while in the second
column a check is failed because the function had a different value.

The user can exploit modularization also during scenario building. Indeed,
it is possible to define blocks, i.e., sequences of set, step, and check, that can
be recalled using the execblock when writing other scenarios that foresee the
same sequence of Avalla commands.

3.2.4 Model Reviewing
When writing a formal model, a developer could introduce some errors that are
not related to a wrong specification of the requirements but are just due to care-
lessness, forgetfulness, or limited knowledge of the formal method. For example,
a developer could use a wrong function name, or could forget to properly guard
an update, and so on. An error that is commonly done in ASM development
is due to its computational model, where all possible updates are applied in
parallel: if a location is simultaneously updated to two different values, this is
known as inconsistent update [26], and it is considered as an error in ASMs. Such
kind of error occurs quite frequently (especially in complex models) because the
developer does not properly guard all the updates. Other types of errors done
using ASMs are overspecifying the model, i.e., adding model elements that are
not needed, or writing rules that can never be triggered.

All these types of errors can be captured automatically by doing a static anal-
ysis of the model. This is the aim of the AsmetaMA tool [7], which performs auto-
matic review of ASM models. The tool checks the presence of seven types of errors
by using suitable meta-properties specified in CTL and verified using the model
checker AsmetaSMV (see Sect. 3.2.5). Figure 10a shows the selection of the seven
meta-properties in AsmetaMA. For example, MP1 checks the presence of inconsis-
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(a) Meta-properties

rule r stop2stop1 to stop2stop1changing =
if phase=STOP2STOP1 then
if passed(50) then
par

r switchLightUnit[LIGHTUNIT1]
//Error: it should be ”phase := STOP2STOP1CHANGING”
phase := STOP2STOP1

...

MP6: Every controlled location can take
any value in its codomain
Function phase does not take the values
{GO1STOP2, GO1STOP2CHANGING,
STOP2STOP1CHANGING} of its domain.

(b) Violation of MP6

Fig. 10. AsmetaMA

tent updates, and MP3 checks whether there are rules that can never be triggered.
Figure 10b shows an example of a violation that can be found with the model
review. It is an error that we discovered using AsmetaMAwhen writing the model of
the traffic light; according to the requirements, when the phase is STOP2STOP1 and
50 time units are passed, the phase should become STOP2STOP1CHANGING in the
next state; however, we wrongly typed the value as STOP2STOP1. Such error was
discovered by MP6 that checks if there are possible values that are never assumed
by a location: the violation of MP6 allowed us to reveal our mistake.

3.2.5 Model Checking
ASMETA provides classical model checking support by the tool AsmetaSMV [6].
The tool translates an ASM model into a model of the symbolic model checker
NuSMV [30], which is used to perform the verification. Being NuSMV a finite
state model checker, the only limitation of AsmetaSMV is on the finiteness of the
number of ASM states: only finite domains can be used, and the extend rule
(which adds elements to a domain) is not supported.

When using AsmetaSMV, the NuSMV tool is transparent to the user who can
specify, directly in the ASM model, Computation Tree Logic (CTL) and Linear
Temporal Logic (LTL) properties defined over the ASM signature. Moreover,
also the output of the model checker is pretty-printed in terms of elements of
the ASM signature. Figure 11a shows CTL and LTL properties specified for the
traffic light case study.

The CTL property, for example, checks that if the second traffic light shows
the stop light, it will show the go light in the future.

In order to better understand the verification results, the tool allows to sim-
ulate the returned counterexample. To this aim, a translator is provided that
translates a counterexample into an Avalla scenario (see Sect. 3.2.3). Figure 11b
shows the counterexample of the violation of the CTL property shown in Fig. 11a
(in a faulty version of the ASM model); the corresponding Avalla scenario is
reported in Fig. 11c.

AsmetaSMV has been used in several case studies to verify the functional
correctness of the specified system. AsmetaSMV is also used as a back-end tool
for other activities supported in ASMETA, e.g., model review (see Sect. 3.2.4).
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CTLSPEC ag(stopLight(LIGHTUNIT2) implies ef(goLight(LIGHTUNIT2)))
LTLSPEC g(phase=STOP1STOP2 implies x(phase=GO2STOP1 or phase=STOP1STOP2))

(a) Specification of temporal properties in the AsmetaL model

−− specification AG (stopLight(LIGHTUNIT2) −>
EF goLight(LIGHTUNIT2)) is false

−− as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample

−> State: 7.1 <−
stopLight(LIGHTUNIT2) = true
goLight(LIGHTUNIT2) = false
rPulse(LIGHTUNIT2) = false
passed(50) = false
phase = STOP1STOP2
passed(120) = false
gPulse(LIGHTUNIT2) = false

−> State: 7.2 <−
passed(50) = true

−> State: 7.3 <−
rPulse(LIGHTUNIT2) = true
passed(50) = false
phase = STOP1STOP2CHANGING
gPulse(LIGHTUNIT2) = true

−> State: 7.4 <−
stopLight(LIGHTUNIT2) = false
goLight(LIGHTUNIT2) = true
rPulse(LIGHTUNIT2) = false
phase = GO2STOP1
passed(120) = true
gPulse(LIGHTUNIT2) = false

−> State: 7.5 <−
rPulse(LIGHTUNIT2) = true
phase = GO2STOP1CHANGING
passed(120) = false
gPulse(LIGHTUNIT2) = true

−> State: 7.6 <−
stopLight(LIGHTUNIT2) = true
goLight(LIGHTUNIT2) = false
rPulse(LIGHTUNIT2) = false
phase = STOP2STOP1
gPulse(LIGHTUNIT2) = false

(b) Counterexample in AsmetaSMV

scenario oneWayTrafficLight refined.test
load oneWayTrafficLight refined.asm

check stopLight(LIGHTUNIT2) = true;
check goLight(LIGHTUNIT2) = false;
check rPulse(LIGHTUNIT2) = false;
check phase = STOP1STOP2;
check gPulse(LIGHTUNIT2) = false;

set passed(50) := false; set passed(120) := false;
step

set passed(50) := true;
step
check rPulse(LIGHTUNIT2) = true;
check phase = STOP1STOP2CHANGING;
check gPulse(LIGHTUNIT2) = true;

set passed(50) := false;
step
check stopLight(LIGHTUNIT2) = false;
check goLight(LIGHTUNIT2) = true; check
rPulse(LIGHTUNIT2) = false;
check phase = GO2STOP1;
check gPulse(LIGHTUNIT2) = false;

set passed(120) = true;
step
check rPulse(LIGHTUNIT2) = true;
check phase = GO2STOP1CHANGING;
check gPulse(LIGHTUNIT2) = true;

set passed(120) := false;
step
check stopLight(LIGHTUNIT2) = true;
check goLight(LIGHTUNIT2) = false;
check rPulse(LIGHTUNIT2) = false;
check phase = STOP2STOP1;
check gPulse(LIGHTUNIT2) = false;

(c) Executable counterexample in Avalla

Fig. 11. AsmetaSMV

4 ASMETA@development time

Once the AsmetaL model is available, the user can automatically generate
abstract tests, C++ code, and C++ unit tests. Moreover, Behavior-Driven Devel-
opment scenarios in C++ can be generated from Avalla scenarios.

4.1 Model-Based Test Generation

Model-based testing [46] is a popular testing approach in which formal models
are used for testing purposes, in particular test generation. Indeed, the model
is an abstract representation of the System Under Test (SUT), from which it is
possible to generate both the test inputs and the expected output (so, tackling
the oracle problem of software testing [18]). In offline test generation, abstract
tests are generated from the model, and then these are translated into concrete
tests for the SUT. Coverage criteria over the model are used to define the test
goals. A typical approach for generating tests achieving these goals is to use
model checkers [32]: a test goal is translated into a suitable temporal property
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(called trap property), whose counterexample (if any) is the test covering the
test goal.

In ASMETA, the ATGT tool [34] performs model-based test generation using
both model checkers SPIN and NuSMV. The generation is guided by coverage
criteria defined or adapted for ASMs [33], such as rule coverage, parallel rule
coverage, MCDC, etc. For example, the rule coverage criterion requires that for
every transition rule ri there exists at least one state in a test in which ri fires,
and another state in a test in which ri does not fire. The abstract tests generated
with ATGT can be later translated into concrete test cases for the implementation,
as described in Sect. 4.3.

4.2 Model-Based Code Generation

According to best practices of model-driven engineering, the implementation of
a system should be obtained from its model through a systematic model-to-code
transformation. Thanks to Asm2C++, given an AsmetaL model, the C++ code is
automatically generated [24]. This is done through a series of steps: the AsmetaL
model is parsed and its (internal) representation in terms of Java objects as
an instance of the ASMETA metamodel (AsmM) is built; then, a model-to-text
transformation, implemented in Xtext, is applied to translate the model into
C++ code. The generated code is composed of two files: header (.h) and source
(.cpp). The header file contains the interface of the source file and the translation
of ASM domains declaration and definition, functions and rules declaration. The
rules implementation, the functions/domains initialization, and the definitions
of the functions are contained in the source file. The translation of the one way
traffic light case study in C++ is shown in Fig. 12.

Since an ASM run step consists in the execution of the main rule and the
update of the locations, in C++ the ASM step has been implemented by two
methods: mainRule() and fireUpdateSet(). The former corresponds to the
translation of the ASM main rule, while the latter updates the locations to the
next state values. Moreover, we have addressed two semantic ASM concepts that
do not have a direct implementation in C++: parallel execution and nondeter-
minism. More details on their implementation in C++ and the translation of
ASM rules to corresponding C++ instructions can be found in [24].

Given the translation of an AsmetaL model in C++ code, it is easy to adapt
the code generation process for a specific platform. We have chosen Arduino
since it supports C++, it is cheap and it is easily accessible. After C++ code
generation, three new steps are required: HW configuration and integration,
ASM runner generation, and merging of all generated files. HW configuration
contains the mapping between ASM functions and Arduino input/output, and
other specific hardware settings. A first draft is automatically generated, and
then the user links monitored and out functions to physical hardware pins.
The ASM runner automatically generates a .ino file which contains the loop()
function to run ASM on Arduino. The loop() function iteratively executes
the following functions: getInputs()—reads the data from the input devices
like sensors; mainRule()—contains the behavior described in the AsmetaL
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#i f n d e f ONEWAYTRAFFICLIGHT H
#de f i n e ONEWAYTRAFFICLIGHT H

#inc l u d e <se t>
us ing namespace s t d ;

/∗ DOMAIN DEFINITIONS ∗/
namespace oneWayTra f f i cL ightnamespace{

c l a s s L i gh tUn i t ;
enum PhaseDomain {STOP1STOP2, GO2STOP1,

STOP2STOP1, GO1STOP2};
}

us ing namespace
oneWayTra f f i cL ightnamespace ;

c l a s s oneWayTra f f i cL ightnamespace : :
L i g h tUn i t{

pub l i c :
s t a t i c s t d : : s e t<L i gh tUn i t∗> e lems ;
L i g h tUn i t ( ){e lems . i n s e r t ( t h i s ) ;}

};

c l a s s oneWayTra f f i cL i gh t {

/∗ DOMAIN CONTAINERS ∗/
const se t<PhaseDomain> PhaseDomain elems ;

pub l i c :

/∗ FUNCTIONS ∗/
PhaseDomain phase [ 2 ] ;
s t d : : map<L i gh tUn i t ∗ , bool> s t o pL i g h t [ 2 ] ;
s t d : : map<L i gh tUn i t ∗ , bool> goL igh t [ 2 ] ;
s t a t i c i n t t ime r ( PhaseDomain

param0 t imer ) ;
s t a t i c L i gh tUn i t∗ l i g h t U n i t 1 ;
s t a t i c L i gh tUn i t∗ l i g h t U n i t 2 ;
s t d : : map<i n t , bool> pas sed ;

/∗ RULE DEFINITION ∗/
vo id r s w i t c h ( boo l l ) ;
vo id r sw i tchToGo2 ( ) ;
vo id r sw i t chToStop2 ( ) ;
vo id r sw i tchToGo1 ( ) ;
vo id r sw i t chToStop1 ( ) ;
vo id r s t o p 1 s t o p 2 t o g o 2 s t o p 1 ( ) ;
vo id r g o 2 s t o p 1 t o s t o p 2 s t o p 1 ( ) ;
vo id r s t o p 2 s t o p 1 t o g o 1 s t o p 2 ( ) ;
vo id r g o 1 s t o p 2 t o s t o p 1 s t o p 2 ( ) ;
vo id r Main ( ) ;

oneWayTra f f i cL i gh t ( ) ;

vo id i n i t C on t r o l l e dW i t hMon i t o r e d ( ) ;
vo id g e t I n p u t s ( ) ;
vo id s e tOutput s ( ) ;
vo id f i r eUpd a t e S e t ( ) ;

};

#end i f

#i n c l u d e ” oneWayTra f f i cL i gh t . h”
us ing namespace oneWayTra f f i cL ightnamespace ;
/∗ Conve r s i on o f ASM r u l e s i n C++ methods ∗/
vo id oneWayTra f f i cL i gh t : : r s w i t c h ( boo l l ){

l = ! ( l ) ;}
vo id oneWayTra f f i cL i gh t : : r sw i tchToGo2 ( ){
{ r s w i t c h ( goL igh t [ 0 ] [ l i g h t U n i t 2 ] ) ;

r s w i t c h ( s t o pL i g h t [ 0 ] [ l i g h t U n i t 2 ] ) ;}}
vo id oneWayTra f f i cL i gh t : : r sw i t chToStop2 ( ){
{ r s w i t c h ( goL igh t [ 0 ] [ l i g h t U n i t 2 ] ) ;

r s w i t c h ( s t o pL i g h t [ 0 ] [ l i g h t U n i t 2 ] ) ;}}
vo id oneWayTra f f i cL i gh t : : r sw i tchToGo1 ( ){
{ r s w i t c h ( goL igh t [ 0 ] [ l i g h t U n i t 1 ] ) ;

r s w i t c h ( s t o pL i g h t [ 0 ] [ l i g h t U n i t 1 ] ) ;}}
vo id oneWayTra f f i cL i gh t : : r sw i t chToStop1 ( ){
{ r s w i t c h ( goL igh t [ 0 ] [ l i g h t U n i t 1 ] ) ;

r s w i t c h ( s t o pL i g h t [ 0 ] [ l i g h t U n i t 1 ] ) ;}}
vo id oneWayTra f f i cL i gh t : : r s t o p 1 s t o p 2 t o g o 2 s t o p 1 ( ){
i f ( ( phase [ 0 ] == STOP1STOP2) ){
i f ( pas sed [ t ime r (STOP1STOP2) ] ){
{ r sw i tchToGo2 ( ) ;

phase [ 1 ] = GO2STOP1;}}}}
vo id oneWayTra f f i cL i gh t : : r g o 2 s t o p 1 t o s t o p 2 s t o p 1 ( ){
i f ( ( phase [ 0 ] == GO2STOP1) ){
i f ( pas sed [ t ime r (GO2STOP1) ] ){
{ r sw i t chToStop2 ( ) ;

phase [ 1 ] = STOP2STOP1;}}}}
vo id oneWayTra f f i cL i gh t : : r s t o p 2 s t o p 1 t o g o 1 s t o p 2 ( ){
i f ( ( phase [ 0 ] == STOP2STOP1) ){
i f ( pas sed [ t ime r (STOP2STOP1) ] ){
{ r sw i tchToGo1 ( ) ;

phase [ 1 ] = GO1STOP2;}}}}
vo id oneWayTra f f i cL i gh t : : r g o 1 s t o p 2 t o s t o p 1 s t o p 2 ( ){
i f ( ( phase [ 0 ] == GO1STOP2) ){
i f ( pas sed [ t ime r (GO1STOP2) ] ){
{ r sw i t chToStop1 ( ) ;

phase [ 1 ] = STOP1STOP2;}}}}
vo id oneWayTra f f i cL i gh t : : r Main ( ){
{ r s t o p 1 s t o p 2 t o g o 2 s t o p 1 ( ) ;

r g o 2 s t o p 1 t o s t o p 2 s t o p 1 ( ) ;
r s t o p 2 s t o p 1 t o g o 1 s t o p 2 ( ) ;
r g o 1 s t o p 2 t o s t o p 1 s t o p 2 ( ) ;}}

/∗ S t a t i c f u n c t i o n d e f i n i t i o n ∗/
i n t oneWayTra f f i cL i gh t : : t ime r ( PhaseDomain p ){r e t u rn [& ] ( ){
i f ( p==STOP1STOP2)
r e t u rn 50 ;

e l s e i f ( p==GO2STOP1)
r e t u rn 120 ;

e l s e i f ( p==STOP2STOP1)
r e t u rn 50 ;

e l s e i f ( p==GO1STOP2)
r e t u rn 120 ; }() ;}

/∗ Funct i on and domain i n i t i a l i z a t i o n ∗/
oneWayTra f f i cL i gh t : : oneWayTra f f i cL i gh t ( ){

// S t a t i c domain i n i t i a l i z a t i o n
PhaseDomain elems :{STOP1STOP2,GO2STOP1,STOP2STOP1,GO1STOP2;} ;
/∗ I n i t s t a t i c f u n c t i o n s Ab s t r a c t domain ∗/
l i g h t U n i t 1 = new L i gh tUn i t ;
l i g h t U n i t 2 = new L i gh tUn i t ;
/∗ Funct i on i n i t i a l i z a t i o n ∗/
f o r ( const auto& l : L i g h tUn i t : : e l ems ){

s t o pL i g h t [ 0 ] . i n s e r t ({ l , t rue}) ;
s t o pL i g h t [ 1 ] . i n s e r t ({ l , t rue}) ; }

f o r ( const auto& l : L i g h tUn i t : : e l ems ){
goL igh t [ 0 ] . i n s e r t ({ l , f a l s e }) ;
goL igh t [ 1 ] . i n s e r t ({ l , f a l s e }) ; }
phase [ 0 ] = phase [ 1 ] = STOP1STOP2;}

vo id oneWayTra f f i cL i gh t : : i n i t C on t r o l l e dW i t hMon i t o r e d ( ){}
/∗ Apply the update s e t ∗/
vo id oneWayTra f f i cL i gh t : : f i r eUpda t eS e t ( ){}
/∗ i n i t s t a t i c f u n c t i o n s and e l ement s o f a b s t r a c t domains ∗/
s t d : : s e t< L i gh tUn i t∗>L i gh tUn i t : : e l ems ;
L i g h tUn i t∗oneWayTra f f i cL i gh t : : l i g h t U n i t 1 ;
L i g h tUn i t∗oneWayTra f f i cL i gh t : : l i g h t U n i t 2 ;

Fig. 12. oneWayTrafficLight.h and oneWayTrafficLight.cpp

model; fireUpdateSet()—updates the state at the end of each loop; and
setOutputs()—sets the output values like the current state of light-emitting
diode (LED). The merging step takes care of merging all files.
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BOOST AUTO TEST SUITE( Tes toneWayTra f f i cL i gh t )
BOOST AUTO TEST CASE( my t e s t 0 ){
// i n s t a n c e o f the SUT
oneWayTra f f i cL i gh t o n e w a y t r a f f i c l i g h t ;
// s t a t e
// s e t mon i to red v a r i a b l e s
o n e w a y t r a f f i c l i g h t . pas sed [50]= f a l s e ;
. . .
BOOST CHECK( o n e w a y t r a f f i c l i g h t . phase [0]==STOP1STOP2 ) ;
// c a l l main r u l e
o n e w a y t r a f f i c l i g h t . r Main ( ) ;
o n e w a y t r a f f i c l i g h t . f i r eUpda t e S e t ( ) ;
. . .

}
. . .

Fig. 13. C++ unit test

4.3 Unit Test Generation

If the C++ code is available (automatically generated or not) and the user wants
to test it, C++ unit tests can be automatically generated given the AsmetaL
model [23]. Unit tests are generated in two different ways. The first approach
consists in running randomly the AsmetaS simulator for a given number of steps
as requested by the tester, then the generated state sequence is translated into
a C++ unit test. The second approach, instead, translates the abstract tests
generated with ATGT (see Sect. 4.1) in C++ unit tests. In both cases, the C++

unit tests are written using the Boost Test C++ library.
A test suite is defined by using the BOOST AUTO TEST SUITE(testSuiteName)

macro; it automatically registers a test suite named testSuiteName. A test suite
definition is ended using BOOST AUTO TEST END(). Each test suite can contain
one or more test cases. A test case is declared using the macro BOOST AUTO -
TEST CASE(testCaseName). An example of a test case in presented in Fig. 13.

4.4 Behavior-Driven Development Scenarios

In parallel to classical unit tests which focus more on checking internal function-
alities of classes, developers and testers employ also Behavior-Driven Develop-
ment (BDD) tests which should be examples that anyone from the development
team can read and understand. Since the use of scenarios is common at code-
level and at the level of the (abstract) model, and since there is a translator
that automatically generates C++ code from AsmetaL model, we have intro-
duced the AsmetaBDD tool which translates an abstract scenario written in the
Avalla language to BDD code using the Catch2 framework [24]. The AsmetaBDD
tool generates a C++ scenario that can be compiled together with the C++ code
and executed. An example is shown in Fig. 14, where both scenarios check the
correctness of the phase transition when 50 s are passed.
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scenario scenario1

load oneWayTrafficLight.asm

check phase = STOP1STOP2;

set passed(50) := true;

step

check phase = GO2STOP1;
...

(a) Avalla scenario

#include ”catch.hpp”
#include ”oneWayTrafficLight.hpp”
SCENARIO(”oneWayTrafficLight starts”) {
GIVEN(”The traffic lights are stopped”) {
oneWayTrafficLight trafficLight;
REQUIRE(trafficLight.phase == STOP1STOP2);
WHEN(”passed 50 sec”) {
trafficLight.passed(50);
THEN( ”the traffic light is changing state ” ) {
REQUIRE(trafficLight.phase == GO2STOP1);}}
....

}}

(b) BDD scenario using Catch2

Fig. 14. AsmetaBDD scenario example

5 ASMETA@operation time

Formal validation and verification techniques usually allow the identification
and resolution of problems at design time. However, the state space of a system
under specification is often too large or partially unknown at design time, such
as for CPSs with uncertain behavior of humans in the loop and/or endowed
with self-adaptation capabilities or AI-based components. This makes a com-
plete assurance impractical or even impossible to pursue completely at design
time. Runtime assurance methods take advantage of the fact that variables that
are free at design time are bound at runtime; so, instead of verifying the com-
plete state space, runtime assurance techniques may concentrate on checking the
current state of a system.

Currently, ASMETA supports two types of runtime analysis techniques: run-
time simulation described in Sect. 5.1, and runtime monitoring described in
Sect. 5.2. Both approaches view the model as a twin of the real system and
use the model as oracle of the correct system behavior. The former exploits the
twin execution to prevent misbehavior of the system in case of unsafe model
behavior, while the latter exploits the twin execution to check the correctness of
the system behavior w.r.t. the model behavior.

5.1 Runtime Simulation

Recently, a runtime simulation platform [44] has been developed within
ASMETA to check safety assertions of software systems at runtime and sup-
port on-the-fly changes of these assertions. The platform exploits the concept of
executable ASM models and it is based on the AsmetaS@run.time simulator to
handle an ASM model as a living/runtime model [47] and execute it in tandem
with a prototype/real system. To this purpose, the runtime simulation platform
operates between the system model and the real running system; it traces the
state of the ASM model and of the system allowing us to realize a conceivable
causal relation depending on the analysis scope and on low-level implementation
details. This runtime simulation mechanism, for example, could be used in con-
junction with an enforcer component tool to concretely sanitize/filter out input
events for the running system or to prevent the execution of unsafe commands
by the system – input/output sanitization [31].
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(a) Runtime simulation dashboard SimGUI (b) Assertion catalog GUI

Fig. 15. AsmetaS@run.time

AsmetaS@run.time supports simulation as-a-service features of the AsmetaS
simulator and additional features such as model execution with timeout and
model roll-back to the previous safe state after a failure occurrence (e.g., invari-
ant violations, inconsistent updates, ill-formed inputs, etc.) during model execu-
tion. AsmetaS@run.time allows also the dynamic adaptation of a running ASM
model to add/change/delete invariants representing, for example, system safety
assertions. This mechanism could be exploited to dynamically add new assertions
and guarantee a safer execution of the system after its release, in case dangerous
situations have not been foreseen at design time or because of unanticipated
changes or situational awareness.

The runtime simulation platform includes also UI dashboards for dynamic
Human-Model-Interaction (both in a graphical and in a command-line way)
which allow the user to track the model execution and change safety assertions.
Figure 15a shows the ASM model of the one-way traffic light model through the
graphical dashboard SimGUI.

In particular, the central panel shows the ASM runs and the simulation
results. The last one produced the verdict UNSAFE due to an invalid input
value read by the ASM for the enumerative monitored function passed. Then,
the model is rolled back to its previous safe state. The running ASM model can
be adapted dynamically to incorporate new safety invariants or simply modify or
cancel existing ones. This can be requested by an external client program or done
manually by the user through the GUI Assertion Catalog to the simulator
engine (see Fig. 15b). Model adaptation is carried out when the model is in a
quiescent state, i.e., it is not currently in execution and no other adaptation
activity of it is going on. Once adapted, the ASM model execution continues
from its current state. A newly added safety invariant that would be immediately
violated in the current state of the ASM model is forbidden.

5.2 Runtime Monitoring

ASMETA allows to perform runtime monitoring of a Java program using the
tool CoMA (Conformance Monitoring through ASM ) [8]. The approach is shown
in Fig. 16 and described as follows:
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Fig. 16. CoMA: Conformance monitoring through ASM

import org.asmeta.monitoring.∗;

@Asm(asmFile = ”oneWayTrafficLight.asm”)
public class OWTL {

@FieldToLocation(func = ”stopLight”,
args={”LIGHTUNIT1”})

boolean redLight1;
@FieldToLocation(func = ”stopLight”,

args={”LIGHTUNIT2”})
boolean redLight2;
@FieldToLocation(func = ”goLight”,

args={”LIGHTUNIT1”})
boolean greenLight1;
@FieldToLocation(func = ”goLight”,

args={”LIGHTUNIT2”})
boolean greenLight2;
private boolean turn1;

@StartMonitoring
public OWTL() {

redLight1 = true; redLight2 = true;
greenLight1 = false; greenLight2 = false;
turn1 = false;

}

@RunStep
public void
updateLights(@Param(func = ”passed”) Time passedTime) {

if((passedTime == Time.FIFTY
&& redLight1 && redLight2) ||

(passedTime == Time.ONEHUNDREDTWENTY
&& greenLight1 != greenLight2)) {

if(turn1) {
greenLight1 = !greenLight1;
redLight1 = !redLight1;

}
else {

greenLight2 = !greenLight2;
redLight2 = !redLight2;

}
if (redLight1 && redLight2) {

turn1 = !turn1;
}

}
}

}

enum Time {FIFTY, ONEHUNDREDTWENTY, LESS;}

Fig. 17. CoMA – Java implementation of the one-way traffic light

– The Java program under monitoring and the ASM model are linked by means
of a set of Java annotations3 (step ①). Some annotations are used to link the
Java state with the ASM state; namely, they link class fields of the Java pro-
gram with functions of the ASM model. Other annotations, instead, specify
the methods of the Java program that produce state changes that must be
monitored; Fig. 17 shows the Java implementation for the running case study,
annotated for the linking with the ASM model shown in Fig. 3;

– the observer (step ②) monitors the Java program execution and, whenever
a method under monitoring is executed, it performs a simulation step of the
ASM model with the simulator (step ③);

– the analyzer (step ④) checks whether the Java state after the method execu-
tion is conformant with the ASM state after the simulation step. Details on
the conformance definition can be found in [8].

CoMA can also check the conformance of nondeterministic systems in which
multiple states can be obtained by executing a method under monitoring;
namely, the tool checks whether there exists a next ASM state that is con-
formant with the obtained Java state. There are two implementations of this
approach: by explicitly listing all the possible next ASM states [9], or by using
a symbolic representation with an SMT solver [10].
3 A Java annotation is a meta-data tag that permits to add information to code

elements (class declarations, method declarations, etc.). Annotations are defined
similarly as classes.
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6 Conclusion and Outlook

This article provided an overview of the ASMETA model-based analysis app-
roach and the associated tooling to the safety assurance problem of software
systems using ASMs as underlying analysis formalism. ASMETA allows an open
and evolutionary approach to safety assurance as depicted in Fig. 1.

ASMETA is an active open-source academic project. Over the years, it has
been improved with new techniques and tools to face the upcoming new challeng-
ing aspects of modern systems. It has also been used as a back-end for system
analysis of domain-specific front-end notations (as those for service-oriented and
self-adaptive systems).

Recently, ASMETA has been extended to deal with model time features,
and improvement to support the verification of quantitative system properties
by means of probabilistic model checking is under development. Application
domains under current investigations are those of IoT security, autonomous and
evolutionary systems, cyber-physical systems, and medical software certification.
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