
QuTiP-MRL: A Library
for Multiple-Valued Reversible Logic

Simulations

Fabio Pievani, Asma Taheri Monfared , Andrea Bombarda(B) ,
and Angelo Gargantini

University of Bergamo, Bergamo, Italy
f.pievani1@studenti.unibg.it,

{asma.taherimonfared,andrea.bombarda,angelo.gargantini}@unibg.it

Abstract. Reversible logic is a key technology for low-power and quan-
tum computing, as it allows computation without information loss
and minimizes energy dissipation. Meanwhile, multiple-valued logicof-
fers advantages such as reduced circuit complexity and improved data
representation compared to binary systems. Combining the benefits of
multiple-valued logic and reversibility opens new possibilities for effi-
cient and scalable computing architectures. However, there has been
a lack of tool support for designing and simulating multiple-valued
reversible circuits. In this paper, we present QuTiP-MRL, a Python-
based library for designing and analyzing multiple-valued reversible logic
circuits, with current support for ternary and quaternary logic. Built on
top of the QuTiP (Quantum Toolbox in Python) framework, QuTiP-
MRL addresses this gap by providing a set of well-defined multiple-valued
reversible gates and tools to construct and simulate multiple-valued cir-
cuits. This library offers an environment for exploring the behavior and
properties of multiple-valued reversible systems, supporting research and
development in emerging computational paradigms.

Keywords: Multiple-Valued Logic · Reversible Circuits · Circuit
Simulation · Circuit Visualization

1 Introduction

Reversible computation has become a key paradigm in modern computing, par-
ticularly in the domains of low-power design and quantum information process-
ing. Unlike conventional logic circuits that lose information during computation,
reversible logic ensures bijective transformations, allowing outputs to be traced
back to their original inputs [1]. This information-preserving property is essential
for quantum computing, where all operations must be unitary and reversible by
nature [17]. Additionally, reversible logic minimizes energy dissipation, in accor-
dance with Landauer’s principle, which states that the erasure of a single bit of
information results in an energy cost of at least kT ln 2 joules [16].
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In parallel, there has been growing interest in Multiple-Valued Logic (MVL),
which extends binary logic to systems with more than two states. MVL, espe-
cially ternary and quaternary logic, offers several theoretical and practical
advantages, such as reduced circuit complexity, lower interconnect overhead,
and increased data density [3,10,14]. In the context of quantum computing,
these benefits are particularly compelling, as physical implementations of qudits
(quantum digits with d > 2 levels) are becoming increasingly feasible on plat-
forms such as trapped ions, photonic systems, and superconducting circuits.
Ternary and quaternary quantum logic are also known to exhibit better noise
resilience and fault tolerance compared to binary approaches [8].

Despite these advantages, the practical development, simulation, and analysis
of multiple-valued reversible logic circuits remain a major challenge. Most exist-
ing quantum circuit design and simulation tools, including widely-used frame-
works like Qiskit [11], Cirq [18] and QuTiP [12] focus exclusively on binary
systems and qubit-based gates. Researchers interested in non-binary reversible
logic have to resort to low-level mathematical modeling or custom simulations,
which are error-prone and time-consuming. There is currently no well-supported
library that enables users to design, simulate, and visualize ternary or quaternary
reversible logic circuits in an accessible and modular way [20].

To address this gap, we introduce QuTiP-MRL, a Python-based simulation
library for Multiple-Valued Reversible Logic (MRL), with current support for
both ternary and quaternary logic systems. Built on top of the QuTiP (Quan-
tum Toolbox in Python) framework, QuTiP-MRL enables users to define multi-
valued reversible gates, build custom circuits, and simulate their behavior using
quantum mechanical state vectors and operators. The library includes a growing
set of built-in gates for ternary logic, along with utilities for constructing larger
systems, visualizing circuit behavior, and analyzing quantum cost metrics.

QuTiP-MRL is designed to support both research and educational appli-
cations. It provides a high-level, modular API for simulating multiple-valued
reversible logic, and it is open-source to encourage collaboration and extensibil-
ity. By making the simulation of multiple-valued reversible circuits more acces-
sible, this library aims to accelerate the exploration of emerging computational
paradigms that go beyond the limitations of binary logic.

This paper is structured as follows: Sect. 2 describes the library implemen-
tation, including the overall structure, supported gate sets, and the functionali-
ties offered by QuTiP-MRL. Section 3 provides a detailed demonstration of the
library. Section 4 discusses related works and comparison. Finally, the conclusion
of this work is given in Sect. 5.

2 Library Implementation

In this section, we describe our QuTiP-MRL library and the operations it sup-
ports. It is based on QuTip [15] and it is available at https://github.com/foselab/
QuTiP-MRL. To minimize the effort required for users familiar with Qiskit [11],
we designed QuTiP-MRL with an interface that closely resembles that of Qiskit
and with similar visualization modes.

https://github.com/foselab/QuTiP-MRL
https://github.com/foselab/QuTiP-MRL
https://github.com/foselab/QuTiP-MRL
https://github.com/foselab/QuTiP-MRL
https://github.com/foselab/QuTiP-MRL
https://github.com/foselab/QuTiP-MRL
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The main class of this library is QuditCircuit, which provides all the core
functionalities for gate addition, circuit simulation, and visualization in a uni-
fied interface. The library is qutrit ready, therefore it includes the matrices used
by ternary reversible logic gates and their specific visualization, but it also works
with general qudits through user-specified matrices, making QuTiP-MRL com-
patible with any basis states qudits. In the following, we describe QuTiP-MRL
functionalities in terms of circuit construction (Sect. 2.1), simulation backends
(Sect. 2.2), and visualization (Sect. 2.3).

2.1 Internal Circuit Structure

The first step the user must perform when using QuTiP-MRL is the circuit
initialization through the QuditCircuit class. When instantiating a QuditCircuit
object, users must specify the number of qudits in the modeled circuit and,
possibly, the number of states. By default, QuTiP-MRL works with qutrits, thus
it assumes working with ternary logic. For example, the call q = QuditCircuit(4)
creates a ternary circuit with 4 qutrits, while q = QuditCircuit(3, 4) creates a
quaternary circuit with 3 qudits, each with 4 states.

When an instance q of a QuditCircuit is available, users can add quantum
gates. QuTiP-MRL supports ternary shift gates, ternary Muthukrishnan–Stroud
gates, and custom gates, in the case in which more than 3 states or different
gates are required.

Concerning shift gates, we provide functions for all ternary gates (id, plus1,
plus2, one two, zero one, zero two). All of them require as input parameter
the index of the target qutrit. For example, q.plus2(0) adds a +2 gate to the
qutrit 0. Concerning controlled gates, i.e., Muthukrishnan–Stroud gates, QuTiP-
MRL provides functions for all quantum multiple valued gates (i.e., c plus1,
c plus2, c one two, c zero one, c zero two). Similarly to shift gates, controlled
gates require a parameter indicating the target qudit and, in addition, they
require the index of the control qudit. For example, The command q.c plus2(3,0)
represents a controlled +2 gate, where the first argument (3) is the control qudit
and the second argument (0) is the target qudit.

Finally, when working with quaternary logic, more than 4 states, or not
available gates are needed, two additional methods are provided: custom gate
and c custom gate. These two functions allow for defining alternative shift or
controlled gates. Both functions follow the same structure as those for ternary
gates. Additionally, users must input a matrix in the form of numpy.array and
optionally the name of the gate for visualization purposes. For example, the com-
mand q.c custom gate(np.array([...]), 3,0,“CG1”) adds a new gate, corresponding
to the matrix specified as the first parameter to the qudit 0, controlled by the
qudit 3. The gate is called, for visualization purposes,“CG1”.

2.2 Simulation Backends

QuTiP-MRL allows users to simulate MVL circuits by using two backends,
namely the one based on full matrix simulation and the one einsum-based.
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Once a QuditCircuit instance q is available, the full matrix simulation can be
performed by using the q.simulate fullmatrix() command. QuTiP-MRL initializes
the system in the |0〉 state for each qudit, applies each gate to the system state,
and calculates and prints the density matrix for each individual qudit, as well
as the probability for each possible final measurement. During this operation,
the system state is evolved step by step by performing matrix multiplication, for
each gate, on the full quantum state. As a result, the data size grows rapidly,
and simulation becomes computationally expensive: The bigger the number of
states, the less qudits can be used in the circuit. For example, when using ternary
it is recommended to limit the circuit to a maximum of 8 qutrits. Note that,
when using this simulation mode, unlike other available libraries, QuTiP-MRL
supports superposition [5].

Similarly, for the einsum-based simulation [19], once a QuditCircuit instance
q is available, it can be performed by using the q.simulate einsum() command.
This method evolves the state of the circuit with tensor contractions using
NumPy’s einsum, which performs string manipulation, with index-wise oper-
ations. It allows the simulation of circuits with a relatively large number of
qudits, as it avoids explicit matrix multiplication, which depends on the number
of states of the qudit. For example, in ternary logic, 17 qutrits can be used with
this kind of simulation. The quantum state is represented as a multidimensional
tensor with shape [d1, d2, . . . , dm] where d is the number of states and m is the
number of qudits. The main limitation of this approach is that it only provides
the marginal probability distributions of each qudit, losing quantum information
in the process.

An example of the output obtained with each of the simulation backends will
be shown in Sect. 3.3.

2.3 Rendering and Visualization

Rendering and visualizing logic circuits is of paramount important, as it allows
for visually checking whether the circuit has been designed correctly and all
gates have been connected to the correct qudits.

QuTiP-MRL offers, for circuit rendering, the same interface as Qiskit. Once a
QuditCircuit instance q is available, multiple-valued circuits can be visualized by
calling the q.draw() method. It offers two different visualization methods: ASCII
and Matplotlib-based. In ASCII mode the circuit is displayed as plain text,
making it suitable for quick inspection in command-line interfaces or automatic
post-processing. In Matplotlib mode [2], the circuit is rendered as a structured
and color-coded diagram, allowing for a clearer visualization of gate placement,
control lines, and circuit depth. The former is triggered when no parameter is
passed to the draw method, while the latter is triggered by passing ’mpl’. Note
that the Matplotlib library is required to use this functionality.

Regardless of the chosen visualization technique, users may want to visually
separate input preparation gates from the rest of the circuit. For this reason, the
QuTiP-MRL library provides the q.barrier() method to draw input barriers.

An example of mpl visualization is reported and discussed in Sect. 3.2.
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3 Demonstration

To showcase the capabilities of QuTiP-MRL, we present the construction and
simulation of a reversible ternary full adder circuit [8]. This example highlights
key features of the library, including gate-based circuit design, visualization
modes, and simulation backends. We emphasize that, while this example focuses
on a ternary logic circuit, QuTiP-MRL is designed to support reversible cir-
cuits in both ternary and quaternary logic. Further examples can be found in
our GitHub repository at https://github.com/foselab/QuTiP-MRL/tree/main/
examples.

3.1 Circuit Design

We report the Python code designing the circuit in Listing 1.1. Initially, we
instantiate a circuit with four qutrits. Since we do not specify the number of
possible dimension values, qutrits are used by default. The first two qutrits (q0

and q1) represent the ternary inputs; After circuit simulation, q0 will contain the
final sum, while q2 and q3 will be used to store the carry-in and the carry-out,
respectively.

To initialize the inputs, we apply shift gates. The command plus2(0) applies
a cyclic increment by two modulo 3 to the state of q0. This operation shifts the
current state by two. Similarly, plus2(1) applies the same shift to q1. These are
1-qutrit shift (uncontrolled) gates that modify the qutrit’s value.

After setting the initial inputs, we use the barrier() method to insert a ver-
tical separator in the circuit. This barrier acts as a visual and logical boundary
between the input initialization and the main computation. It does not affect
the circuit’s functionality but improves readability in both ASCII and graphical
visualizations.

Muthukrishnan and Stroud gates (Controlled Shift gates) are used for con-
ditional logic. For instance, c plus2(1, 0) applies a +2 shift to q0 only if q1 is
in the |2〉 state. In this command, the first argument (1) refers to the control
qutrit, and the second (0) is the target qutrit. Another example is c one two(0,
1), which swaps the |1〉 and |2〉 states of q1, but only if q0 is in state |2〉. These
controlled operations are crucial for expressing reversible conditional logic.

The commands reported in Listing 1.1 implement the full adder logic using
only reversible ternary gates, ensuring no information loss during computation.

3.2 Visualization

The code we use to visualize the circuit, in the two available modes, is reported in
Listing 1.2. Figure 1 reports the Matplotlib-based visualization of the full adder.

https://github.com/foselab/QuTiP-MRL/tree/main/examples
https://github.com/foselab/QuTiP-MRL/tree/main/examples
https://github.com/foselab/QuTiP-MRL/tree/main/examples
https://github.com/foselab/QuTiP-MRL/tree/main/examples
https://github.com/foselab/QuTiP-MRL/tree/main/examples
https://github.com/foselab/QuTiP-MRL/tree/main/examples
https://github.com/foselab/QuTiP-MRL/tree/main/examples
https://github.com/foselab/QuTiP-MRL/tree/main/examples
https://github.com/foselab/QuTiP-MRL/tree/main/examples
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full adder = QuditCircuit(4)
# Set initial input states
full adder.plus2(0) # Q0 = |2>
full adder.plus2(1) # Q1 = |2>
full adder.barrier()
# Full adder logic
full adder.c plus2(1, 0)
full adder.c one two(0, 1)
full adder.c plus1(1, 3)
full adder.c one two(0, 1)

full adder.plus1(1)
full adder.c plus1(1, 0)
full adder.plus2(1)
full adder.c plus2(2, 0)
full adder.c one two(0, 2)
full adder.c plus1(2, 3)
full adder.c one two(0, 2)
full adder.plus1(2)
full adder.c plus1(2, 0)
full adder.plus2(2)

Listing 1.1. Python code describing the implementation of a reversible ternary full
adder with QuTiP-MRL

Fig. 1. Matplotlib-based visualization of the ternary full adder circuit.

3.3 Simulation

As described in Sect. 2, QuTiP-MRL provides two simulation engines [13] opti-
mized for different circuit sizes. In our demonstration example, both modes are
suitable as we only have four qutrits. The two modes can be invoked as in
Listing 1.5. Both simulation modes start from the |0000〉 state and apply gates
sequentially. The full matrix method outputs individual density matrices, while
the einsum method provides final-state probabilities. More specifically, the full
matrix method provides detailed information about each qutrit state in the form
of 3 × 3 density matrices as well as the probabilities for each final possible mea-
sure, as shown in Listing 1.3, while the einsum-based simulation produces the
state probabilities in the computational basis, as reported in Listing 1.4.

4 Related Works and Comparison

The increasing complexity of quantum algorithms and architectures has driven
the development of a variety of libraries and frameworks for the design, simula-
tion, and visualization of quantum circuits [9]. These tools aim to facilitate effi-
cient prototyping, correctness verification, and performance optimization across
diverse quantum computing models.
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full adder.draw() # ASCII representation
full adder.draw(’mpl’) # Matplotlib visualization

Listing 1.2. Python code for the visualization of a circuit with QuTiP-MRL

Qudit 0 Density Matrix:
[[0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 1.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j]]
Qudit 1 Density Matrix: [...]
Final measurement probabilities:
|1201>: 100.00

Listing 1.3. Full matrix simulation

Qudit 0 state probabilities:
0
1
0

Qudit 1 state probabilities:
[...]

Listing 1.4. Einsum-based simulation

full adder.simulate fullmatrix() # Prints qutrit density matrices
full adder.simulate einsum() # Prints qutrit state probabilities

Listing 1.5. QuTiP-MRL simulation of the quantum ternary full adder

When it comes to quantum circuits, the most used library is Qiskit [11], devel-
oped by IBM. Similarly, Quantum++ is a high-performance C++11 library that
supports simulation of arbitrary quantum processes, including classical reversible
logic operations, making it suitable for mixed classical-quantum circuits [6].
Qibo [4] is a Python-based framework providing hardware-accelerated simulation
capabilities with usability across CPUs, GPUs, and multi-GPU systems. How-
ever, all these libraries do not have a proper means to deal with multiple-valued
circuits and with their simulation.

Lambert et al. [15] introduced QuTiP, an open-source software designed for
simulating the dynamics of open quantum systems. Although it offers a robust
simulation framework, its logic and syntax differ significantly from Qiskit, which
is more familiar to most users. To address this, we present QuTiP-MRL in this
work—a tool that enhances QuTiP by offering a more user-friendly interface and
circuit visualization similar to that of Qiskit. In [7], the authors extended the
Cirq [18] open-source framework from Google to support multiple-value logic.
Similar to QuTiP, its visualization capabilities lack in a proper graphical rep-
resentation, such as the one we support in QuTiP-MRL. Moreover, the tool
proposed in [7] supports circuits of up to 14 qutrits, while QuTiP-MRL allows
users to work with 17 qutrits. Additionally, the existing tool does not support
superposition, while our tool does.

To the best of our knowledge, despite the recent advancements in the quan-
tum circuits field, few frameworks directly support multi-valued quantum cir-
cuits. Moreover, none of these frameworks offers simulation capabilities for cir-
cuits of the same size as those supported by QuTiP-MRL or provides visualiza-
tion similar to the well-known Qiskit’s style and the one allowing the simulation
of bigger circuits.
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5 Conclusion

This work addresses the current lack of tools for quantum multi-valued logic
circuits by introducing a comprehensive environment for their design, simula-
tion, and visualization—an essential step toward enabling more effective circuit
development and supporting critical activities such as validation and analysis.
In this paper, we have presented QuTiP-MRL, a Python library for the design,
simulation, and visualization of multi-valued reversible quantum circuits. It is,
to the best of our knowledge, the only available tool supporting the design, sim-
ulation, and visualization of multiple-valued quantum circuits by keeping the
same structure and logic of Qiskit. We have demonstrated how to use QuTiP-
MRL with a simple ternary full-adder circuit, starting from its design, to the
simulation and visualization. Future improvements could include further code
optimization allowing users to deal with even bigger and more complex circuits.
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