
SMT-based automatic proof of
ASM model refinement?

Paolo Arcaini1, Angelo Gargantini2, and Elvinia Riccobene3

1 Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic
arcaini@d3s.mff.cuni.cz

2 Dipartimento di Ingegneria, Università degli Studi di Bergamo, Italy
angelo.gargantini@unibg.it

3 Dipartimento di Informatica, Università degli Studi di Milano, Italy
elvinia.riccobene@unimi.it

Abstract. Model refinement is a technique indispensable for modeling
large and complex systems. Many formal specification methods share this
concept which usually comes together with the definition of refinement
correctness, i.e., the mathematical proof of a logical relation between an
abstract model and its refined models.

Model refinement is one of the main concepts which the Abstract State
Machine (ASM) formal method is built on. Proofs of correct model re-
finement are usually performed manually, which reduces the usability of
the ASM model refinement approach. An automatic support to assist
the developer in proving refinement correctness along the chain of refine-
ment steps could be of extreme importance to improve, in practice, the
adoption of ASMs.

In this paper, we present how the integration between the ASMs and
Satisfiability Modulo Theories (SMT) can be used to automatically prove
correctness of model refinement for the ASM method.

1 Introduction

Modeling is a fundamental activity of system life-cycle: models allow developers
to reason about the systems under construction and represent central artifacts
of their development. Building models of large and complex systems is, however,
not an easy task since lots of requirements have to be taken into consideration.

To manage such a complexity, many specification methods share a modeling
process based on model refinement [1]. It consists in developing models starting
from a high-level description of the system and proceeding through a sequence
of more detailed models each introducing, step-by-step, design decisions and
implementation details. The concept of model refinement usually comes together
with the definition of refinement correctness, i.e., the mathematical proof of a
logical relation between an abstract model and its refined models.

? This work was partially supported by the Grant Agency of the Czech Republic
project 14-11384S.

Model refinement is a key concept for the Abstract State Machine (ASM)
formal method. The ASM modeling process is based on the concept of a ground
model representing a precise but concise high-level system specification, and on
the refinement principle that allows to capture all details of the system design
by a sequence of refined machines to the desired level of detail, possibly to the
code level. In [12,14], Börger presents the ASM refinement, discusses its charac-
teristics compared to other refinement approaches, and provides the definition of
correctness proofs, namely the guaranty that a machine is a correct refinement
of an abstract machine.

In developing ASM specifications of different case studies [3,4,6,8], we have
modeled through refinement and we have observed that (a) the usual refinement
schema a modeler uses is a (1:n) refinement in which one step of the abstract
machine corresponds to n steps of the refined machine; (b) each refinement step
introduces very small changes, either in terms of data and of control structure;
(c) along the chain of models, the proofs of refinement correctness are similar
and often tedious to repeat. Such observations reinforced in us the idea, felt for
a long time, of having a tool assisting the modeler along the refinement steps
and being able to provide automatic proof of the refinement correctness.

A mechanized approach to prove correctness of the ASM refinement already
exists [22]. It requires the encoding of an ASM model into dynamic logic, a
deep knowledge of the KIV theorem prover and an active role of the modeler in
conducting the proofs. The tool is not integrated in any existing framework for
ASM model development and manipulation [17,7], thus this verification activity
appears separated with respect to other activities on models and does not permit
reusing information. Our goal is, instead, to have a prover of correct model
refinement fully integrated into a framework for editing, simulating, validating
and verifying ASM models, so to improve the practical usability of the ASM
method. We cannot expect practitioners to have deep skills in theorem provers
or verification strategies, and we are aware of the necessity to compensate these
lacks with suitable mechanized support which hides the mathematical complexity
of the proof obligations that model refinement requires.

By exploiting the symbolic representation of ASMs into Satisfiability Modulo
Theories (SMT), already presented in [5] as part of an SMT-based technique for
runtime verification, we here present an automatic approach where the proof of
ASM refinement is performed by means of satisfability checking.

We introduce the definition of ASM stuttering refinement between two ASMs.
It is a restricted form of the ASM model refinement defined in [12], but we have
found it recurring in our modeling experience and shared with other formal
approaches [2,20]. It has also the advantage of allowing the reduction of the
ASM correct refinement problem to an SMT problem, since the proof strategy
to guarantee stuttering refinement does not reason on possible corresponding
subruns of the two machines, but on the concept of a state to be initial and to
be in (transition) relation with another state. This SMT problem consists of two
conditions (initial refinement and step refinement) that guarantee a machine to

2

be a stuttering refinement of an abstract machine. An SMT solver is used to
prove the validity of such properties.

The paper is organized as follows. Sect. 2 briefly introduces the ASMs and
their use when modeling through refinement. A running case study is used for
exemplification purposes. In Sect. 3 we give our notion of refinement and in
Sect. 4 we provide a technique for proving it. Sect. 5 presents the SMT encoding
of the model refinement correctness problem. Sect. 6 gives a preliminary evalua-
tion of the approach. Sect. 7 presents work related to the verification of correct
refinement for ASMs, and Sect. 8 concludes the paper.

2 Abstract State Machines

Abstract State Machines (ASMs) [14] are an extension of FSMs, where unstruc-
tured control states are replaced by states with arbitrary complex data. The
method has a rigorous mathematical foundation; however, a practitioner can un-
derstand ASMs as pseudo-code or virtual machines working over abstract data
structures. We here give the necessary background to understand our approach.

ASM states are algebraic structures, i.e., domains of objects with functions
and predicates defined on them. An ASM location, defined as the pair (function-
name, list-of-parameter-values), represents the abstract ASM concept of basic
object containers. The couple (location, value) represents a machine memory
unit. Therefore, ASM states can be viewed as abstract memories.

Location values are changed by firing transition rules. They express the mod-
ification of functions interpretation from one state to the next one. Note that the
algebra signature is fixed and that functions are total (by interpreting undefined
locations f(x) with value undef). Location updates are given as assignments of
the form loc := v, where loc is a location and v its new value. They are the basic
units of rules construction. There is a limited but powerful set of rule constructors
to express: guarded actions (if-then), simultaneous parallel actions (par), se-
quential actions (seq), nondeterminism (existential quantification choose), and
unrestricted synchronous parallelism (universal quantification forall).

An ASM computation is, therefore, defined as a finite or infinite sequence
S0, S1, . . . , Sn, . . . of states of the machine, where S0 is an initial state and each
Sn+1 is obtained from Sn by firing the unique main rule which in turn could
fire other transitions rules. An ASM can have more than one initial state. It is
possible to specify state invariants.

During a machine computation, not all the locations can be updated. Indeed,
functions are classified as static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modified by the environment) and controlled (read and written by the machine).
A further classification is between basic and derived functions, i.e., those coming
with a specification or computation mechanism given in terms of other functions.

ASMs allow modeling any kind of computational paradigm, from a single
agent executing parallel actions, to distributed multiple agents interacting in a

3

asm LGS GM

signature:
enum domain HandleStatus = {UP | DOWN}
enum domain DoorStatus =

{CLOSED | OPENING | OPEN | CLOSING}
enum domain GearStatus =

{RETRACTED|EXTENDING|EXTENDED|RETRACTING}
dynamic monitored handle: HandleStatus
dynamic controlled doors: DoorStatus
dynamic controlled gears: GearStatus

definitions:
rule r closeDoor =

switch doors
case OPEN: doors := CLOSING
case CLOSING: doors := CLOSED
case OPENING: doors := CLOSING

endswitch

rule r retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED: doors := OPENING
case CLOSING: doors := OPENING
case OPENING: doors := OPEN
case OPEN:

switch gears
case EXTENDED:
gears := RETRACTING

case RETRACTING:
gears := RETRACTED

case EXTENDING:
gears := RETRACTING

endswitch
endswitch

else
r closeDoor[]

endif

main rule r Main =
if handle = UP then
r retractionSequence[]

else
r outgoingSequence[]

endif

default init s0:
function doors = CLOSED
function gears = EXTENDED

’

Code 1. Landing Gear System – Abstract model

synchronous or asynchronous way. Moreover, an ASM can be nondeterministic
due to the presence of monitored functions (external nondeterminism) and of
choose rules (internal nondeterminism).

A set of tools exists to support the ASM modeling process. Tools are part
of the ASMETA (ASM mETAmodeling) framework4 [7], and are strongly in-
tegrated in order to permit reusing information about models during different
development phases. ASMETA provides basic functionalities for ASM models
creation and manipulation (as editing, storage, interchange, access, etc.), and
supports advanced model analysis techniques (as validation, verification, test-
ing, model review, requirements analysis, runtime verification, etc.).

Example 1 (Landing Gear System case study). We here consider, as supporting
case study, the Landing Gear System [11] (LGS), which is the airplane compo-
nent responsible for the maneuvering of the landing gears and associated doors.
The system can be in nominal mode or in emergency mode. In nominal mode,
a landing sequence is: opening of the doors of the landing gear boxes, extension
of the landing gears, and closing of the doors. The system also elaborates health
parameters for all the equipments and, if necessary, switches to emergency mode.

Model LGS GM (shown in Code 1) specifies the system behavior at a very
abstract level: we only represent the statuses of the gears and of their doors
and how they change in the retraction and outgoing sequences. Although there
are three landing sets, we abstract and we model all of them as one. Functions
doors and gears represent the status of the doors and of the gears, respectively.
The state transitions are driven by the value of the monitored function handle.
As long as handle is UP, the retraction sequence is executed; when handle is
DOWN, the outgoing sequence is executed. Let us see how the retraction sequence
works. We assume handle to be UP in each state. In the initial state, the doors

are CLOSED and the gears are EXTENDED; then the doors start OPENING. When
the doors become OPEN, the gears start RETRACTING. When the gears become
RETRACTED, the doors start CLOSING. The retraction sequence terminates with

4 http://asmeta.sourceforge.net/

4

http://asmeta.sourceforge.net/

the doors CLOSED and the gears RETRACTED. The outgoing sequence behaves
similarly. Note that a retraction (resp. an outgoing) sequence can be always
interrupted by switching the value of the handle; in this case, an outgoing (resp.
a retraction) sequence begins, starting from the status of the doors and the
gears reached in the previous sequence.

2.1 ASM modeling through refinement

Modeling by ASMs starts by developing an initial abstract model, called ground
model, which is a precise and concise high-level system description and can be
considered as reference model for the further steps of the design. Model LGS GM
shown in Code 1 is an example of ground model.

Modeling proceeds by model refinement, namely by a chain of step-wise re-
fined models, starting from the ground model. At each refined level, further
details are added to capture the major design decisions and provide descriptions
of the complete software architecture and component design of the system. The
end point of the chain is decided by the designer, and it should be a model
detailed enough to be mapped into executable code or at least a model against
which the code can be automatically tested for conformance checking.

Several examples [9,21,24] show the applicability of this approach which per-
mits to keep the complexity of the system under control, and to bridge, in a
seamless manner, the gap between specification and code.

In model refinement, a key point is to prove that a refined model is correct
w.r.t. the abstract one. For ASMs, the original description of the refinement
method and the definition of correct model refinement are due to Börger in [12].
That definition of refinement is very general and makes it difficult to prove
refinement correctness in an automatic way or, at least, to find proof patterns.

3 Stuttering Refinement

We here define stuttering refinement between two ASMs, which is a restricted
form of the ASM model refinement as in [12] (a comparison is given in Sect. 7).
This notion of refinement allows us to provide an automatic approach to refine-
ment proof, based on a logic representation of ASM signatures and transition
rules. We consider deterministic and nondeterministic single-agent ASMs.

As stated in Sect. 2, a state S of an ASM M is a set of locations with value.
We here denote by val(l, S) the value of a location l at state S.

A model refinement first requires the definition of corresponding locations of
interest, i.e., pairs of (possibly sets of) locations one wants to relate in corre-
sponding abstract and refined states.

Definition 1 (Corresponding Locations of Interest). Given two ASMs A
and R, we denote by corrLoc the correspondence over the set of locations of
interest of the refined machine R and their corresponding locations of the abstract
machine A, i.e., corrLoc(lR, lA) is true iff lR is a location of interest in R and
lA is its unique corresponding location in A.

5

A S0
// S1

// S2
// S3

R S̃0

≡
KS

// S̃1

≡
KS

// S̃2

≡
dd

// S̃3

≡
jj

// S̃4

≡
KS

// S̃5

≡
KS

︸︷︷︸
ρ0

︸ ︷︷ ︸
ρ1

︸︷︷︸
ρ2

︸︷︷︸
ρ3

Fig. 1. Stuttering refinement – Relation between a refined run and an abstract run

On the base on the corresponding locations of interest, we define conformant
states between the abstract and refined machines, namely states having equiv-
alent values for the corresponding locations of interest. Obviously, a notion of
equivalence ≡ of the data in the locations of interest is assumed available.

Definition 2 (Conformance). Let S be a state of the abstract machine A (also

called abstract state), S̃ a state of the refined machine R (also called refined
state). The two states are conformant iff corresponding locations of interest have
equivalent values, i.e.,

conf (S̃, S) iff ∀lR∀lAcorrLoc(lR, lA)→ val(lR, S̃) ≡ val(lA, S)

Typically, corrLoc is a one-to-one correspondence between the locations of
interest of A and R and the designer uses the same function symbols to denote
these corresponding locations. We here assume – as in [16] – linked locations
to have the same names and equality as equivalence relation. More complicated
conformance relations can be easily reduced to this simplified form by intro-
ducing convenient derived functions representing predicates over the abstract or
refined states. Suppose to have a function fuelStatus in the abstract machine
defined over the domain {NORMAL, RESERVE} and that this function is refined
by the function fuelLevel defined over the interval [1,30]. The two specifications
can be linked by introducing in the refined machine a derived function fuelStatus
that specifies the desired conformance relation (e.g., fuelStatus = if fuelLevel >
10 then NORMAL else RESERVE endif).

Once the notions of corresponding locations of interest and of state con-
formance have been determined, one can define that R is a correct stuttering
refinement of A as follows:

Definition 3 (Stuttering Refinement). An ASM R is a correct stuttering
refinement of an ASM A if and only if each R-run can be split in a sequence of
subruns ρ̃0, ρ̃1, . . . and there is an A-run S0, S1, . . . such that for each ρ̃i it holds
∀S̃ ∈ ρ̃i : conf (S̃, Si).

Note that infinite R-runs can be split in an infinite number of finite subruns,
or in a finite number of subruns where only the last one is infinite. Fig. 1 depicts
a stuttering refined run and a corresponding abstract run.

Example 2 (Refinement of the case study). We modeled the LGS by means of
four refinement steps. The model LGS GM in Code 1 is the ground ASM. In
the refined model LGS SE, we have added the modeling of the sensors that

6

asm LGS SE

signature:
...
dynamic monitored doorsOpen: Boolean
dynamic monitored doorsClosed: Boolean
dynamic monitored gearsExtended: Boolean
dynamic monitored gearsRetracted: Boolean

definitions:
rule r closeDoor =

switch doors
case CLOSING:
if doorsClosed then

par
generalEV := false
closeDoorsEV := false
doors := CLOSED

endpar
endif

...

rule r retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED:

par
generalEV := true
openDoorsEV := true
doors := OPENING

endpar
case OPENING:

if doorsOpen then
par
openDoorsEV := false
doors := OPEN

endpar
endif

...

invariant over doorsClosed, doorsOpen: not(doorsClosed and doorsOpen)
invariant over gearsExtended, gearsRetracted: not(gearsExtended and gearsRetracted)

Code 2. Landing Gear System – Refined model

A - LGS GM . . . // doors = OPENING

gears = EXTENDED

// doors = OPEN

gears = EXTENDED

// . . .

R - LGS SE . . . // doors = OPENING

gears = EXTENDED

doorsOpen = false

...

≡
KS

// doors = OPENING

gears = EXTENDED

doorsOpen = true

...

≡
hh

// doors = OPEN

gears = EXTENDED

doorsOpen = true

...

≡
KS

// . . .

Fig. 2. LGS case study – Relation between a refined run and an abstract run

detect when the doors and the gears change their status. Code 2 shows the
new elements introduced in the model. Four boolean monitored functions are
used to indicate whether the gears are extended (gearsExtended) or retracted
(gearsRetracted), and whether the doors are closed (doorsClosed) or open
(doorsOpen). In this model, we have refined some rules by adding the reading
of sensors. Some update rules have been guarded by conditional rules checking
the value of the monitored functions; for example, we can see in Code 2 that
if the doors are CLOSING, they become CLOSED only if the sensor doorsClosed

is turned on (i.e., the guard of conditional rule is true). Note that LGS SE is
a stuttering refinement of LGS GM because when the sensors do not detect
any change, the state is still conformant to the previous abstract state (i.e., the
doors and the gears have not changed their statuses). See Fig. 2 as an example
of corresponding runs.

4 Proving refinement

We here aim at automating the proof of stuttering refinement between two ASMs
by reducing it to a satisfability checking problem (to be solved by, e.g., an SMT
solver). Therefore, we need to describe the concepts of ASM state and ASM
transition by means of suitable predicates, and Def. 3 as a first order formula. The
validity of such a formula should guarantee the stuttering machine refinement.

We introduce the following predicates capturing the concepts of initial state,
next state, and conformant states.

7

– init(S) iff S is an initial state;
– step(S, S′) iff the state S′ can be obtained by applying the main rule at S;

– conf (S̃, S) iff states S and S̃ are conformant (see Def. 2).
In the following, let us indicate by S a state of the abstract machine A and

by S′ the next state of S. Similarly, S̃ and S̃′ are two subsequent states of the
refined machine R.

Theorem 1. If the following properties hold

∀S̃ : (init(S̃)→ ∃S : (init(S) ∧ conf (S̃, S))) (1)

∀S̃∀S̃′∀S :

 step(S̃, S̃′)
∧

conf (S̃, S)

→
∃S′ : (step(S, S′) ∧ conf (S̃′, S′))

∨
conf (S̃′, S)

 (2)

then R is a stuttering refinement of A.

Proof. Def. 3 follows from properties (1) and (2) by induction on the length of
a run of the refined machine R.

Let ρ̃ = S̃0, S̃1, . . . , be a run of R. ρ̃ can be splitted in subruns ρ̃0, ρ̃1, . . .
such that all the states in each ρ̃i have the same values of the linking variables,
whereas states of two consecutive subruns ρ̃i and ρ̃i+1 have different values for
the linking variables.

We build a run ρ = S0, S1, . . . of A such that ρ and ρ̃ satisfy Def. 3.
By property (1), it holds conf (S̃0, S0) by taking S̃0 as S̃ and S0 as one existing

state S satisfying the implication in (1).

Let us suppose that Def. 3 holds till state S̃j of ρ̃k and that S̃j conforms to the

abstract state Sk of ρ. We now consider the next state S̃j+1 (i.e., step(S̃j , S̃j+1)).

By inductive hypothesis, it holds conf (S̃j , Sk). By property (2), considering S̃ =

S̃j , S̃
′ = S̃j+1, S = Sk, one of the two conditions must hold: ∃S′ : (step(Sk, S

′)∧
conf (S̃j+1, S

′)) or conf (S̃j+1, Sk). In the first case, we take Sk+1 = S′ and we
start considering a new subrun ρ̃k+1 of refined states conformant to Sk+1, while

in the second case S̃j+1 is still part of the subrun ρ̃k whose states conform to
Sk. In both cases the A-run satisfies the property of Def. 3.

In the sequel, we refer to property (1) as initial refinement, and to prop-
erty (2) as step refinement.

Example 3 (Proof of LGS stuttering refinement). The model LGS SE is a cor-
rect stuttering refinement of LGS GM. The two models have the same initial
state and then property (1) of Thm. 1 is guaranteed. Moreover, model LGS SE
step refines model LGS GM (i.e., property (2) of Thm. 1 is guaranteed). Indeed,
in each state, the refined machine can move to a state in which the doors status
or the gears status are either changed (if the sensors detect the changing) or

unchanged (if the sensors do not detect any change). Therefore, if a state S̃ of
the refined model LGS SE is conformant with a state S of the abstract model
LGS GM, a step in the refined model can lead to a state S̃′ that is either con-
formant with S (if the sensors do not detect any change) or with the next state
S′ of the abstract model (if the sensors detect the changing).

8

asm M0
signature:

controlled x: Integer
definitions:

main rule r Main = x := x + 1

default init s0:
function x = 0

’

Code 3. Abstract model

asm M1
signature:

controlled x: Integer
definitions:

main rule r Main =
if x > 0 then x := x + 1
else x := 1
endif

default init s0: function x = 0

Code 4. Refined model of Code 3

4.1 Using invariants in refinement proof

The step refinement property in Thm. 1 is a sufficient but not a necessary con-
dition for a correct (stuttering) refinement. A machine R could be a correct
refinement of a machine A but it may not guarantee step refinement. Indeed,
step refinement is also checked over states that are not reachable in R: if step
refinement is violated only in unreachable states, then we falsely judge the re-
finement not correct.

Example 4. Let us consider the ASM model M0 in Code 3 that simply incre-
ments function x, and the model M1 in Code 4 that increments x if it is greater
than 0, otherwise updates it to 1. Model M1 does not step refine model M0
(property (2) of Thm. 1), because, when x is negative, x is incremented in M0
and updated to 1 in M2 : therefore, by Thm. 1 we could not state that model M1
is a correct stuttering refinement of model M0 . However, M1 is a correct stut-
tering refinement of M0 ; indeed, states in which x is negative are not reachable
in both models.

Thm. 1 can be modified by strengthening the inductive hypothesis by intro-
ducing a state invariant I over the refined machine as follows:

Theorem 2. If there exists an invariant I such that the following properties
hold

∀S̃ : (init(S̃)→ (I (S̃) ∧ ∃S : (init(S) ∧ conf (S̃, S)))) (3)

∀S̃∀S̃′∀S :

 I (S̃)∧

step(S̃, S̃′)∧
conf (S̃, S)

→ I (S̃′)∧

∃S′ :(step(S, S′) ∧ conf (S̃′, S′))
∨

conf (S̃′, S)

(4)

then R is a stuttering refinement of A.

Proof. The invariant used in the formulas simply restricts the set of states of
the refined machine over which we need to verify refinement correctness. For this
reason, the proof of Thm. 1 is applicable also in this case.

Example 5. The refinement between model M0 in Code 3 and M1 in Code 4 is
correctly proved correct using the invariant I = x ≥ 0 in Formulas 3 and 4.

Although finding a suitable invariant I may be difficult, thanks to Thm. 2
designers can prove arbitrary complex stuttering refinements.

9

4.2 Towards an SMT encoding

To be useful for our final goal, namely reducing the proof of initial and step
refinement to an SMT problem, in Formulas (1) and (2) we need to symbolically
represent the states and the transition relation.

Functions of any arity are supported by our technique (and by the tool imple-
mentation), provided that all the function domains are finite; note that infinite
domains may introduce quantifications that are not evaluated (i.e., unknown re-
sult) by the SMT solver. In the following, in order not to over complicate the
notation of our formulas, we only consider 0-ary functions.

Let f̄A = [fa1, . . . , fan] be the ordered list of the functions of the abstract ma-
chine A and f̄ ′A = [fa ′1, . . . , fa

′
n] a renamed copy of the functions in the next state.

Similarly, we define ordered lists f̄R = [fr1, . . . , frm] and f̄ ′R = [fr ′1, . . . , fr
′
m] for

the refined machine R. We order the functions of all the previous lists such that
the first L functions are the locations of interest. When necessary, we split a
list of functions f̄ between the functions corresponding to locations of interest
(those for which we are interested in checking the conformance relation) and
those which are not related: f̄ = f̄ c + f̄nc .

We can express the predicates init , step, conf , and I used in Thm. 2, in
terms of the function lists of a machine.
– Given a machineM with functions f̄M , we introduce the predicates initM (f̄M)

and stepM (f̄M , f̄
′
M) formalizing the initial predicate and the step predicate

of the machine.
– We can define the conformance relation between states of two related ma-

chines by using a relation between the lists of machine functions. Given two
ordered lists p̄ = [p1, . . . , pL, . . .] and q̄ = [q1, . . . , qL, . . .], both long at least
L, we introduce

conf (p̄, q̄) ≡
L∧

i=1

pi = qi ≡ p̄c = q̄c (5)

to represent conformance: if conf (p̄, q̄) is true, all the locations of interest
have equal values in p̄ and q̄.

– The invariant I , if necessary, is provided by the user as a predicate over the
functions f̄R.

In order to prove initial refinement (property (3) of Thm. 2), we check whether
the following formula is valid:

∀f̄R : (initR(f̄R)→ (I (f̄R) ∧ ∃f̄A : (initA(f̄A) ∧ conf (f̄R, f̄A)))) (6)

In order to prove step refinement (property (4) of Thm. 2), we check whether
the following formula is valid:

∀f̄R ∀f̄ ′R ∀f̄A : I (f̄R)∧
stepR(f̄R, f̄

′
R)∧

conf (f̄R, f̄A)

→ I (f̄ ′R) ∧

∃f̄ ′A : (stepA(f̄A, f̄
′
A) ∧ conf (f̄ ′R, f̄

′
A))

∨
conf (f̄ ′R, f̄A)

 (7)

10

We can transform Formulas 6 and 7 in order to eliminate universal quantifiers
(by Herbrandization) and reduce the number of variables (by exploiting the
equality of variable values induced by the conformance), as follows:

initR(f̄R)→ (I (f̄R) ∧ ∃f̄ncA : initA(f̄ cR + f̄ncA)) (8)

(
I (f̄R)∧

stepR(f̄R, f̄
′
R)

)
→ I (f̄ ′R) ∧

∃f̄nc′A : stepA(f̄ cR + f̄ncA , f̄ c′R + f̄nc′A)
∨

f̄ c′R = f̄ cR

 (9)

Formulas 8 and 9 no longer contain the variable lists f̄ cA and f̄ c′A ; so we can avoid
the duplication for A of all the locations of interest in the current and next state.

5 Proving refinement by SMT

In this section, we show how we can prove stuttering refinement in an automatic
way by reducing it to a Satisfiability Modulo Theories (SMT) problem.

An SMT problem is a decision problem for logical formulas with respect to
combinations of background theories expressed in classical first-order logic with
equality. An SMT instance is a generalization of a boolean SAT instance in which
various sets of variables are replaced by predicates from a variety of underlying
theories. SMT solvers can be used, as in our case, as automatic theorem provers
by checking unsatisfiability.

5.1 SMT-based refinement proof

We need to represent the initial states and a generic step of the ASM machine
in an SMT solver and prove initial and step refinement (i.e., Thm. 2 encoded as
Formulas 8 and 9). In order to do this, we here extend the mapping from ASM
to SMT already presented in [5] for different purposes.

Given a machine M = 〈sig , funcDefs, funcInit , r main〉, being sig the sig-
nature containing the functions f̄ , funcInit = {fi1, . . . , fip} the sequence of
function initializations and funcDefs = {fd1, . . . , fdq} the sequence of function
definitions, we define the predicates initM and stepM , formalizing the initial
state and the generic step of the machine (see Sect. 4), as follows:

initM = (and Td(fi1) . . . Td(fip)) stepM = (and Tr(r main) Td(fd1) . . . Td(fdq))

where Td and Tr are functions that map, respectively, ASM function definitions
and transition rules to SMT formulas. Note that Tr(r main) fully captures the
semantics of ASM transition rules: it specifies that a location must be updated
under some given conditions, and must be kept unchanged otherwise. ASMs
semantics prescribes that non-updated locations are kept unchanged; in SMT
this must be specified explicitly. We refer to [5] for details on the mapping.

We now show how we verify the validity of Formulas 8 and 9 using two
SMT instances. Let {Da1, . . . ,Dan} be the codomains of the functions f̄A of
the abstract machine A and {Dr1, . . . ,Drm} those of the functions f̄R of the

11

refined machine R. We identify with inv the mapping of the proof invariant, i.e.,
inv = Tt(I), being Tt the map function from ASM terms to SMT.

For Formula 8, we build the following SMT instance:

(declare−fun fr1 () Dr1) . . . (declare−fun frm () Drm)
(define−fun initR () Bool initR(f̄R))
(define−fun invR () Bool inv(f̄R))
(define−fun existsInitA () Bool

(exists ((faL+1 DaL+1) . . . (fan Dan)) initA(f̄cR + f̄nc
A)))

(assert (not (=> initR (and invR existsInitA))))

where the antecedent of the implication is represented through the SMT function
initR, and the consequent by the conjunction of functions invR and existsInitA.

For Formula 9, we build the following instance5:

(declare−fun fr1 () Dr1) . . . (declare−fun frm () Drm)
(declare−fun fr′1 () Dr1) . . . (declare−fun fr′m () Drm)
(declare−fun faL+1 () DaL+1) . . . (declare−fun fan () Dan)
(define−fun stepR () Bool stepR(f̄R, f̄ ′R))
(define−fun invR () Bool inv(f̄R))
(define−fun inv′R () Bool inv(f̄ ′R))
(define−fun existsStepA () Bool

(exists ((fa′L+1 DaL+1) . . . (fa′n Dan)) stepA(f̄cR + f̄nc
A , f̄c′R + f̄nc′

A)))
(define−fun stutteringState () Bool (and (= fr′1 fr1) . . . (= fr′L frL)))
(assert (not (=> (and invR stepR) (and inv′R (or existsStepA stutteringState)))))

where the conjunction of the antecedent of the implication is represented by
functions invR and stepR. The consequent is represented by functions inv′R,
existsStepA and stutteringState; the latter one models the equality of vectors in
the stuttering state (i.e., f̄ c′R = f̄ cR in Formula 9) as a conjunction of equalities.

As usual in SMT solvers, in order to prove validity of a formula, we check that
its negation is unsatisfiable. Therefore, if both previous two instances are proved
to be unsatisfiable, the refinement is proved correct. However, since the step
refinement condition is sufficient but not necessary, when Formula 9 is proved
not valid (i.e., the corresponding SMT instance is satisfiable), we cannot state
that the refinement is not correct.

Note that, when the refinement is not proved correct, the SMT solver pro-
vides us a model (over functions f̄R, f̄ ′R, and f̄nca) that acts as a witness of the
refinement incorrectness: by examining the witness, we can understand whether
it is really the case that the refinement is not correct, or it is a false negative
result and so we have to strengthen the invariant. For example, proving refine-
ment between Codes 3 and 4 (without any invariant) returns as witness (= x0

-1) (= x1 1). The witness tells us that step refinement does not hold from the
state in which x is -1; however, since x cannot be negative, the result is a false
negative and we can strengthen the proof by adding the invariant x ≥ 0.

5 Note that in concrete instances we also do not declare constants for monitored and
derived functions belonging to f̄nc′

R and f̄nc′
A , as they do not appear in the asserted

formulas.

12

(define−fun doors0 () DoorStatus) (define−fun gears0 () GearStatus)
(define−fun doorsOpen0 () Bool) (define−fun doorsClosed0 () Bool) ...
(define−fun generalElectroValve0 () Bool) ...
(define−fun initLGS SE () Bool (and (= doors0 CLOSED) (= gears0 EXTENDED)

(not generalElectroValve0) (not extendGearsElectroValve0) ...))
(define−fun existsInitLGS GM () Bool (and (= doors0 CLOSED) (= gears0 EXTENDED)))
(assert (not (=> initLGS SE existsInitLGS GM)))
(check−sat)

Code 5. LGS case study – Initial refinement proof (from Code 1 to Code 2)

(define−fun doors0 () DoorStatus) (define−fun gears0 () GearStatus)
(define−fun doorsOpen0 () Bool) (define−fun doorsClosed0 () Bool) ...
(define−fun generalElectroValve0 () Bool) ...
(define−fun doors1 () DoorStatus) (define−fun gears1 () GearStatus)
(define−fun doorsOpen1 () Bool) (define−fun doorsClosed1 () Bool) ...
(define−fun generalElectroValve1 () Bool) ...
(define stepLGS SE () Bool (and (if (= handle0 UP) ...)))
(define existsStepLGS GM () Bool (exists (handle HandleStatus)

(and (if (= handle UP) (if (/= gears0 RETRACTED) ...)))
(define−fun stutteringState () Bool (and (= gears0 gears1) (= doors0 doors1)))
(assert (not (=> stepLGS SE (or existsStepLGS GM stutteringState))))
(check−sat)

Code 6. LGS case study – Step refinement proof (from Code 1 to Code 2)

Example 6. Codes 5 and 6 show the SMT instances built for proving initial and
step refinement between the ASMs shown in Codes 1 and 2 for the LGS. In this
case, there is no need to specify any invariant.

6 Evaluation

Based on the translation presented in previous sections, we have developed a
tool6 that, given two ASMs, builds the SMT instances and calls the SMT solver
Yices in order to prove refinement correctness. The refinement prover is inte-
grated in the ASMETA toolset.

The effectiveness of our approach has been tested on different case studies.
Some are taken from the literature [13] and are examples of ASM model re-
finement whose correctness was manually proved. Others are specification case
studies developed by ourselves in different contexts: Cloud-based applications [8],
a Landing Gear System [6], and the validation of medical software [3,4]. In al-
most all the cases, the refinement has been proved in less than 10 secs on a
Linux machine, Intel(R) Core(TM) i7, 4 GB RAM. However, for one refinement
step in [4], we were not able to complete the proof in less than 5 min, the fixed
timeout after which we stop the proof. The limiting factor for scalability is the
number of monitored functions that are existentially quantified in Formula 9;
the refined model whose refinement correctness we were not able to prove has

6 The tool and experimental results can be found at http://asmeta.sourceforge.

net/download/asmrefprover.html

13

http://asmeta.sourceforge.net/download/asmrefprover.html
http://asmeta.sourceforge.net/download/asmrefprover.html

32 boolean monitored functions. As future work, we plan to assess the approach
scalability and apply techniques to reduce the time and memory consumption
of the tool (e.g., using cone of influence reduction techniques).

7 Related work

Formal methods whose computational model is a transition system, e.g., B [2],
Z [15], I/O automata [19,18], support the concept of model refinement. The
ASM refinement can be compared to that of all the other formalisms and this
has already been extensively done in [12]. For this reason, we here relate our
work only with Börger’s original notion of ASM refinement and its definition of
correct model refinement.

Börger’s refinement definition [12] is based on checking correspondence be-
tween run segments of abstract and refined machines, in a way that the starting
and ending states (those of interest) of such corresponding subruns are confor-
mant. The definition allows (m,n)-refinements, namely a run segment of length
n in the refined machine simulates as a run segment of length m in the abstract
machine. Moreover, it permits that some abstract/refined states don’t have cor-
responding refined/abstract states. We keep the concepts of locations of interests
and state conformance given in terms of data equivalence relation between loca-
tions of interest. Stuttering refinement is a particular case of Börger’s definition,
i.e., (1, n)-refinement with the constraint of total conformance relation on the
states of the refined machine. In our opinion, the restriction of Börger’s schema
of refinement we propose here is not particularly disadvantageous. Firstly, (1, n)-
refinement is a kind of refinement that is already considered in literature (with
the name of action refinement [10]). Secondly, this restricted schema applies to
all the ASM specifications we have considered to evaluate the effectiveness of our
approach (see Sect. 6). Furthermore, when modeling, it is often useful to guar-
antee that invariants holding in the abstract level, still hold in the refined one
(this was the case for the Landing Gear System specification [6]). The classical
refinement [12] preserves the invariants only weakly, since intermediate refined
states are not required to conform to some abstract state, while stuttering re-
finement preserves all the invariants (as also the approach in [23]): if a property
is true in every abstract state, it will be true also in every refined state (modulo
the conf relation). The need to guarantee preservation of those state invariants
inspired our definition.

Another framework supporting ASM refinement is that proposed by Schell-
horn [22], which is based on the use of the KIV theorem prover. With respect
to that framework, ours has several differences. Our definition of conformity is
much simpler than that used by the KIV tool, because we simply assume that a
refined state conforms to its abstract one if they have equal values of functions
having the same name (which are the functions of interest). If the user wants
to define an ad hoc conformance relation, (s)he must add a derived function
representing a predicate over the abstract or refined states (see Sect. 3). In or-
der to prove refinement, a relation between the runs must be proved in [22],

14

while we require to prove only a relation between the initial states and between
two consecutive states. Using runs permits completeness but requires the use
of temporal logics, while our proof is much simpler. Our approach is analogous
to induction-based bounded model checking, in which the next relation suffices
in proving the validity of temporal invariants. KIV supports interactive verifi-
cation, while we aim to a completely automatic technique. Also for this reason,
we have chosen an SMT solver. In case the proof fails, we are able to show a
counterexample in which the refinement is not preserved. As shown before, there
are some cases in which our technique produces spurious counterexamples and
it is unable to prove the refinement. These spurious counterexamples can be
eliminated by invariant strengthening.

8 Conclusions

We have presented an approach for proving the refinement correctness of Ab-
stract State Machines. The approach considers a particular type of refinement
(i.e., stuttering refinement) that frequently occurs in concrete case studies. The
proposed approach exploits the symbolic representation of an ASM model in
an SMT solver, and reduces the proof of refinement correctness to a satisfiabil-
ity problem that is automatically solved by the SMT solver. The technique has
been implemented in a tool integrated in the ASMETA framework. Although
the limits in terms of completeness (some refinements could be very hard to
prove) and expressive power (some refinements may be not stuttering), the tool
has the advantages of usability, integration in an existing framework, and au-
tomation in proving refinement correctness. This relieves the modeler of the
necessity to drive a mathematical proof manually or in an interactive way (as
requested in [22,23]), which requires certain verification skills. Furthermore, in
case a model is not proved a correct stuttering refinement of another model, our
framework provides counterexamples useful to reason about incorrect modeling
of the refined machine.

In this work, we have considered deterministic and nondeterministic single-
agent ASMs. As future work, we plan to prove refinement of multi-agent ASMs.
Moreover, we want to study techniques for automatic invariant generation.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput.
Sci., 82(2):253–284, May 1991.

2. J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundam. Inform., 77(1):1–28, 2007.

3. P. Arcaini, S. Bonfanti, A. Gargantini, A. Mashkoor, and E. Riccobene. Formal
validation and verification of a medical software critical component. In Proceedings
of MEMOCODE 2015, pages 80–89. IEEE, Sept 2015.

4. P. Arcaini, S. Bonfanti, A. Gargantini, and E. Riccobene. How to assure correctness
and safety of medical software: the hemodialysis machine case study. In Abstract

15

State Machines, Alloy, B, TLA, VDM, and Z. 5th International Conference, ABZ
2016, Linz, Austria, May 23-27, 2016, Proceedings, volume 9675 of Lecture Notes
in Computer Science. Springer International Publishing, 2016.

5. P. Arcaini, A. Gargantini, and E. Riccobene. Using SMT for dealing with nonde-
terminism in ASM-based runtime verification. ECEASST, 70, 2014.

6. P. Arcaini, A. Gargantini, and E. Riccobene. Rigorous development process of a
safety-critical system: from ASM models to Java code. International Journal on
Software Tools for Technology Transfer, pages 1–23, 2015.

7. P. Arcaini, A. Gargantini, E. Riccobene, and P. Scandurra. A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience,
41:155–166, 2011.

8. P. Arcaini, R.-M. Holom, and E. Riccobene. ASM-based formal design of an adap-
tivity component for a cloud system. Formal Aspects of Computing, pages 1–29,
2016.

9. C. Beierle, E. Börger, I. Durdanović, U. Glässer, and E. Riccobene. Refining ab-
stract machine specifications of the steam boiler control to well documented exe-
cutable code. In Formal Methods for Industrial Applications, pages 52–78. Springer,
1996.

10. E. A. Boiten. Introducing extra operations in refinement. Formal Aspects of
Computing, 26(2):305–317, 2012.

11. F. Boniol and V. Wiels. The Landing Gear System Case Study. In ABZ 2014:
The Landing Gear Case Study, volume 433 of Communications in Computer and
Information Science, pages 1–18. Springer International Publishing, 2014.

12. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15(2):237–
257, 2003.

13. E. Börger. The Abstract State Machines method for high-level system design and
analysis. In Formal Methods: State of the Art and New Directions, pages 79–116.
Springer London, 2010.

14. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

15. J. Derrick and E. Boiten. Refinement in Z and object-Z: Foundations and Advanced
Applications. Springer-Verlag, London, UK, UK, 2001.

16. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Modular refinement for subma-
chines of ASMs. In ABZ 2014, volume 8477 of Lecture Notes in Computer Science,
pages 188–203. Springer Berlin Heidelberg, 2014.

17. R. Farahbod and U. Glässer. The CoreASM modeling framework. Software: Prac-
tice and Experience, 41(2):167–178, 2011.

18. N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2:219–246, 1989.

19. N. A. Lynch and F. W. Vaandrager. Forward and backward simulations: I. untimed
systems. Information and Computation, 121(2):214–233, 1995.

20. J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Algebraic simulations. The Journal
of Logic and Algebraic Programming, 79(2):103–143, 2010.

21. E. Riccobene and J. Schmid. Capturing requirements by abstract state machines:
The light control case study. J. UCS, 6(7):597–620, 2000.

22. G. Schellhorn. Verification of ASM refinements using generalized forward simula-
tion. J. UCS, 7(11):952–979, 2001.

23. G. Schellhorn. ASM refinement preserving invariants. J. UCS, 14(12):1929–1948,
2008.

24. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine, volume 24.
Springer-Verlag, 2001.

16

	SMT-based automatic proof ofASM model refinement

