Testing the Evolution of Feature Models
with Specific Combinatorial Tests

Andrea Bombarda
University of Bergamo
Bergamo, Italy
andrea.bombarda@unibg.it

Abstract—Software Product Lines (SPLs) are commonly used
for representing highly configurable systems, by using Feature
Models (FMs). Like any other systems, SPLs (and consequently
FMs) undergo changes over time, and developers may inadver-
tently introduce errors during this process. Consequently, it is of
utmost importance to rigorously test SPLs during their evolution,
in particular, by analyzing the changes introduced from one
version of FM to its evolved counterpart.

This paper presents the concept of ‘specificity”’, enabling
testers to discern tests specifically tailored for evaluating a model
evolution. In addition, we present SPECGEN, a BDD-based
algorithm that aims at producing more specific combinatorial test
suites. We conduct a comparative analysis between SPECGEN
and established approaches. Our experiments demonstrate that
employing SPECGEN results in test suites with higher specificity,
maintaining the same size, and accomplishing this in a shorter
time compared to conventional methods.

Index Terms—Software Product Lines, Feature Model, Com-
binatorial Testing, Specificity, Evolution

I. INTRODUCTION

As with all software models and artifacts, a software product
line (SPL) evolves over time for various reasons and the
feature model (FM) representing that SPL can change as
well. Feature model evolution has been extensively studied,
however, little attention has been given to how other artifacts
connected to the FM could or should evolve. In this paper, we
focus on (valid) products derived from a FM to be used as test
cases for the SPL under test. We assume that the designer of
a SPL, once a FM has been designed for it, is interested in
deriving a set of products, i.e. valid configurations, according
to some criteria (for instance combinatorial interaction among
features). Those products are then used to test the SPL (for
example by actually building the products and checking their
correctness) and, for this reason, we consider that set of
products as a test suite. If the SPL, together with its FM,
is modified, the original test suite likely must be modified,
since some products are no longer valid while others must
be considered due to the modifications of the FM. In [6] the
author proposed an approach for reusing the old test suite and
outlined the advantages of their approach in terms of diversity,
size, and time. However, they do not consider how much a test
suite fits the modifications, i.e., the efficacy of a test suite upon
a feature model change to directly test them.

The first objective of this paper is to introduce the concept
of “specificity” of a test suite, with the objective to measure

Silvia Bonfanti
University of Bergamo
Bergamo, Italy
silvia.bonfanti @unibg.it

Angelo Gargantini
University of Bergamo
Bergamo, Italy
angelo.gargantini @unibg.it

the capability of a test suite to specifically test edits applied
to a feature model. The underlying idea is simple: when
a feature model is modified, it would be better that the
new tests in the test suite were specifically introduced to
test those modifications. The second goal of the paper is
to devise and experiment a technique that tries to maximize
the specificity of a test suite without decreasing the desired
coverage (combinatorial in our case).

In detail, the contributions of our paper are the following
ones. Given an arbitrary evolution e of a FM of the SPL under
test, we introduce:

1) a formal definition of specificity that leads to a simple

way to identify which tests are specific for e,

2) a measure for a test suite of its specificity for e as a

quality measure, besides its size and coverage,
3) a Binary Decision Diagrams (BDD)-based algorithm that
generates combinatorial interaction test suites for a FM,

4) a BDD-based algorithm that generates combinatorial in-
teraction test suites that besides reaching the desired
coverage, aim at being more specific for e.

We have compared our implementation, called SPECGEN
(SPECific tests GENerator), with other more established ap-
proaches such as ACTS [31], a more classical BDD-based
generation method (BDDGEN), the one implemented by Fea-
tureIDE developers (INCLING), and GFE [6]. Our exper-
iments show that our methodology allows practitioners to
identify the specific tests in normal test suites and to increase
the specificity of a test suite, with a reduction of the time
required for test generation but without impacting on the size
of the test suite.

The remainder of the paper is structured as follows. Sect. II
reports the background on FMs, their evolution, and the way in
which FMs can be represented using BDDs, while, in Sect. III,
we give the definition of specificity for tests and test suites.
Sect. IV presents our BDD-based approach for generating
combinatorial test suites for FMs and its extension aiming
at generating more specific test suites for FM evolutions. In
Sect. V, we report the experiments we have performed to
evaluate the proposed approach, while in Sect. VI potential
threats to the validity of our findings are discussed. Finally,
Sect. VII and Sect. VIII, respectively, report related work on
testing feature models with tests designed for FM evolution
and conclude the paper.

II. BACKGROUND

This section provides an overview of basic concepts related
to feature models, their evolution and testing, as well as how
BDDs can be employed to represent FMs and their valid
configurations.

A. Feature Models

In the field of software product line engineering, feature
models [16], [26] serve as models that delineate all potential
products within a software product line (SPL) based on their
features and their interrelationships. To be precise, a feature
model (denoted as F'M) comprises a structured collection of
features F', organized in a hierarchical manner. Each parent-
child relationship within this hierarchy imposes a constraint
falling into one of the subsequent categories: * Or: at least one
of the sub-features must be selected if the parent is selected.
* Alternative: exactly one of the children must be selected
whenever the parent feature is selected. * And: if the relation
between a feature and its children is neither an Or nor an
Alternative. Each child of an and must be either: — Mandatory:
the child feature is selected whenever its respective parent
feature is selected. — Optional: the child feature may or may
not be selected if its parent feature is selected.
Only the root feature in F' has no parent and it is selected
in every product. In addition to hierarchical relations, feature
models may have cross-tree constraints, i.e., relations that
cross-cut hierarchy dependencies. The most common cross-
tree constraints are:
o A requires B: the selection of a feature A in a product
also implies the selection of the feature B. We indicate it
as A — B.

o A excludes B: features A and B cannot be part of the
same product. We indicate it as A — —B.

As common in the literature on FMs, in this work, we
allow FMs to contain cross-tree constraints given by general
propositional formulas. Furthermore, a feature can be dead,
i.e., it can never be selected because of the constraints, or
core, i.e., it is mandatory in every valid product, like the root.

B. Evolution and types of edits of a feature model

Both SPLs and their feature models undergo evolution [27]
during their lifetime. This evolution includes actions such as
adding, removing, relocating features, and modifying, adding,
or removing constraints. Even minor alterations lead to altering
the range of eligible feature combinations: previously valid
configurations might no longer hold, while others could now
become valid.

If the added/removed products could be easily identified,
one could manually design validation activities focused to
those products. However, changes of valid configuration sets
are known to be impractical to determine manually, especially
because the type of edits occurring during FM evolution is
known to be arbitrary.

Several examples of feature model evolutions coming from
the industry or other research studies are available in the

literature (see Sect. V, where we use them as case studies
for our experiments).

C. Tests for feature models

When working with a feature model FM, each (abstract)
test, also called configuration, specifies which features in r
(the feature set of FM) are selected and which are not. More
formally, in this work, we consider a test ¢ as a function that
returns the status of a feature f € F in ¢

Hf) = T(true) if f of FM is selected in t
B L (false) if f of FM is not selected in t

In the following, in order to have a more compact notation,
instead of using t(f) =T we willuse t ={f — T,...} and
instead of using ¢(f) = L we willuse t = {f — L,... }.

A configuration or test is valid in a FM if and only if it
denotes a valid product, i.e., a configuration that does not
violate any constraint in the FM.

Test cases for feature models can be generated following
several criteria. Among those, in this paper, we focus on gen-
erating test suites achieving the ¢-wise combinatorial coverage,
one of the most used [28]. More specifically, in this paper, we
aim to achieve the pairwise coverage, i.e., we consider ¢ = 2.
Considering all the features in F'M, we generate a test suite
TS covering all the t-way interactions among them.

D. BDD representation of a FM

An efficient way to represent a FM is by means of Binary
Decision Diagrams (BDDs). They are widely used within
the domain of system design verification since they can be
easily extended to represent tests. A BDD corresponds to a
compressed form of a decision diagram:

Definition 1 (Binary Decision diagram). Let B = {F, T} be
the Boolean domain. A binary decision diagram is a graph that
represents a function f over n Boolean variables: f : B" —
B, such that every path depicts an assignment to each of the
variables under which the function f returns the boolean value
of the terminal.

A binary decision diagram can be used to evaluate the truth
value of f when it is applied to the variables =1, - - - , x,,. Since
FMs can be seen as models describing which configurations
(i.e., truth assignments to all the features) are acceptable
and which are not, a BDD can represent the set of possible
products of a FM.

Typically, among BDDs, it is possible to perform unary
operations such as complement, computation of the cardinality,
or the most classical binary operations like union, intersection,
and difference. In particular, since BDDs can represent logic
functions, operations among BDDs are equivalent to logic
operations. Given a BDD B representing the function f,
its complement —B represents the function —f. The union
between two BDDs Bj V Bs represents the function f; V fo.
The intersection between two BDDs B; A Bs represents the
function f; A f,. Finally, given a BDD B, its cardinality
(or size) |B| represents the number of all the possible paths

\\\\ \\\F

(a) FM (b) BDD
Fig. 1: Correspondence between FM and BDD

‘ Mandatory
E E /i gf(ionm]

(a) FM (b) FM’

Fig. 2: Example of FM evolution with same feature set

leading to the terminal node T. The value of cardinality
of a BDD can be used to check the consistency between
Boolean functions, i.e. if fi(x) and f2(x) are inconsistent, the
intersection between the BDDs representing the two functions
is empty.

Considering the feature model shown in Fig. 1a, which has
a root, a mandatory feature (A) and an optional one (B), the
corresponding BDD is shown in Fig. 1b. In this particular
representation, dashed lines indicate that the feature from
which the arrow starts is unselected, while continuous lines
represent selected features.

As previously introduced, after having represented the FM
as a BDD, it is possible to derive test cases by simply
enumerating which paths lead to the T leaf. Similarly, BDDs
can be easily used to model the tuples to be covered. This is
done by forcing the assignments contained in the tuple ¢p as
leading to the T leaf, and all the others to the F' leaf.

Despite the majority of the approaches dealing with FMs
adopt solver-based technique to generate test cases, in this
work we use BDDs. Indeed, there are several works in
the literature confirming that decision diagrams show better
performance than logical solvers [15].

III. DEFINITIONS

Considering the FM evolution process as introduced in
Sect. II-B, we define when a test case ¢ is specific for a model
evolution.

Definition 2 (Specific Test). Given the evolution of the feature
model FM to FM' with the same feature set F', we say that
a test t is specific if and only if ¢ is valid for FM’ and it is
not in F'M.

Let’s consider the example shown in Fig. 2 and the corre-
sponding test suites reported in Tab. I, the test t; = ¢} =
{root - T,A — T,B — 1} is non specific since it
represents a valid product both in FM and FM’. Instead, the
test t4 = {root — T,A — L, B — T} is specific because

oot A B root A B

!
T T L L
to T T T -
2 t, T L T

(@) TS for FM (b) TS for FM'

TABLE I: Pairwise test suites for the feature models in Fig. 2

HE BB

(a) FM (b) FM’

Fig. 3: Example of FM evolution narrowing down the set of
valid configurations

this configuration is valid in FM' and not in FM, thus it tests
the changes occurred during the model evolution.
Our Def. 2 of specificity implies that it is asymmetric:

Property 1 (Asymmetry). Given two feature models FM; and
FMoy, if a test t is specific for the evolution of FM; into FM,,
then it is not specific for the evolution of FMy into FM;.

One may argue that also tests valid in F’M and not in F'M’
are specific to test the model evolution. This is indeed true
because a test that became invalid could be considered specific
to test the evolution. However, since it is now invalid in FM’
we assume that it is useless and represents a configuration of
a product that cannot be actually built and tested. Considering
the asymmetry property, for particular model evolutions, it
may be possible that no specific test exists, as formalized by
the following property:

Property 2 (Absence of specific tests). Let FM and FM’ be
two feature models, and be FM' the evolved version of FM.
Let Ty be the set of valid configurations of FM and Tryy
be the set of valid configurations of FM'. If Try C Tr,
then no test specific for the evolution exists.

This characteristic stems from the observation that when an
evolved feature model merely narrows down the range of valid
configurations (such as in the case of Fig. 3), all conceivable
tests are valid in the previous version too.

A. Specific tests when the feature set changes

When a FM evolves, arbitrary edits may happen [27]. One
of the most common model evolution is represented by adding
or removing features. In that case, taking test cases (or possible
configurations) derived from FM’ and evaluating them over
FM can be challenging since the feature set changes, and it is
not trivial to define whether a test case is specific or not. In the
following, we present how to deal with feature set changes in
two different scenarios, i.e., when the feature set is extended
and when it is reduced.

The first scenario, i.e., the extension of the feature set,
is exemplified by Fig. 4. In particular, FM’ adds a feature

(b)y FM’

(a) FM

Fig. 4: Example of FM evolution extending the feature set

(a) FM (b) FM'

Fig. 5: Example of FM evolution reducing the feature set

C to the set of features already available in F'M. In this
case, the evaluation of tests generated from FM' is straight-
forward: new features are ignored in the evaluation of the
specificity, since they are added to test the changes done in
FM’ but they are not present in FM. Suppose having a test
t; = {root - T,A— T,B — 1,C — 1}, which actually
represents a valid product for FM’. We ignore the feature C
which has been added specifically for FM’ and t; is valid for
FM as well. For this reason, the test is not specific. Then, if we
consider the test to = {root + T, A— 1, B— 1,C — T},
it is a valid product for FM’. However, if we ignore the feature
C, which is not present in F'M, then the restriction of t5 on
the features F, i.e., {5 = {root - T,A — 1, B — 1} does
not represent a valid configuration for F'M . For this reason, ¢,
is valid for F'M’ but it is not for FM and ¢, can be considered
as a specific test.

The second scenario occurs, instead, when the feature set
is reduced, i.e., when FM' removes some of the features
present in F'M, such as in the example reported in Fig. 5. In
this case, features that are removed by FM' must be consid-
ered unselected when evaluating the specificity, because those
features in F'M’ must be considered absent. Thus, the test
ts = {root = T, A — T} is not specific, since it is extended
to t3 = {root - T,A — T,B — 1,C — L}, which is
valid also for FM. Instead, t4 = {root — T,A — 1} is
a specific test, since its extension t4 = {root — T,A —
1,B— 1,C — 1} is not valid for FM.

This means that to evaluate a test for its specificty, a test
generated for FM' must be first extended over all the features
F U F’ and it must satisfy the following definition.

Definition 3 (Specific Test). Given the evolution of the feature
model FM to FM' with possibly different feature sets F' and
F’, we say that a test ¢ is specific if and only:

1) its restriction over I is valid for FM’
2) its restriction over F' is not valid for FM

3) t(f) is false for every f € F\F’ (i.e., for every feature
removed in FM')

B. Specificity of a test suite

Given two test suites, to understand which test suite allows
users to better test the evolution, we can introduce the absolute
specificity of a test suite starting from the definition of specific
test (see Def. 2).

Definition 4 (Absolute specificity of a test suite). Given two
feature models FM and FM’, being FM' the evolved version
of FM, and being T'S the test suite for FM’', the absolute
specificity of T'S is the number of specific tests in 7'S:

Specaps(T'S) = ||{t|t € TS A isSpec(t, FM,FM")}||

where isSpec(t, FM, FM’) is a function evaluating if ¢ is a
specific test for the evolution from FM to FM'.

The absolute specificity of a test suite may sometimes be
misleading, since it may favor having bigger test suites instead
of smaller ones. Thus, we introduce the relative specificity.

Definition 5 (Relative specificity of a test suite). Given two
feature models FM and FM', being FM’ the evolved version
of FM, and being T'S the test suite for FM’, the relative
specificity of T'S can be computed as follows:

Specaps(T'S)
TS|
IV. GENERATING SPECIFIC TESTS

Specre(T'S) =

In this section, we first report the BDD-based generation
technique for generating combinatorial test suites from a fea-
ture model and, then, we devise a method aiming to generate
test suites with a higher specificity. As previously introduced
in Sec. II-D, our approach is based on representing feature
models in their corresponding BDD and on deriving from it a
test suite that maximizes its specificity.

A. BDD-based generation of combinatorial tests

The BDD-based procedure generating combinatorial test
suites from a feature model is depicted in Algorithm 1 and
implemented in the BDDGEN tool. It takes as input the feature
model FM for which users want to generate the test suite
together with the set of all the possible tuples of features
TP. Initially, thanks to the functionalities offered by the
ctwedge environment, F'M is automatically translated into
a combinatorial model. In this way, the model can be used to
generate a combinatorial test suite with all CT test generators.
Then, all tuples ¢p are fetched (line 2) and the collecting
procedure starts until all the tuples in 7P are checked. The
process, repeated for every tuple, is very straightforward.

For every tuple, the function tryToCover is called
(line 3). This function (reported in Algorithm 2) tries to cover
the tuple ¢p using one of the tests in 7°5, if possible (line 3-
6 in Algorithm 2), or to create a new test starting from
bddyotp (line 8-11 in Algorithm 2). In the former case, given
tpaq the BDD corresponding to the test that can cover tp,
tpaq 1s updated to its intersection with the BDD representing
the tuple tp, i.e., with tppgq (line 4 in Algorithm 2). In
the latter, the test suite 7S is enriched with a new BDD

Algorithm 1 Algorithm for the BDD-based generation of
combinatorial test suites for a feature model

Input: F'M the feature model
Input: TP the set of all the tuples derivable from F'M
Output: the test suite
> Set of BDDs from which tests can be derived
1. TS« 0
2: for all tp € TP do
> Try to cover the tuple tp
3: TRYTOCOVER(bAd(tp), T S,bdd(FM))
4: end for
5: return T'S. for Each().getTestCase()

> Iterate over all the tuples

Algorithm 2 Function trying to cover a tuple

Input: ¢pyqq the BDD of tuple desired to cover
Input: T'S the set of existing BDDs
Input: bdd,otp the bdd when no tuple is committed
Output: true iff a test covering ¢p is found or generated
1: function TRYTOCOVER(tp, T'S, bddyotp)
2 for all t,4q € T'S do
3 if size(tvaa A tpead) 7 0 then > Can ¢ cover tp?
4: tbdd < tvdd N tPbdd
5: return true
6 end if
7 end for
> Can tp be covered by a new test?
8: if size(bddnotp A tppaa) # 0 then

9: TS «+TSU {bddnotp A tpbdd}
10: return true

11: end if

12: return false

13: end function

corresponding to the test derived from the intersection among
bdd,,otp and the BDD representing the tuple tp, i.e., with tppqq
(line 9 in Algorithm 2). Note that, in this way, tryToCover
implements the monitoring strategy as introduced in [8] which
consists in checking if a test generated for a set of tuples
accidentally covers other tuples as well, thus reducing the size
of the final test suite.

At the end of the collecting process, after having iterated
over all the tuples, T'S represents the set of BDDs from which
the test suite we are looking for can be derived. Thus, from
each BDD, we simply extract a test (which is one of the paths
leading to the T leaf) and obtain a test suite covering all the
feasible tuples and containing only test cases complying with
the constraints of F'M.

B. BDD and features removal and addition

In Sect. IV-A we have presented our approach for deriving
a combinatorial test suite containing possible configurations
or tests from the BDD representing the valid products of a
FM. In order to adapt this approach to the generation of test
suites for evolving FMs, we need to handle multiple BDDs,
i.e., of both FM and FM’, and to perform operations among
them. However, as explained in Sect. III-A, the feature set
may change during model evolution and this may make the
operations more challenging.

In particular, when an evolved model removes some feature,
it may be difficult to perform operations between its BDD and
that of the original version, since the sets of features differ.
For this reason, we introduce the concept of Completed BDD,
which is a BDD containing all the features of both models.

Definition 6 (Completed BDD). Let FM and FM' be two
feature models, with FM' representing the evolved version of
FM. Let F and F’ be the set of features, respectively, of FM
and FM'. The Completed BDD is the BDD for FM' over the
complete set of features F'U F” and can be defined as:

bddo(FM') = bdd(FM') [\ bdd(f = false)
fEF\F'

The completed BDD forces every f which has been re-
moved by FM’ (i.e., which is in F' but not in F’) to be
unselected. In this way a test generated by using bdd.(FM’)
can be correctly checked for validity for F'M, as explained in
Sect. III-A in Def. 3. In the following, we will always use the
Completed BDD for FM' in order to keep the tests comparable
with the original version of the feature model FM . Note that
a test derived from the Completed BDD can either be specific
or not.

C. Generation of high-specificity combinatorial test suites

Algorithm 3 reports the process we follow for the generation
of test suites with high specificity, which is implemented
in the SPECGEN tool. It extends the BDD-based procedure
previously shown in Algorithm 1.

In order to generate a new test suite and maximize the
specificity, both feature models FM and FM’ are given as
inputs to our procedure. Moreover, the set of all tuples to be
covered (i.e., those that can be derived from FM') is required.
Then, the procedure computing the specific test suite can start.

First, bdd;y;tiq; (line 1) is computed by intersecting the
negation of bdd(F M) and bdd.(FM'). This BDD represents
all the possible specific tests we are looking for. As introduced
in Sect. III, an evolution of the model FM to FM’ may lead
only to non-specific test cases (e.g., when the set of valid
products is merely restricted). For this reason, the size of
bdd;nitiqr 1s evaluated at line 2. If the cardinality is 0, we
can skip the search of specific test cases, since they do not
exist, and focus only on non-specific ones. The set-up phase
is concluded with lines 7 and 8 that initialize the set of specific
and non-specific tests with the empty set.

Then, the process collecting all the tuples tp in T'P (line 9-
19) is performed. First, tp is checked against FM’ in order to
verify whether tp represents a valid assignment for products
derived from FM’. This is performed by computing the size
of the intersection between the BDD representing tp, i.e.,
bdd(tp), and the one of FM’, i.e., bdd.(FM'), at line 10. As
previously done for checking the existence of specific tests,
if the size is 0, the tuple cannot be covered by any valid
product and it is skipped. On the other hand, if the tuple can be
covered and specific tests can be generated, the tryToCover
function is called (line 14). In the case in which tryToCover

Algorithm 3 Algorithm generating specific combinatorial TSs

Input: F'M the original feature model
Input: FM’ the evolved feature model
Input: TP the set of all the tuples derivable from FM’
Output: the specific test suite

> Initial BDD from which specific tests can be derived

1: bdd;nitiar < —bdd(FM) A bdd.(FM')
> FM' only restricts the valid products

- if S’L.Ze(bddinnml) = 0 then

skipSpecific + true
else

skipSpecific + false
end if
T+ 0
t s < 0
: for all tp € TP do

> Check the validity of the tuple
10: if size(bdd(tp) A bdd.(FM')) = 0 then
11: continue next tp
12: end if
13: if —skipSpecific then
> Look for a specific test that can cover tp

> Set of BDDs for specific tests
> Set of BDDs for non-specific tests
> Iterate over all the tuples

0 RN R RN

14: if TRYTOCOVER(bdd(tp),Ts,bdd;initiar) then
15: continue next {p

16: end if

17: end if

> No specific test can cover tp
18: TRYTOCOVER(bdd(tp),Ts,bdd.(FM"))
19: end for
20: TS + TsUThs
21: return T'S. for Each().getTestCase()

succeeds in covering tp, the next tuple is analyzed. Otherwise,
the tryToCover function is executed over the set of non
specific test cases (line 18).

At the end of the collecting process, during which the
iteration over all the possible tuples is performed, the union
between the BDDs representing specific tests 7 and non
specific tests T, is computed (line 20). Thus, from each
BDD in T'S, we simply extract a test case (which is one
of the paths leading to the T leaf) and obtain the test suite
maximizing the specificity we are looking for. The t-wise
coverage is assured-by-construction and the final test suite
only contains tests representing valid products for FM'. Note
that the maximization of the specificity is pursued by how the
algorithm is composed. First, it tries to cover each tuple with
a specific test, then, if no specific test can cover that tuple, a
non-specific one is created. In this way, the number of non-
specific tests is minimized.

V. EXPERIMENTS

In this section, we evaluate the proposed approach against
benchmark models available in the literature and with respect
to alternative test generation approaches. In Tab. II we report
the list of the FMs we use for conducting our experiments.
They have been selected by analyzing the literature and
keeping those used as case study by other relevant works and
having at least one evolution step. Note that, for the models
having more than a single evolution, we analyze evolutions
between any step, in any order (i.e., we test the version vl

against v2, then vl with v3, and so on, but also v2 against
v1, then v3 with v1, and so on). In this way, we analyze the
model evolution in both directions, i.e., when the model gets
more complex between evolutions and when it is simplified. In
total, we consider 102 FM evolutions. The replication package,
containing the FMs, the evaluation script, the results of our
experiments, and all source code for repeating the experiments,
is available online at https://github.com/fmselab/ctwedge/tree/
master/featuremodels.specificity.

Considering the benchmarks reported in Tab. II, we generate
a test suite for each model evolution by using different tools,
namely, ACTS [31] (one of the most powerful and used
combinatorial test generators), INCLING (which is integrated
into FeatureIDE for combinatorial product sampling) [1], BD-
DGEN (as introduced in Sect. IV-A), SPECGEN (as presented
in Sect. IV-C), and the GFE technique presented in [6]. Note
that ACTS does not support natively feature models, so we
had to translate them in ACTS models including also the (tree
and cross-tree) constraints. By instrumenting every generator,
we compute relevant measures of each generation run. In
particular, we consider the generation time, test suite size, and
the relative specificity. All the experiments have been repeated
10 times in order to reduce the influence of non-deterministic
timing, on a PC using an Intel(R) i7-8700 CPU @ 3.20GHz
with 16 GB RAM.

The results obtained by each test generation strategy have
been compared, across all FM evolutions, by using the
Wilcoxon Signed-Rank test [30], a general test comparing the
distributions in paired samples which does not require data to
be normally distributed. Given = the measure to be compared
between the two techniques, the Wilcoxon Signed-Rank test is
performed using a significance level o = 0.05 and with a null
hypothesis Hj stating that the distributions of x in the two
techniques are equal. Moreover, in order to verify whether the
conclusions drawn from the Wilcoxon test were significant, we
have evaluated the effect size by computing the Cliff’s delta
.. The effect of a technique is small if |d.| < 0.147, medium
if 0.147 < 6.| < 0.33 or large if |d.| > 0.33.

We report the main results of the experiments in Tab. III,
Tab. IV, and Tab. V. All tools in the tables are sorted starting
from the best performing one to the worst one in terms of
the considered measure. We report, for each tool T;, the
comparison with the “nearest” competitor 7); for which the
test confirms the better performance of T; w.r.t. T; (v' in the
confirmed column), i.e., for which Hj can be discarded. When
T; and T} are not neighbors, we also report the comparison
between T; and all other T}, with ¢ < k < j and we mark
those comparisons with X in the confirmed column, meaning
that H, cannot be discarded.

By applying the previously explained experimental method-
ology, in the following, we answer the following research
questions. RQ1 and RQ2 focus on comparison among state-of-
the-art test generators and BDDGEN, RQ3 compares SPEC-
GEN with other tools in terms of specific test cases generation,
and finally, RQ4 compares the GFE approach with others
previously analyzed. RQs are organized such that, in this

https://github.com/fmselab/ctwedge/tree/master/featuremodels.specificity
https://github.com/fmselab/ctwedge/tree/master/featuremodels.specificity

TABLE II: List of the FM evolution examples from the literature — the number of versions (V), the minimum and maximum number of
features (including the dead and core ones) across all model evolutions (#F), the minimum and the maximum number of products (#P), and the reference to

the paper the model comes from.

Example V #F #P Ref. | Example V #F #P Ref. | Example V #F #P Ref.
AmbAssistLiving 2 24-32 9.8-10%-5.0-107 [14] | AutomotiveMult. 3 6-13 5-192 [23]|BCS 3 13-17 128-768 [18]
Boeing 3 56 2-2 [29] | CarBody 4 6-13 4-40 [19]|ERP 2 42-57 2.6-10%-2.6-10° [24]
HelpSystem 2 25-26 672-103 [32] | Linux (Simple) 3 5-10 7-33 [17] | MobileMedia 6 11-26 2-272 [13]
ParkingAssistant 5 6-16 1-32 [10] | Pick&PlaceUnit 9 5-11 3-81 [11]|SmartHome 2 38-61 9.0-10%-3.9-109 [22]
SmartHotel 2 6-8 6-30 [4] | Smartwatch 2 12-15 96-192 [2] | WeatherStat. 2 22-23 528-660 [20]
ACTS TABLE IH: Cqmparlson among techniques and tools in terms
INCLING of generation time
BDDGEN Statistical test results
SPECGEN Tool t [ms] | Faster than | Confirmed? p-value [6c|
GFE GFE 5.63 | INCLING v 3-107 0.61
T T T T T INCLING 7.75 | SPECGEN v 2.6-107* 0.59
0 50 100 150 200 250 300 SPECGEN ~ 26.78 | BDDGEN v 5-10715 0,61
Time [ms] BDDGEN 45.69 | ACTS v 3-1071% 061
. . . . ACTS 125.94
Fig. 6: Generation time analysis
TABLE IV: Comparison among techniques and tools in terms
ACTS | of size
INCLING { ——— T
1} “ i Statistical test results
BDDGEN Tool 5 Smaller than | Confirmed? p-value [dc]
SPECGEN | ———— [
GFE 8.30 | ACTS v 0.2-107* 0.18
GFE { F——{ RN ACTS 8.48 | INCLING v 0.9-10=2 0.20
BDDGEN X 0.7 0.03
2.5 5.0 75.-5 ;01._0 12.5 15.0 17.5 SPECGEN X 04 0.07
ize [# Tests] BDDGEN 8.56 | SPECGEN v 0.3-10-1 0.17
iy T o : SPECGEN 8.68 | INCLING X 0.1 0.13
Fig. 7: Test suite size analysis INCLING 873

way, we first analyze the performance of the approach based
on BDDs against the state-of-the-art ones and we investigate
whether not focusing on generating specific test suites still
implies having a good degree of specificity. Then, we analyze
the evaluate the performance of the tool aiming to maximize
the specificity. Finally, we investigate whether reusing tests
cases from the original version of the FM impacts on the
obtained specificity.

RQ1 Is the BDD-based test generation competitive against
other state-of-the-art test generator tools?

In this research question, we are interested in comparing
more traditional approaches, such as ACTS or INCLING, with
the BDD-based one we present in this paper, implemented
in BDDGEN. In particular, we compare different generation
techniques as normally done in combinatorial testing, by
analyzing the generation time (see Fig. 6) and the test suite
size [7] (see Fig. 7).

In terms of generation time, in Fig. 6, we can see that ex-
ploiting BDDs for generating test cases for FMs is slower than
the approach implemented in INCLING but faster than ACTS.
Instead, in terms of test suite size, ACTS, and BDDGEN are
the tools producing the smallest test suites among the analyzed
tools, while INCLING generates the highest number of test
cases. The Wilcoxon Signed-Rank test we report in Tab. III

and Tab. IV, respectively, for the test suite generation time
and test suite size confirms these observations. Concerning
the generation time, the test confirms INCLING being the
fastest test generation method among the tools analyzed in
this RQ, with BDDGEN the average one, and ACTS the
slowest one. All three tests are significant (i.e., with a p-
value lower than «) and statistically relevant with a large
effect size. On the other hand, for what concerns the test
suite size, the only significant and statistically relevant test
is the one between ACTS and INCLING, which confirms our
preliminary observation of ACTS being the tool producing the
smallest test suite. However, the difference in terms of test
suite size is very limited among all the three considered tools.

In conclusion, we can state that the BDD-based test gener-
ation approach performs comparably to other test generation
strategies, in terms of test suite size, while it is slower than
INCLING but faster than ACTS.

RQ2 How much specific are the tests generated with general-
purpose tools?

In Sect. III we have introduced the specificity which is
an aspect that can be evaluated in every test suite when
a FM evolves. In this research question, we are interested
in evaluating the specificity of the test suites produced by
general-purpose tools, i.e., those analyzed in RQI.

TABLE V: Comparison among techniques and tools in terms
of specificity

Statistical test results

Tool m [%] | Higher than | Confirmed? p-value [6c]
SPECGEN 53.15 | INCLING v 2.7-107% 0.33
INCLING 50.38 | ACTS v 0.4-1073 0.22

BDDGEN X 0.4 0.07
BDDGEN 49.96 | ACTS v 0.4-10~1 0.16
ACTS 48.21 | GFE X 0.2 0.11
GFE 47.00

ACTS
INCLING
BDDGEN
SPECGEN
GFE

0.0 0.2 0.4 0.6 0.8 1.0
Specificity

Fig. 8: Relative specificity analysis

Fig. 8 reports the relative specificity, while Tab. V re-
ports the outcome of the Wilcoxon Signed-Rank test. The
obtained result shows that even if a technique is not designed
for producing specific test suites, such as for the case of
ACTS, INCLING, and BDDGEN, some specific test case
is always generated. Among the three techniques subject to
this RQ, ACTS is the one producing test suites with the
lowest specificity. This is demonstrated by the results shown in
Tab. V, where ACTS is ranked lower than BDDGEN, which is
ranked equivalent to INCLING. The test involving ACTS and
BDDGEN is statistically relevant (i.e., with a p-value lower
than «) and with an effect size reporting a medium impact.
Instead, INCLING and BDDGEN perform comparably.

In conclusion, we can state that the three analyzed general-
purpose tools produce on average 48% of specific test cases,
and ACTS performs slightly worse than INCLING and BD-
DGEN in terms of specificity.

RQ3 What are the performances of the SPECGEN test
generation strategy aimed to generate specific tests?

After having analyzed the general-purpose methods, we are
now interested in evaluating the performance of SPECGEN,
which aims at generating test suites maximizing the specificity,
in terms of test suite size, generation time, and specificity.

The results of our experiments are reported in Fig. 6, for
what concerns the generation time, Fig. 7, in terms of test
suite size, and Fig. 8, for what regards the relative specificity.
Moreover, we report the results of the Wilcoxon Signed-Rank
tests for all three measures in Tab. III, Tab. IV, and Tab. V.

We can observe that SPECGEN, among the tools considered
up to now (i.e., excluding the GFE generator, which will be
analyzed in RQ4), is the tool producing the highest number
of specific tests, thus leading to the highest relative specificity
(see Fig. 8). This is confirmed by the Wilcoxon Signed-Rank
test results in Tab. V, which show to be statistically relevant

for what regards SPECGEN, with a medium-large effect size.
In terms of generation time, SPECGEN shows to be faster
than ACTS, but slower than INCLING. Finally, for what
concerns the test suite size, the comparison between general-
purpose tools and SPECGEN shows that all tools perform in a
comparable way, except for BDDGEN which produces slightly
bigger test suites than SPECGEN.

In conclusion, we can state that SPECGEN produces test
suites with a similar test suite size, but with a higher specificity
than general-purpose tools.

RQ4 What are the advantages or disadvantages of trying to
reuse tests generated for F'M to build the new test suite 7°S’
for FM’ (especially in terms of specificity)?

In this last research question, we are interested in evaluating
the GFE approach proposed by [6], which tries to reuse part
of the test suite for FM to generate a test suite for FM’.
Our experiments show that GFE is the technique requiring the
lowest amount of time for generating test suites (because some
of the test cases are given as seeds and this is known to make
the test generation faster [9]), producing a comparable number
of test cases. However, as shown in Tab. V and Fig. 8, GFE
is the approach leading to the lowest specificity.

In conclusion, these experiments confirm that reusing old
tests and trying to repair and complement them, can reduce
their ability to test the changes introduced during the evolution.
Thus, from the tester point of view, there is a trade off between
speeding up the test generation process and specifically testing
the modifications introduced by the FM evolution.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity [12] and
all the strategies we have undertaken to mitigate them.

Internal validity refers to the fact that the different outcomes
obtained with the analyzed techniques and tools are actually
caused by the different approaches themselves and by the way
the experiments were carried out, and not by methodological
errors. To mitigate this risk, we have carefully checked the
code of the available generators and of the experiments to see
if there could be other factors that have caused the outcome,
such as errors in the tools. A possible threat to the construct
validity comes from the assumption that our definition of
test suites’ specificity is suitable to measure the ‘“quality”
of a test suite for testing evolving FMs. To mitigate this
risk, we have carefully checked the literature in order to find
similar approaches, such as the one proposed by [3] where
distinguishing configurations have been proposed, although
some of them may no longer be valid in an evolved FM.

External validity is concerned with whether we can gen-
eralize the results outside the scope of the presented study.
Under this lens, one threat to external validity refers to the
case studies we have used in the experiments. We have tried
to collect as many examples as possible, and we believe that
they are representative enough of the possible evolutions of
FMs (different numbers of products and features), even if more
complex models may exist in a real scenario and there may

be scalability issues for which further experiments are needed.
In Sect. V, we have shown the effectiveness of employing the
BDD-based method for producing test suites for evolving FMs.
This approach proves to be a feasible technique, enabling the
generation of a reduced number of test cases, and in certain
instances, more specific ones, within a shorter generation time-
frame compared to conventional combinatorial methods like
ACTS. However, BDDs are known in the literature for failing
to scale for large FMs [5]. Thus, further experiments are
needed to generalize the results we present in this paper.
Moreover, one may argue whether using specific tests actually
leads to enhanced bug discovery. This is an additional threat
to the external validity of our experiments. We plan to further
investigate this aspect by automatically computing mutations
on the evolved part of the FMs and checking whether specific
tests are more fault-revealing than non-specific ones.

Another possible threat to external validity regards the
testing criteria we used, since the approach we present in
this paper may be not suitable for other criteria besides the
pairwise combinatorial one. We believe that our algorithms
can be extended to any testing criteria that can be represented
by formal testing requirements that can be translated to BDDs
(such as the mutation-based one presented in [3]).

VII. RELATED WORK

The evolution of FMs is a widely studied topic, which poses
several challenges for software engineering, especially for
what concerns testing and requirements traceability. Particular
focus has been put by researchers on finding patterns in SPL
evolution. For example, in [25], [27], the authors compared
the FMs produced during software evolution, found out that
some types of evolution actions are more common than others,
and highlighted that arbitrary edits are commonly performed
during the SPL life cycle.

Researchers normally address the problem of testing evolv-
ing FMs in two different directions, namely, by trying to
preserve a test suite as much as possible during the evolution
process, or by focusing on testing new products that were not
previously valid. For example, in [6], the GFE approach trying
to preserve test cases from the original F'M is presented. It is
based on seeding test cases to a combinatorial test generator
and repairing them when they are not valid anymore for the
evolved version FM’. With our experiments, as discussed in
Sect. V, we have shown how this method is complementary
to the one we propose with this paper, as the specificity of the
test suites obtained with GFE is lower than those obtained
with SPECGEN. On the other hand, in [3], the authors
proposed a fault-based approach for testing FMs, based on the
identification of distinguishing sequences, i.e., configurations
that are able to detect a given fault. This approach is similar to
that we propose in this paper, as mutations simulating faults
can also be used for simulating model evolution. However, the
approach we propose with SPECGEN is a generalization of
the one proposed by [3], and our definition and algorithms
are applied to the context of FM evolution instead of fault
detection.

Similar approaches are proposed for testing regular soft-
ware undergoing evolution. For example, in [21], the authors
propose a method for assessing the adequacy of a test suite
after a program is modified and identifying new or modified
behaviors that are not adequately exercised by the existing
tests. This is what we do with the approach we implemented
in SPECGEN, which generates test cases trying to target new
product configurations that were not tested before.

VIII. CONCLUSION

Software Product Line evolution poses a great challenge
on testing feature models since every time they evolve a new
test suite is needed and no guidance is normally given on
what are the characteristics the test suite needs to have. For
this reason, in recent years, researchers have spent a great
effort in defining strategies for testing in the most effective
way possible evolving FMs.

In this paper, we have presented the novel definition of
specific tests, i.e., those tests representing products that are
valid in the evolved version of a FM but not in the original
counterpart. They allow practitioners to better focus the effort
of the testing process on the new products introduced with the
evolution process. Secondly, we have introduced a measure
for the specificity of a test suite, offering a quantitative
assessment of how well the test suite tests the FM evolution.
This metric provides valuable insights for practitioners to
select tools producing test suites that are most apt for testing
evolving SPLs. Moreover, in this paper, we have presented
a BDD-based test generation strategy, BDDGEN, extended
by the SPECGEN generator, designed to produce pairwise
combinatorial test suites optimized for maximizing specificity.
Through extensive empirical evaluations against state-of-the-
art generators, including ACTS, BDDGEN, INCLING, and
GFE, SPECGEN has demonstrated its capability to yield test
suites of comparable size, but notably, in significantly less time
than most other tools and with the highest specificity.

Despite the performed evaluation, as future work, more
experiments are needed on additional and more complex
models, in order to generalize our conclusion. We are planning
to involve professionals and test experts in the loop for better
evaluating the applicability of the approach, its potentials,
and limitations. Moreover, we are interested in evaluating the
impact of removing some of the assumptions we made in the
definition of specificity which translates into the property of
asymmetry and absence of specific tests. In this way, we would
also consider specific tests that were valid in the F'M but not
in FM'.

REFERENCES

[1] M. Al-Hajjaji, S. Krieter, T. Thiim, M. Lochau, and G. Saake. IncLing:
efficient product-line testing using incremental pairwise sampling. In
Proceedings of the 2016 ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences. ACM, Oct. 2016.

[2] N. Ali and J.-E. Hoing. Your opinions let us know: Mining social
network sites to evolve software product lines. KSII Transactions on
Internet and Information Systems, 13:21, 08 2019.

[3] P. Arcaini, A. Gargantini, and P. Vavassori. Generating tests for detecting
faults in feature models. In 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST). IEEE, Apr. 2015.

[4]

[5]

[6

—

[9

—

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

L. Arcega, J. Font, @. Haugen, and C. Cetina. Achieving knowledge
evolution in dynamic software product lines. In 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), volume 1, pages 505-516, 2016.

D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of
feature models 20 years later: A literature review. Information Systems,
35(6):615-636, Sept. 2010.

A. Bombarda, S. Bonfanti, and A. Gargantini. On the reuse of existing
configurations for testing evolving feature models. In Proceedings of the
27th ACM International Systems and Software Product Line Conference
- Volume B. ACM, Aug. 2023.

A. Bombarda, E. Crippa, and A. Gargantini. An environment for bench-
marking combinatorial test suite generators. In 2021 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 48-56, 2021.

A. Bombarda and A. Gargantini. An automata-based generation method
for combinatorial sequence testing of finite state machines. In 2020
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). 1IEEE, Oct. 2020.

A. Bombarda and A. Gargantini. Incremental generation of combina-
torial test suites starting from existing seed tests. In 2023 IEEE In-
ternational Conference on Software Testing, Verification and Validation
Workshops (ICSTW). 1IEEE, Apr. 2023.

G. Botterweck, A. Pleuf, D. Dhungana, A. Polzer, and S. Kowalewski.
Evofm: feature-driven planning of product-line evolution. In PLEASE
’10. ACM Press, 2010.

J. Biirdek, T. Kehrer, M. Lochau, D. Reuling, U. Kelter, and A. Schiirr.
Reasoning about product-line evolution using complex feature model
differences. Automated Software Engineering, 23(4):67, oct 2016.

R. Feldt and A. Magazinius. Validity threats in empirical software
engineering research - an initial survey. In SEKE, 2010.

E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Castor Filho, and F. Dantas.
Evolving software product lines with aspects: An empirical study on
design stability. In Proceedings of the 30th International Conference on
Software Engineering, ICSE 08, page 261-270, New York, NY, USA,
2008. Association for Computing Machinery.

N. Gdmez and L. Fuentes. Software product line evolution with
cardinality-based feature models. In K. Schmid, editor, Top Productivity
through Software Reuse, pages 102-118, Berlin, Heidelberg, 06 2011.
Springer Berlin Heidelberg.

T. HeB, C. Sundermann, and T. Thiim. On the scalability of building
binary decision diagrams for current feature models. In Proceedings
of the 25th ACM International Systems and Software Product Line
Conference - Volume A, SPLC *21. ACM, Sept. 2021.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-
90-TR-021, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1990.

M. Nieke. Consistent Feature-Model Driven Software Product Line
Evolution. PhD thesis, Technische Universitidt Braunschweig, 2021.

T. Pett, S. Krieter, T. Runge, T. Thiim, M. Lochau, and I. Schaefer. Sta-
bility of product-line sampling in continuous integration. In Proceedings
of the 15th International Working Conference on Variability Modelling
of Software-Intensive Systems, VaMoS 21, New York, NY, USA, feb
2021. Association for Computing Machinery.

A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski.
Model-driven support for product line evolution on feature level. Journal
of Systems and Software, 85(10):2261-2274, 2012.

pure-systems GmbH. pure::variants User’s Guide, 2022.

R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and
M. J. Harrold. Test-suite augmentation for evolving software. In
2008 23rd IEEE/ACM International Conference on Automated Software
Engineering, pages 218-227, 2008.

A. R. Santos, R. P. de Oliveira, and E. S. de Almeida. Strategies for
consistency checking on software product lines: A mapping study. In
Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, EASE 15, New York, NY, USA,
2015. Association for Computing Machinery.

C. Seidl, F. Heidenreich, and U. ABmann. Co-evolution of models and
feature mapping in software product lines. In Proceedings of the 16th
International Software Product Line Conference - Volume 1, SPLC *12,
pages 76-85, New York, NY, USA, 2012. Association for Computing
Machinery.

10

[24]

[25]

[26]

(27]

(28]

[29]

[30]
(31]

(32]

S.PL.O.T. Repository of real feature models. [Online; accessed 08-
September-2022].

M. Svahnberg and J. Bosch. Evolution in software product lines:
two cases. Journal of Software Maintenance: Research and Practice,
11(6):391-422, Nov. 1999.

T. Thiim, S. Apel, C. Kistner, I. Schaefer, and G. Saake. A classification
and survey of analysis strategies for software product lines. ACM
Computing Surveys, 47(1):1-45, June 2014.

T. Thiim, D. Batory, and C. Késtner. Reasoning about edits to feature
models. In 2009 IEEE 3lst International Conference on Software
Engineering, page 11. IEEE, 05 2009.

M. Varshosaz, M. Al-Hajjaji, T. Thiim, T. Runge, M. R. Mousavi, and
I. Schaefer. A classification of product sampling for software product
lines. In Proceedings of the 22nd International Systems and Software
Product Line Conference - Volume 1. ACM, sep 2018.

J. White, J. A. Galindo, T. Saxena, B. Dougherty, D. Benavides, and
D. C. Schmidt. Evolving feature model configurations in software
product lines. J. Syst. Softw., 87:119-136, jan 2014.

R. F. Woolson. Wilcoxon signed-rank test, Sept. 2008.

L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. Acts: A combinatorial
test generation tool. In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation, pages 370-375, 2013.

V. §tuikys, R. Burbaité, K. Bespalova, and G. Ziberkas. Model-driven
processes and tools to design robot-based generative learning objects
for computer science education. Science of Computer Programming,
129:48-71, 2016. Special issue on eLearning Software Architectures.

