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Abstract
In this paper, we present an approach to conformance testing based on
abstract state machines (ASMs) that combines model refinement and test exe-
cution (RATE) and its application to three case studies. The RATE approach
consists in generating test sequences from ASMs and checking the confor-
mance between code and models in multiple iterations. The process follows
these steps: (1) model the system as an abstract state machine; (2) validate and
verify the model; (3) generate test sequences automatically from the ASM
model; (4) execute the tests over the implementation and compute the code
coverage; (5) if the coverage is below the desired threshold, then refine the
abstract state machine model to add the uncovered functionalities and return
to step 2. We have applied the proposed approach in three case studies: a traf-
fic light control system (TLCS), the IEEE 11073-20601 personal health device
(PHD) protocol, and the mechanical ventilator Milano (MVM). By applying
RATE, at each refinement level, we have increased code coverage and identi-
fied some faults or conformance errors for all the case studies. The fault detec-
tion capability of RATE has also been confirmed by mutation analysis, in
which we have highlighted that, many mutants can be killed even by the most
abstract models.
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1 | INTRODUCTION

The model-based testing (MBT) process consists in reusing also for testing purposes specifications developed for valida-
tion and verification. It is one of the main applications of formal methods, and it offers several advantages over classi-
cal testing procedures [1]. Test cases are derived from models and subsequently used to test the code. In the classical
MBT approach, the model is abstract, and yet it should contain enough details in order to test all the desired aspects of
the SUT (system under test). The designer should spend a good amount of time to validate the model before it can be
used for test generation and conformance testing [2]. In case a conformance fault is found, the real system should be
modified. If no error is found, the designer has the confidence that the SUT conforms to its specification. MBT does
not suffer from the weaknesses of code testing based on coverage criteria, like the inability to detect missing logic [3].
On the other hand, the classical MBT approach has several drawbacks we try to address in this paper:

(a) Before starting testing, a considerable effort should be spent in order to have a correct and complete model; so
testing can start only later in the SUT life cycle.

(b) Focusing only on the specification may leave some critical implementation parts uncovered; for instance, if the
specification misses some critical cases which instead are considered in the code, with MBT they will not be tested.
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(c) In case no fault is found, it may not be clear if the testing activity has been sufficient or not: if one still has some
resources to spend on testing, there is no guidance in which directions these resources should be spent.

(d) A modification of the model, sometimes necessary to add details, may jeopardize all the activities of V&V done so
far, since it could introduce new behaviours that violate some properties previously verified.

In this paper, we present the RATE (refinement and test execution) approach which is based on the use of abstract
state machines (ASMs) and combines conformance testing [4,5] with the refinement methodology [6] guided by code
coverage. Although RATE is based on the ASMs, it can be applied in conjunction with any formal method that sup-
ports refinement and test-case generation. Initially, the designer models the system at a high level with a first ASM. This
model must be validated and verified in a classical way (e.g., by simulation and property verification). Starting from the
first ASM model, test scenarios are automatically generated, then they are translated in concrete tests and executed on
the real system. If implementation faults are discovered, the developer fixes them. A coverage report is provided with
information about which parts of code are not covered. Based on this information, the developer refines the initial
ASM model by adding details about the not covered parts of the real system code and proves that the refinement is cor-
rect. The process is iteratively executed until the coverage is considered satisfactory by the user, or until no more code is
coverable (e.g., due to the presence of dead code, or to code that can be triggered only by external factors that are not
representable with the ASM model). RATE approach tries to mix a black-box approach, where tests are generated from
the specifications, and a white-box approach, where code is instrumented and coverage information collected in order
to understand where the models must be refined.

Our approach can be applied in case the implementation of the system is available, and testing is needed in order to
increase the confidence of its correctness. By combining test case generation, their execution, and coverage results,
RATE, like a classical MBT approach, allows the user to test the implementation, verify if it is compliant with the spec-
ification, and detect faults if they are present. The use of refinement aims at introducing details in a gradual and con-
trolled way since writing the model at the same low level of the implementation requires greater effort than developing
the model from a simple one by adding features incrementally. Note that RATE exploits a refinement that preserves
the properties and the validity of all the V&V activities done before its application.

This paper applies the process originally proposed in [7] and extends it by

(a) explaining and focusing on how to test a generic system using this approach,
(b) explaining how to derive tests from abstract specifications by using a model checker,
(c) introducing new combinatorial coverage criteria for ASMs,
(d) applying scenario-based validation with Avalla scripts on each ASM model (these scenarios have been also used

as auxiliary test cases),
(e) introducing mutation analysis,
(f) comparing the testing results of the specification written by refinement to the testing results of the specification writ-

ten without refinement.

We apply RATE to three case studies:

1. The first one is a traffic light control system (TLCS), inspired by the case study proposed by the Yakindu Statechart
tool1, for which the source code is available.2

2. The second is the Personal Health Device (PHD) protocol, originally presented in [7], for which we
(a) add three more steps in model refinement in order to improve the code coverage,
(b) refactor the code of the Antidote implementation and publish a new release that corrects the discovered bugs.

3. Finally, the third case study is the mechanical ventilator Milano (MVM) [8], a mechanical ventilator developed dur-
ing the COVID-19 pandemic.

The paper is organized as follows. In Section 2 we introduce the abstract state machines, its supporting framework
Asmeta, and the concept of refinement for ASMs. In Section 3 we introduce the three case studies on which we have
applied the proposed approach: traffic light control system, IEEE 11073-20601 PHD protocol, and the mechanical ven-
tilator Milano. In Section 4, we explain the RATE approach and the application of RATE is presented in Section 5. In
Section 6, we evaluate RATE by answering several research questions. In Section 7, we analyse the related work and
Section 8 concludes the paper.

1https://www.itemis.com/en/yakindu/state-machine/
2https://www.itemis.com/en/yakindu/state-machine/documentation/examples/com-yakindu-sct-examples-trafficlight-multism
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2 | BACKGROUND

This work is based on the use of abstract state machines (ASMs) [9], an extension of finite state machines (FSMs) in
which unstructured control states are replaced by states with arbitrarily complex data.

2.1 | ASM and the Asmeta framework

ASM states are mathematical structures, that is, domains of objects with functions and predicates defined on them, and
the transition from one state si to another state siþ1 is obtained by firing transition rules (see Figure 1). Functions are
classified as static (never change during any run of the machine) or dynamic (may change as a consequence of agent
actions or updates). Dynamic functions are distinguished between monitored (only read by the machine and modified by
the environment) and controlled (read in the current state and updated by the machine in the next state).

The ASM method can facilitate the entire life cycle of software development, that is, from modelling to code genera-
tion. Figure 2 shows the development process based on ASMs supported by the Asmeta (ASM mETAmodeling)
framework3 [10], which provides a set of tools [11] to help the developer in the following activities: modelling, valida-
tion, verification, and, when required, code generation. In the modelling phase, the user implements the system models
using AsmetaL language and the editor AsmetaXt which provides some useful editing support. Furthermore, in this
phase, the ASMs visualizer AsmetaVis transforms the textual model into graphs using the ASMs notation proposed in
Arcaini et al. [12]. The validation process is supported by the model simulator AsmetaS, the animator AsmetaA, the
scenarios executor AsmetaV, and the model reviewer AsmetaMA. The simulator AsmetaS allows performing two
types of simulation: interactive simulation (the user inserts the value of monitored functions) and random simulation

F I GURE 1 An ASM run with a sequence of states and state-transitions (steps)

F I GURE 2 The ASM development process powered by the Asmeta framework

3https://asmeta.github.io/
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(the tool randomly chooses the value of monitored functions among those available). A viable alternative to the simula-
tor is the animator AsmetaA which animates the models execution through the use of tables. AsmetaV executes scenar-
ios written using the Avalla language. Each scenario contains the expected system behaviour and the tool checks
whether the machine runs correctly. The model reviewer AsmetaMA performs static analysis. It determines whether a
model has sufficient quality attributes (e.g., minimality—the specification does not contain elements defined or declared
in the model but never used, completeness—requires that every behaviour of the system is explicitly modelled, and
consistency—guarantees that locations are never simultaneously updated to different values). Property verification is
performed with the AsmetaSMV tool. It verifies if the properties derived from the requirements are satisfied by the
models. When a property is verified, it guarantees that the model complies with the intended behaviour. In case the
code is available, the Asmeta framework provides ATGT tool that generates abstract unit tests starting from the ASM
specification by exploiting the counterexample generation of a model checker (NuSMV). If not, a tool that automati-
cally generates C++ code from ASMs is available (Asm2C++) [13].

2.2 | ASM Refinement

The modelling process of an ASM is based on model refinement. The designer starts with a high-level description of the
system and proceeds through a sequence of more detailed models each introducing, step-by-step, design decisions and
implementation details. Model refinement is a well-known technique [14], and the RATE approach is based on ASM
stuttering refinement introduced in [6]. It consists in adding state functions and rules in a way that one step in the ASM
at a higher level can be performed by several steps in the refined model. The refinement is correct if any behaviour
(i.e., run or sequence of states) in the refined model can be mapped to a run in the abstract model. In this way, the
refined ASM preserves the behaviours of the previous model. At the end, the designer builds a chain of refined models
ASM1,…,ASMn and the AsmRefProver tool checks whether ASMi is a correct refinement of ASMi�1. AsmRefPro-
ver translates the refinement relation to a logical formula FREF whose validity is proved in a SMT solver by checking
that the negation of FREF is unsatisfiable.

In our experience when developing complex case studies [15], using refinement helps modellers during the design
activities. This has been found by other research groups [14], and refinement has become part of standard design pro-
cesses not only for ASMs but also for other formal methods, like Event-B. We note that an important question in this
process is when to stop the refinement. In other words, how many details would we consider adequate (at least for test-
ing purposes) in the final refined model, i.e., ASMn? This question is one of the motivations behind the work presented
in this paper because it could be that not all the code can be covered by tests automatically generated, for example, due
to dead code.

3 | CASE STUDIES

In this section, we introduce the case studies we have selected to apply the RATE approach: the traffic light control sys-
tem, the IEEE 11073 PHD protocol, and the mechanical ventilator Milano. The code of each case study, the code we
have developed specifically for RATE, and the replication package are available online at https://github.com/asmeta/
RATE.

3.1 | Traffic light control system

The first case study is a traffic light control system: a controller manages two traffic lights. The traffic lights can be off,
in attention mode (yellow light blinking), blocked (red light on), released (green light on), or preparing for block (yellow
light on). The controller initially sets the traffic lights to the state off and they can only move to the attention mode if
the on command is received by the controller. When the operate command is caught, the controller starts the internal
cycle. The traffic lights are blocked and only traffic light A can move to the released mode when safe period A com-
mand is received. When end released A command is caught, the traffic light A is in preparing for block mode and it is in
this state until prepare period A command is received from the controller. The traffic light A is blocked and the control-
ler sets the traffic light B to released mode when safe period B command is caught. Then the traffic light B goes to pre-
paring for block and then to blocked mode. The cycle restarts when both traffic lights are blocked. From all the
configurations, the controller can set the traffic lights to the attention mode using the standby command. From standby
mode, the controller can turn off the traffic lights if off command is received. This system is represented using a multi-
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state machine shown in Figure 3. When a transition is executed in the controller state machine, the transition of the
same name is executed in the traffic light state machine if there is.

3.2 | IEEE 11073 Personal Health Device (PHD) protocol

IEEE 11073-20601 [16] defines a communication protocol that allows personal healthcare devices (Agents) like blood
pressure monitors, weighing scales, and blood glucose monitors, to exchange data with devices with more computing
resources (Managers) like mobile phones, set-top boxes, and personal computers. The measured health data exchanged
between these devices can be transmitted to healthcare professionals for remote health monitoring or health advising.

The messages exchanged at a low level, called APDUs, are encoded in ASN.1 format and should support at least
the MDER (Medical Device Encoding Rules) standard. The communication must have one primary and reliable vir-
tual channel, plus some secondary virtual channels.

The message types are divided into the following categories:

• messages related to the association procedure: aare (Association Request), aarq (Association Response), rlre
(Association Release Response), rlrq (Association Release Request), abrt (Association Abort);

• messages related to the confirmed service mechanism: roiv-* (Remote Operation Invoke messages): roiv-cmip-con-
firmed-action, roiv-cmip-confirmed-event-report, roiv-cmip-confirmed-set; and rors-* (Reception of Response mes-
sages): rors-cmip-confirmed-action, rors-cmip-confirmed-event-report, rors-cmip-get;

• messages related to fault or abnormal conditions: roer (Reception of Error Result), rorj (Reception of Reject Result);
• messages related to the unconfirmed service mechanism: roiv-cmip-action, roiv-cmip-event-report, roiv-cmip-set.

There are seven states in the manager state machine defined by the IEEE 11073 protocol, as shown in the diagram
in Figure 4. More details about the protocol can be found in the official documentation [16].

3.3 | The mechanical ventilator Milano (MVM)

MVM [8] is an electro-mechanical ventilator and it provides ventilation support in pressure-mode (i.e. the respiratory
cycle controlled variable is the pressure). MVM operates in two modes: Pressure Controlled Ventilation (PCV) and
Pressure Support Ventilation (PSV). PCV mode is used when the patient is not able to breathe on his own; the respira-
tory cycle is kept constant and set by the doctor, and the pressure changes between the target inspiratory pressure and
the positive end-expiratory pressure. If spontaneous inspiration or expiration is detected, the transition to the next phase
is allowed. PSV mode is used when a patient is able to breathe on his own, but he needs some support. The ventilator
detects a new respiratory cycle when a sudden pressure drop occurs, while the expiration is detected when inspiratory
flow drops below a set fraction of the peak flow. If a new inspiratory cycle is not detected within a time interval (apnoea

F I GURE 3 State machine of the traffic light control system
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lag), the ventilator automatically moves to PCV mode, owing to inability of the patient to breathe. Two valves allow
the air to enter/exit, that is, an input valve and an output valve. During inspiration the input valve is always opened,
while during expiration it is closed. When the ventilator is not ventilating the valves are in safe-mode configuration: the
input valve closed and the output valve opened to allow spontaneous breathing. Both PCV and PSV mode support
inspiratory pause (to measure the pressure inside the alveoli at the end of the inspiratory cycle), expiratory pause
(to measure the residual pressure and check possible obstruction in the exhalation channel), and recruitment manoeuver
(emergency procedure with prolonged lung inflation to reactivate the alveoli immediately). Before ventilating the
patient, MVM controller passes through three phases: start-up to initialize the controller with default parameters, self-
test to ensures that the hardware is fully functional, and ventilation-off in which the controller is ready for ventilation
when requested. In this paper we show the RATE approach applied to a specific component of the MVM, the control-
ler, of which a simplified version of the state machine is shown in Figure 5. Due to security problems, MVM code can-
not be published in the repository.

4 | THE RATE APPROACH: COMBINING REFINEMENT AND TEST EXECUTION

This paper presents the RATE approach, that combines model refinement with testing in order to perform more effi-
cient conformance testing of a real system. We assume that the SUT code and a document describing the system
requirements already exist to apply the RATE approach.

F I GURE 4 State machine of the IEEE 11073 PHD Manager: input messages are identified by the prefix Rx and output messages are identified
by the prefix Tx (when no input message is associated to an output, it means that the transition is generated by an internal event.)
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The process we propose is depicted in Figure 6 and explained in the following. At the beginning, the user specifies
the core functionalities of the system by means of an initial ASM (ASM1), which leaves many details and behaviours
out of the specification. ASM1 is validated using techniques like those introduced in Section 4.1. Even if it is simple,
ASM1 must be suitable for test generation and test execution, i.e. it is possible to derive some tests and execute them on
the real system. During the testing activity, the conformance of the system is checked and information about the

F I GURE 5 State machine of the MVM controller

F I GURE 6 An Overview of the RATE approach
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coverage of the code is collected. Such coverage information is used to guide the refinement of ASM1 in order to obtain
a more detailed version ASM2. For instance, if some parts of the code are not covered by tests generated from the first
ASM specification, the user should insert some or all of these functionalities in the new version of the abstract state
machine. V&V activities are performed over the new specification. Then the process of testing starts over again: tests
are derived, executed and the collected coverage information is used to drive the next refinement step. Such approach
addresses the issues presented in the introduction in several directions:

• Conformance testing activity starts immediately after a first ASM model has been developed. It is not required to
have a complete specification and the most critical behaviours can be tested from the beginning.

• Conformance is checked at every level of abstraction. Thanks to the V&V activities the designer is confident that the
model is correct, so if a bug is found it must be a fault in the implementation. By introducing details incrementally,
the designer can discover and locate bugs before the final detailed refinement is reached.

• By analysing the code coverage, the tester can identify if the specification misses some important functionalities that
are implemented in the code. This gives guidance on what to refine in the ASM.

• Even when no fault has been found, code coverage can give a measure of how much the implementation has been
tested, and which functionalities and details should be added to the specification.

• This approach enables the simultaneous application of model verification and testing. In particular, the alternating
views of model and implementation could help discover problems that would otherwise not be discovered. For exam-
ple, verification activities can aid the tester to identify whether a safety property is not satisfied and intervene on the
specification first and then possibly on the code before the completion of the development process.

• By applying a precise form of refinement, V&V results of the previous step are not lost, since this refinement pre-
serves the original behaviours (according to the definition given in Section 2.2).

In addition to the presented utilization, the RATE approach can be applied also if a non-complete version of the
SUT is available from the beginning. In this case, the SUT code must be refined too in conjunction with the specifica-
tion, i.e. the ASM and the code co-evolve. Tests generated from the specifications can be re-executed later on the com-
plete version of SUT and the user can verify that code modifications have not broken the compliance with the
behaviour modelled using the ASMs.

Another similar application scenario is when the requirements are not clearly specified and the RATE process is
used to extract an abstract specification from the code, which is used as oracle. In this case, when a fault is found, it is
more likely to be an error in the ASM, which must be fixed. This approach can be useful to extract abstract versions of
an implementation in order to better understand, re-engineer, or certify the SUT [17].

In the following, we explain in more detail each step of the process.

4.1 | V&V activities

At each level of refinement, each ASM model needs to be validated and verified. Initially, the user models the system
and validates it using the animator AsmetaA. It shows the system states using tables, which convey information about
states and their evolution in a graphical way. AsmetaA allows the user to perform two types of animation: interactive
and random. The former asks the user to insert the values of input functions, while the latter automatically chooses the
values of these functions. In parallel or after the system has reached the desired behaviour, the user can write Avalla
scenarios. These scenarios are used for validation by instrumenting the simulator AsmetaS. During the simulation,
AsmetaV captures any check violation and, if none occurs, it finishes with a PASS verdict. Avalla provides constructs
to express execution scenarios in an algorithmic way, as interaction sequences consisting of actions committed by the
user to set the environment (i.e., the values of monitored/shared functions), to check the machine state, to ask for the
execution of certain transition rules, and to enforce the machine itself to make one step (or a sequence of steps by
command step until) as a reaction of the actor actions. The verification activity is supported by the AsmetaSMV
tool. The user writes Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) formulas in order to perform
model checking, and the tool automatically translates the model and its properties in a file executable by the NuSMV
model checker.

4.2 | Testing activities

In the RATE approach, at every level of the refinement, conformance testing is applied in order to check the correctness
of the implementation and to gather coverage information guiding the next refinement. Since these activities are
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iteratively repeated, it is very important that they are completely automatized. The planned testing activities, the execu-
tion flow, and roles are shown in Figure 7 and explained in the following subsections using the TLCS case study.

4.2.1 | Test generation from ASMs

There exist several approaches for generating test sequences from ASMs. In this paper, we apply and extend
(by introducing combinatorial methods) the approach presented in [18] in which test sequences are generated by using a
model checker. In particular, the ATGT tool builds some test predicates that represent particular conditions that must be
covered. Test predicates are generated starting from the following coverage criteria:

• Basic rule requires that for every rule ri there exists at least one test sequence for which ri fires at least once, and there
exists at least one test sequence for which ri does not fire at least once.

• complete rule requires that for every conditional rule ri, the guard is true in at least one state of a test sequence and an
update performed by ri is not trivial

4.
• rule update requires that for every function update f :¼ t there exists at least one test sequence for which the update is
performed and it is not trivial.

• rule guard requires that for every rule there exists a test in which the rule does not fire and the value v of some loca-
tion that would be updated by the rule to vr is different from the value it would be updated to in case the rule had
fired.

• MCDC requires that every guard in every rule is tested according to the (masking) MCDC criterion.
• Combinatorial interaction requires that for every t-tuple of monitored locations (with limited domain) every combina-
tion of their possible values is tested in at least one state in a test sequence.

• all criteria requires all the criteria above.

According to these criteria, ATGT generates the test predicates which are then translated to suitable temporal prop-
erties, called trap properties whose counterexamples are the tests we are looking for. We extend the approach presented
in [18], by using Linear Temporal Logic (LTL) properties and bounded model checker that guarantees to find the short-
est tests. If the test requirement is represented by the test predicate tp, ATGT generates the following LTL trap property:

Gð!ðtp& XðtrueÞÞÞ

A counterexample of this property covers tp and represents the test we are looking for. The use of the operator X forces
the model checker to generate a state after the condition tp occurs in order to check the effects of the last state
transition.

ATGT generates the tests as Avalla scenarios, which are used in addition to the scenarios developed by hand during
V&V.

F I GURE 7 Test generation and execution flow and roles in RATE

4An update is trivial in ASM if the location is updated to the value that it already has.
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We report in the following an example applied to the TLCS case study. If we assume that ATGT is used to cover
the rule guard statusC¼STANDBYand transitionC¼TURNOFF, then the LTL property that needs to be falsified by the
model checker is:

Gð!ðstatusC¼STANDBY&transitionC¼TURNOFF& XðtrueÞÞÞ

The model checker finds that this property is not true (i.e., the guard can fire) and generates the counterexample as
Avalla scenario as shown in Code 1. The scenario shows that the TLCS activates the system (transitionC :¼TURNONÞ,
so statusC becomes STANDBY, and then it turns off the controller (transitionC :¼TURNOFF) and the system returns in
OFF status.

4.2.2 | Test Execution and Coverage Information

Once abstract tests are collected, they must be executed over the real implementation, and coverage information can be
collected. To obtain concrete test cases from abstract ones, there are several methodologies [1].

In RATE, for this goal, the test executor translates each test into a sequence of set and check commands represent-
ing the expected behaviour of the system in the specific conditions identified by the test sequence. How the set/check
commands are executed, depends on the specific SUT and the test executor implementation is left to the user.

Considering the abstract scenario shown in Code 1, its concretization is shown in Code 2.

4.3 | Model refinement guided by the coverage information

During the testing activity, coverage information is collected. This requires access to the implementation which must be
instrumented somehow to produce some event logs or behaviour traces. For this reason, the presented approach is thus
not a classical black-box testing approach, but rather a gray box approach because knowledge about the SUT is man-
datory. The scope of this activity is to discover which parts or features of the system are not exercised by the tests
derived from the abstract model. This information gives a hint to what is missing in the model (i.e., the ASM) and sug-
gests to the user what to add. New behaviours are added to the ASM regardless of how they are implemented in the
code, in accordance with their definition in the software requirements specification. This must be done by preserving
the behaviour tested so far, and it is performed by applying the refinement approach as explained in Section 2.2.

Refinement is iteratively applied until a satisfying coverage is reached, or until the coverage can not be further
increased (e.g., because of the presence of dead code in the implementation).

CODE 1 Test case generated by ATGT
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In Code 3 and Code 4, we report an example of model refinement using coverage information. In Code 3 we have
the specification of ASM2 where the substate operate contains only those of the first traffic light, BLOCKED_A,
RELEASE_A, or RELEASED_A. By running tests automatically generated and by analysing the SUT coverage, we
noticed that we covered only code highlighted in green (see Code 5). To increase the coverage, we applied a refinement
step (see Code 4) to include substates of operate relative to the second traffic light (BLOCKED_B, RELEASE_B, or
RELEASED_B). By running generated tests, we were able to increase the coverage as shown in Code 6, where lines pre-
viously not covered (red lines in Code 5) are now covered by tests (green lines in Code 6).

5 | APPLYING RATE TO THE CASE STUDIES

In this section, we present how the RATE approach has been applied to test the conformance of the case studies pre-
sented in Section 3:

CODE 2 Concretization of the counterexample for the TLCS case study

CODE 3 ASM2 of TLCS
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(1) the TLCS implementation,
(2) the IEEE 11073 PHD communication protocol implementation, and
(3) the MVM controller

CODE 4 ASM3 of TLCS

CODE 5 Excerpt of the TLCS code covered with tests generated from ASM2
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For each of the case study, first we have collected the requirements and the implementation. Before starting with
the RATE work flow, a great effort has been spent in setting up the test executor (see Figure 7) which will be explained
in Section 5.4.

At each refinement level, we have written the Asmeta specification at the desired level of detail, then we have per-
formed all the V&V activities (mainly formal verification of properties and scenario-based validation). Exploiting the
ATGT tool and using the criteria described in Sec. 4.2.1, abstract tests have been derived from the ASM model and
saved as Avalla files. Then the tests are executed by using the test executors. If a fault is found, then the implementa-
tion is corrected and tests re-executed. We have analysed the coverage reached, in terms of statements, functions, and
branches. When the coverage was not satisfactory, we have looked into the source code for identifying the uncovered
details. Whenever some details were not captured by the model used for test generation, we have added them in the next
refined model. In case we decided to further test the SUT, another RATE cycle had to be completed: we have refined
the original specification and proved its correctness with the AsmRefProver tool. Then, again, the specification is val-
idated, and the tests generated and executed.

In the following, we present modelling, refinement, validation, and verification activities. The results of the testing
activity are discussed in Section 6 by answering a set of research questions.

CODE 6 Excerpt of the TLCS code covered with tests generated from ASM3

TABLE 1 Refinement steps of traffic light control system

ASM1 ASM2 ASM3 ASM4

Main controller transitions Traffic Light A Traffic Light B Traffic Light colours

# rules: 7 # rules: 11 # rules: 14 # rules: 14
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5.1 | Traffic light control system

We have modelled the TLCS using ASMs and we have applied four refinement steps as shown in Table 1. The second
row contains the details added in each ASM model and the third row shows the number of implemented rules. The
SUT is the Java code provided freely by the Yakindu framework. Every input of a test sequence corresponds to a SUT
method call.

5.1.1 | ASM1: Main controller transitions

In the first ASM model, we have modelled the system considering three states: Off, Standby and Operate. We have
assumed that when the controller is in Operate mode both traffic lights are blocked. The transitions that allow changing
the state are those reported in Figure 3.

Validation & Verification. Validation activity has been predominantly executed using the animator and the scenario val-
idation. The animator has been used to test in real-time the model behaviour. Once the desired behaviour has been reached,
the sequences have been reported as scenarios in Avalla to be used as manual test sequences. The tool AsmetaMA has
determined that all the sufficient quality attributes (minimality, completeness, and consistency) are observed. Furthermore,
we have specified and verified the following temporal properties, to gain confidence in the specification correctness:

• The traffic light can always be turned off CTLSPEC ag((statusC = OPERATE or statusC = STANDBY) implies
ef(statusC = CONTR_OFF))

• When the controller is in standby mode traffic lights are in attention mode AG((statusC = STANDBY) implies
(statusA = ATTENTION and statusB = ATTENTION))

5.1.2 | ASM2: Traffic Light A

From the coverage analysis, we noticed that the traffic lights were never in Released or Preparing for blocking states
and the controller never sent the command to resume and prepare for block the traffic lights. In this refinement step, we
have introduced the missing behaviour of traffic light A. To verify that the refinement is correct, we have run the
AsmRefProver tool, which has confirmed the correctness of the process. We have validated and verified the model
using the techniques explained for the previous refinement level.

5.1.3 | ASM3: Traffic light B

As expected, from the coverage analysis we noticed that the traffic light B never reached Release and Preparing for
block states. We have added them in this refinement step and all the controller states were covered. Refinement prover
and all the validation and verification activities have been applied as explained before.

5.1.4 | ASM4: Traffic lights colour

The last not covered feature is the traffic lights colour. Based on the current state, the colour of the traffic lights changes.
When the traffic light is off, the lights are all off, the light is flashing yellow when it is in attention mode, while in prepar-
ing for block it is yellow. The light is green when the traffic light is in released mode and it is red if the traffic light is
blocked. As shown in Table 1, the number of rules is not changed from ASM3 to ASM4 because the missing behaviour
has been introduced in the already declared rules. Contrariwise, the code coverage obtained has increased. As did for
the other refinements, we have applied validation and verification tools and we have checked the refinement correct-
ness. Although we have not covered all the implementation, we have not continued with the refinement steps because
we have discovered that the not covered code is dead code which is automatically generated by Yakindu.

5.2 | PHD communication manager

Given the official requirement specification [16], in this paper, we focus on the manager since it is the most critical part
that provides a service to all the agents, while the agents will be implemented by devices produced by different
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manufacturers. As implementation to test, we chose Antidote which is freely available and open source5. Antidote
source code is written in C and composed of the following source folders: api, asn1, communication, dim, resources,
specializations, trans, and util. We have further split the functionalities contained in the communication module to those
for the agent and those for the manager. To drive our RATE process we have used only the coverage on the communi-
cation module for the manager, which is the objective of our testing process. The other folders contain mainly utility
functions for handling the data types, and for the encoding and decoding of the messages.

We have applied 6 refinement steps, briefly listed in Table 2. For each refinement, we have indicated the
functionalities introduced (second row of the table) and the number of rules for each ASM model.

5.2.1 | ASM1: Main manager transitions

We have specified in ASMETA the first model of the manager. This model has three states: Disassociating, Unasso-
ciated, and Operating. The transition from one state to the next one and the response depend on the current state and
the message received.

Validation & Verification. As shown for the traffic light control system case study, we have performed validation
and verification activities. For example in the first ASM we have verified the following properties:

• The system can always reach the OPERATING state starting from UNASSOCIATED: AG((status=UNASSO-
CIATED) implies EF(status=OPERATING))

• If the state is UNASSOCIATED and a known configuration is received, then the status in the next state is OPERAT-
ING: AG((status=UNASSOCIATED and transition=RX_AARQ_ACCEPTABLE_AND_KNOWN_CONFI-
GURATION) implies AX(status=OPERATING))

5.2.2 | ASM2: Remote operation management

The coverage of the model ASM1 was not satisfactory, since we implemented in our model only three states and not all
the messages that the manager can receive in these states. Thus, in ASM2 we have added the messages used for remote
operation management: rx_roiv, rx_rors, and rx_rorj. Moreover, in the refined model, we have limited the messages
that can be sent by the Agent to those valid ones. Refinement prover and all the validation and verification activities
have been applied as explained before.

5.2.3 | ASM3: PHD Configuration Management

The coverage of the model ASM2 was still low, and in particular the code that manages configurations was not covered
since the configuration management was completely missing in the model. In this ASM3 we have added the states for
exchanging the configuration: Checking Config, and Waiting for Config, with their related transitions, messages, and
rules. Refinement prover and all the validation and verification activities have been applied as explained before.

5.2.4 | ASM4: Error management

From coverage analysis, we noticed that all the rors APDU messages, related to error management, were not covered
by tests in the implementation, and some functions, such as communication_process_rors(ctx, apdu) in communication/

5We started from the version 2.1 of Antidote published in https://github.com/signove/antidote.

TABLE 2 Refinement steps of PHD protocol

ASM1 ASM2 ASM3 ASM4 ASM5 ASM6 ASM7

Main manager
transitions

Remote operation
mgmt

Configuration
mgmt

Error
mgmt

Protocol
error

Invalid messages
mgmt

Invalid Invoke-ID
mgmt

# rules: 73 # rules: 91 # rules: 181 # rules:
220

# rules: 226 # rules: 247 # rules: 295
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manager/manager_operating.c, were never exercised. Therefore we have designed a new refined model (ASM4) in which
we have included the rors message with its subtypes (rors-*).

These messages trigger a relevant part of the protocol between the states Disassociating and Unassociated, and
within the states Operating, Checking Config, and Waiting for Config. Furthermore, we marked the following two
particular sequences of transitions in the model, since from the coverage report we noticed that these events handling
procedures were not captured by the model:

1. the behaviour of rx_roiv_confirmed_event_report that brings from the state Waiting for Config to Checking Config
has to be handled differently depending on whether the state Waiting for Config was entered, with a transition from
the state Unassociated or from the state Checking Config. In the former case, no configuration similar to the one
transmitted by the agent is present in the manager pool of configurations, and the function ext_configurations_get_-
configuration_attributes is called; in the latter case, a configuration was transmitted previously, and thus the configu-
ration is already in memory of the Antidote manager.

2. the behaviour of rx_roiv_confirmed_event_report, that causes a loop in the Checking Config state, is different if exe-
cuted right after another same message that brought the manager from the state Waiting for Config into the Check-
ing Config state. The function configuring_new_measurement_response_tx, that adds a new measurement from the
agent, is executed when this particular sequence occurs.

After having introduced these details to the specification, we have applied validation and verification.

5.2.5 | ASM5: Protocol and configuration management

The coverage reached by the previous refinement was quite good, but from coverage analysis, we noticed that two
important aspects of the connection procedure were not considered. In the first phase, an agent can try to establish a
connection with a wrong protocol-id or with an unknown configuration, marked as a specific protocol-id value
(0xFFFF) and recognized by Antidote as an external specification. Thus, we have added two new variants of the
rx_aarq transition in the ASM5, respectively with an invalid protocol-id and an external protocol-id. We have validated
and verified this model by using the proposed techniques.

5.2.6 | ASM6: Invalid messages management

In the previous refinement levels we added to ASM models some constraints to force the transition to be valid in each
state. However, the official IEEE specification of the PHD requires the managers to deal with invalid messages too and
when a manager receives a message that is not defined in its current state, it replies with an abort message. For this rea-
son, in ASM6 the system is allowed to send any message in every state.

5.2.7 | ASM7: Invalid invoke-id management

With the previous refinement, we reached a good coverage level but we still have some aspects of the IEEE specification
that were not covered by our model. One of the main uncovered aspects is that the behaviour of the system in response
to some message can vary depending on the invoke_id contained in the APDU. For instance, if the manager is in Wait-
ing for Config state and receives rors-*, roer, or rorj messages, it can produce no response if the invoke_id is valid or an
abort otherwise. To manage the difference between valid and invalid invoke_id, we have added in ASM7 a monitored
function invokeIdValid that is combined with the transition function to establish if the message has to be sent with a
valid or invalid invoke_id. The validation and verification techniques have been applied as explained in previous refine-
ment steps. Although we have not covered all the implementation, we have not continued with the refinement steps
because we have discovered by manual code inspection that the not covered code is mainly dead code or functions
which require different configurations of the manager at startup, and that can not be modelled with an ASM.

5.3 | Mechanical ventilator Milano

As previously specified, the focus in this paper is on the MVM controller, the component that manages the valves (input
and output) based on the ventilation phase. The implementation tested is the one running on the real device and
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implemented during the pandemic in order to provide ventilation to Covid-19 patients. The implementation is written
in C++ and partially automatically derived from a Yakindu model.

We have applied 3 refinement steps, briefly listed in Table 3. For each refinement, we have indicated the functionali-
ties introduced (second row of the table) and the number of rules for each ASM model.

5.3.1 | ASM1: PCV mode

In the first model of the MVM controller, we have specified the behaviour of ventilation in PCV mode. We have intro-
duced the transition from inspiration to expiration and vice versa, and the three initial phases (start-up, self-test and
ventilation-off).

Validation & Verification. Validation and verification activities have been performed for MVM controller, as shown
for the previous case studies. For example in the first ASM we have verified the following properties:

• Valves are never both open or closed: NOT EF(iValve=oValve)
• When ventilation is off, output valve is open and input valve is closed: AG(state=MAIN_REGION_VENTILA-
TIONOFF implies (iValve=CLOSED and oValve=OPEN))

• It is always possible to get back in the MAIN_REGION_VENTILATIONOFF state except if the turn-off button is
pressed: AG(not poweroff) implies AG(ef(state=MAIN_REGION_VENTILATIONOFF))

5.3.2 | ASM2: PSV mode

As expected, the coverage analysis has reported that PSV mode is never reached. In this refinement step, we have mod-
elled its behaviour by detailing the transition from inspiration to expiration. As did for the previous model, we have
applied validation and verification, and the refinement correctness has been checked.

5.3.3 | ASM3: Transition from PSV to PCV and vice versa

From the coverage report, we have noticed that the change of ventilation mode was only performed with ventilator in
ventilation-off status. From the requirement document, we have realized that it is possible to move directly from PCV
to PSV and vice versa without going through ventilation-off. In detail, the transition from PCV to PSV is decided by
the doctor, while the transition from PSV to PCV is automatically performed in case of apnoea lag. Validation and ver-
ification activities have been applied as previously explained.

5.3.4 | ASM4: Respiratory pauses

The last non covered features in the MVM controller are inspiratory pause, expiratory pause and recruitment manoeu-
ver both in PCV and PSV mode. After having modelled these remaining features, validation and verification activities
have been performed. By exploiting the coverage information gathered with this refinement level, we have decided to
stop our refinement process. In fact, although a full coverage has not been reached, we have discovered that non-
covered parts in the code are those that are automatically generated by Yakindu, used for its internal purposes, and that
can not be triggered by external calls as already shown for the TLCS case study.

5.4 | Test Execution

Since each case study has different features to be tested, and a different programming language, abstract tests have been
concretized and executed by a specific test executor as shown in Table 4.

TABLE 3 Refinement steps of the MVM

ASM1 ASM2 ASM3 ASM4

PCV mode PSV mode Apnoea management Respiratory pauses

# rules: 11 # rules: 17 # rules: 19 # rules: 27
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1. For the TLCS, the SUT includes the traffic lights and the controller, while the test executor acts as the user of the
TLCS. To execute these tests, we have implemented an ad-hoc tool. In this case, at each step, the test executor reads
the current state in the abstract test case, and sends a command to the traffic light controller, like Operate, Standby,
and so on, and checks the status of the lights (including the colour) and the target state. Thus, an abstract test is not
translated in another artefact, and the test executors acts as adaptor code that wraps around the SUT and imple-
ments each abstract operation in terms of the lower-level SUT facilities [1].

2. For the PHD protocol, the SUT is the Manager, while the test executor acts as the Agent. At every step, the test
executor sends a suitable message to the Manager, checks the response, and the target state. To perform the test exe-
cution we rely on the ProTest tool, originally presented in [19]. ProTest acts as Agent by interacting with the Man-
ager implementation. It builds the messages, sends them to the Manager, and checks the conformance of the
response received from it.

3. The SUT of MVM is the controller component, while the test executor simulates the user action. As done for TLCS,
also for MVM controller an ad-hoc tool has been implemented to execute tests. However, in this case an abstract
test is translated in an executable concrete test (using the GoogleTest framework). At each step, the concrete test
sends a command to the MVM controller, like startVent, mode, and so on, and checks the status of the ventilator
by means of the suitable EXPECT_* instructions.

6 | PROCESS EVALUATION

During the application of RATE we have collected all the data about the specifications and the tests, and we present
our findings in this section. We first present a series of research questions, then we explain the experimental protocol
that has allowed us to answer the introduced questions.

6.1 | Research questions

First of all, we want to measure how much the code coverage is increased by applying refinement, to be sure that RATE
actually helps testers to test more accurately the SUT:

RQ1What is the impact of RATE on coverage reached in each refinement?
Then, different types of code coverage are used to measure the impact of ASM-based coverage criteria to determine

if a criterion is more suitable than others:
RQ2 How different ASM-based coverage criteria impact the effectiveness of RATE?
Number of test sequences, number of steps in test sequences, and number of test predicates are used to measure the

testing effort in order to check how it depends on the refinement level and testing criteria:
RQ3 How does the testing effort required by RATE depend on the refinement level and testing criteria?
Another interesting aspect is the comparison between tests automatically generated and tests manually generated.

To compare them, we have analysed the number of test sequences, number of steps in test sequences and the coverage:
RQ4 What is the difference between manual tests and tests generated by following the RATE methodology?
Someone could argue that the use of refinement has a negative impact over the testing activities and writing the

complete specification from the beginning is better. We compare the two solutions in terms of number of test sequences,
number of steps in test sequences, number of test predicates, and code coverage:

RQ5 Is there any difference in testing between applying refinement as required by RATE or writing the complete
ASM at once?

Moreover, we want to test the capability of RATE to discover faults in the implementation by analysing if tests
automatically generated pass or not:

RQ6 Is RATE suitable for discovering real faults in the implementation?
Then, we are also interested in measuring the impact of refinement in detecting faults, in particular injected faults

using mutation analysis:
RQ7 What is the impact of refinement over the capability to detect injected faults?

TABLE 4 Test executor used for each case study

Case study SUT Other party Test Executor

TLCS Traffic lights and controller Environment Ad-hoc Executor - adaptor

PHD protocol Manager Agent ProTest tool [19]

MVM MVM controller Environment Ad-hoc Executor - translator to googletest [20]
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6.2 | Experimental protocol

To evaluate RATE, we have performed the following activities in order to answer the research questions.
To measure the impact of RATE on coverage (RQ1), for each refinement level of the presented case studies, we

have collected the coverage (statement, function and branch) results obtained using the different test generation strate-
gies (see Section 4.2.1), and then we have analysed the trend of coverage (in percentage) correlating it to the refinement
level.

In order to answer RQ2, we have analysed the coverage results (computed to answer to RQ1) in order to analyse
the impact of the test generation strategies adopted.

Then for each refinement level and testing criteria, we have collected the number of test sequences, number of steps
in test sequences and number of test predicates with the aim of answering to RQ3.

Using automatic criteria may be less effective than writing tests manually. In order to investigate this aspect and
answer RQ4, we have manually written some test scenarios, in which we have tried to cover all the possible transitions
of the state machines presented in Section 3. Then, we have compared the tests by analysing the number of test
sequences, the number of steps in test sequences, and the code coverage.

For the purpose of answering RQ5 where we want to compare the RATE approach (where ASM models are
obtained by refinement) with the one based on manual specifications (where the user writes one ASM model with the
highest level of detail as possible), we have analysed the number of test sequences, number of steps in test sequences,
number of test predicates and code coverage. Moreover, in order to make the specifications obtained with two different
approaches comparable, non-refined ASM specifications have been written by two of the authors that have not partici-
pated in the refinement process. However, one may argue that different results in coverage reached by non-refined spec-
ifications w.r.t. those of refined specifications may derive from different aspects captured by each version of the ASM
specification. To avoid this bias, we have cross-validated the two versions: Avalla scenarios have been derived from
the specification obtained by refinement and executed on the non-refined version, and vice versa. In this way, we could
be sure that the two versions of the specifications are behaviourally equivalent.

We have answered RQ6, by running tests on real systems and checking if tests pass or not.
Finally, in order to verify the impact of refinement on the fault detection capability (RQ7), we have performed

mutation testing and we have computed the mutation score for each case study and for each refinement level. It has
been performed differently for each case study. For the TLCS case study, which is implemented in Java, mutation test-
ing has been performed using PITest6, which applies mutations and evaluates the Mutation Score, intended as the num-
ber of mutants killed (i.e., detected) by the tests. PITest has been configured for generating 423 mutants for each test,
by using the following mutation operators: CONDITIONALS_BOUNDARY, EMPTY_RETURNS, FALSE_RE-
TURNS, INCREMENTS, INVERT_NEGS, MATH, NEGATE_CONDITIONALS, NULL_RETURNS, PRIMI-
TIVE_RETURNS, TRUE_RETURNS, VOID_METHOD_CALLS. On the other hand, both for the PHD protocol
and for the MVM, we have modelled in the ASM mainly the transitions between states, and not the detailed behaviour
of each state. For this reason, a mutation strategy focusing only on event transitions has been chosen. In particular,
since for the PHD protocol we are interested in testing only the transitions between states (and their corresponding out-
puts), we have designed a mutation script which performs the following operations for 15 different mutations:

• Apply a random mutation, which is a change either of the destination state or of the response message in the manager
state transition table;

• Transfer to the server side of the PHD manager the mutated state transition table;
• Perform the compilation of the Antidote manager;
• Execute the tests generated using the all criteria strategy with all the ASMs with the mutated manager and record the
results. If at least one test fails, then the mutant is considered killed.

A similar method has been used for the MVM case study: we have developed a script that applies a mutation (out
of a total of 122 mutations), consisting in commenting a line corresponding to a transition method call in the source
code, performs the compilation of the executable and executes the tests generated with the all criteria strategy. When-
ever at least one of the tests fails, the script considers the mutation killed. Note that the method used for mutation test-
ing both for MVM and for the PHD protocol mimics the particular errors that a developer may commit while
developing this kind of system, i.e., forgetting transitions or implementing the wrong ones. Moreover, for all case stud-
ies, we have compared the mutation scores reached with tests automatically generated by the RATE approach and
those reached with manual test scenarios.

6https://pitest.org/
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All the experiments, producing the results used in the analyses presented in this paper, have been performed on a
server with 264GB of RAM and a Intel® Xeon® E5-2620 CPU, running Ubuntu 20.04.4 LTS. Since the test generation is
deterministic in the presented case studies, we have executed the test generation only once. In order to run all the experi-
ments we have performed, the replication package is available at https://github.com/asmeta/RATE

6.3 | RQ1: The impact of RATE on coverage reached in each refinement

Coverage results of the presented case studies are reported in Tables 5,6 and 7, respectively for TLCS, PHD and
MVM. For each case study, we report all the refinements performed and the applied test generation techniques, then
we show, for each test generation strategy, the number of sequences composing the generated sequence set, the mini-
mum, the maximum, and the average number of steps per sequence, the total number of steps composing the generated
set of sequences, and the number of test predicates generated (i.e., the number of predicates on which the automatic
sequences generation is based). An execution step corresponds to an execution of the main rule of the ASM model of
the system.

Table 5 reports the coverage information for the TLCS case study. As we can see, from ASM1 to ASM4 the coverage
always increases for most of the coverage criteria. Note that, 2-wise and 3-wise are performed only considering the mon-
itored functions in the ASM model: 3-wise generates tests if at least three monitored functions are modelled, while
2-wise if two monitored functions are defined in the specification. For this reason, since in ASM1 there are less than two
monitored functions both 2-wise and 3-wise do not generate tests, while in ASM2 only 3-wise is not effective since the
model contains only two monitored functions.

The highest increase in coverage has been obtained passing from ASM1 to ASM2 since the introduction of a traffic
light represents an important and complex part of the system. From ASM2 to ASM3 the code coverage is slightly
increased, while the last refinement (ASM4) has not allowed us to increase the code coverage percentage in a detectable
way since only a few more lines are covered.

Table 6 reports the coverage information for the PHD protocol case study. The code coverage obtained with the
tests generated from ASM1 is very similar for all the test generation strategies (around 35% for statement coverage, 54%
for function coverage, and 23% for branch coverage) except for the combinatorial-based methods. Note that, also for
PHD case study, 2-wise and 3-wise are performed only considering the monitored functions and thus, only with ASM7

(which has two monitored functions), the former is effective, while the latter does not produce any test predicate. In the
first step of refinement (ASM2), the coverage is increased as expected because the ASM model has been improved by
adding remote operation management. The test sequences automatically generated in ASM3 increase the code coverage,
mainly due to more functions and statements covered in the configuration management part. From ASM4 to ASM7 the
coverage slowly increases since most of the main aspects of the protocol were already captured by the ASM3.

Analysing the statements that are not covered, we have noticed that they are mainly related to dead code (such
as functions declared with an empty body, and never used), or negative use cases (exceptions), often regarding
internal configurations of the manager. We believe that a further increase in code coverage could not be achieved
by adding new messages, but by including in the model different configurations of the manager at startup
(in particular to enable some remote messages that come from the manager and actively ask the associated agent(s)
for new data).

Coverage results of MVM case study are reported in Table 7. As shown for the previous case studies, also for
MVM we can notice that the coverage increases at each refinement step because we improve the behaviour of the venti-
lator by adding PCV and PSV ventilation modes, the automatic transition from PSV to PCV and the respiratory
pauses.

In all the case studies, the coverage increases as shown in Figure 8, except for complete rule because of the monitor-
ing optimization: when we generate the test sequences, we check if a test predicate is covered by a test that has been
already generated, and this allows one test to cover many test predicates. Increasing coverage is expected but it is not a
trivial result, since if a refinement does not capture previously uncovered features, the coverage could remain the same
between the two models. Using only the stuttering refinement limits the freedom of the designer in adding details but
this does not jeopardize the RATE capability of improving coverage. Moreover, stuttering refinement offers the advan-
tage that the V&V activities are not lost.

6.4 | RQ2: Comparing ASM-based coverage criteria for test generation in RATE

Given the coverage results in Tables 5,6 and 7, we have noticed that, regardless of the refinement, tests generated with
basic rule, rule update, rule guard, MCDC offer better code coverage, and the union of all the coverage criteria (all
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criteria) is often outperformed by one criterion. We found that this is due to the monitoring optimization; without it all
criteria always reaches the highest coverage among the automatically generated test suites (data not reported in the
table).

In terms of the number of tests and their length, we can notice that for TLCS and PHD case studies, test strategies
with higher coverage always produce the highest number of tests and steps. The more the total number of steps, the
higher is the code coverage. An exception is the MVM case study, for which the higher number of tests is generated by
the 2-wise and 3-wise criteria (if we exclude all criteria), but the lowest coverage is obtained. This is due to the fact that
2-wise and 3-wise are only performed considering the monitored functions (inputs of the system) and all the

TABLE 5 Coverage results for each refinement/test generation strategy applied to the TLCS case study

Refinement Test generation strategy

Test sequences Code coverage

# Test predicates
#

steps

sequences min max total avg statement function branch

ASM1 basic rule 11 1 3 20 1.82 67.3% 63.0% 43.7% 11

complete rule 1 2 2 2 2.00 54.7% 40.7% 31.9% 1

rule update 12 1 3 24 2.00 66.5% 63.0% 40.7% 12

rule guard 19 1 3 36 1.89 67.5% 63.0% 44.4% 19

MCDC 14 1 3 26 1.86 67.5% 63.0% 44.4% 14

2-wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

3-wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

all criteria 57 0 3 108 1.89 67.5% 63.0% 44.4% 57

manual 1 4 4 4 4.00 66.5% 63.0% 40.7% //

ASM2 basic rule 19 1 5 51 2.68 78.8% 77.8% 54.1% 21

complete rule 1 2 2 2 2.00 55.4% 40.7% 34.1% 1

rule update 19 1 5 53 2.79 79.0% 77.8% 55.6% 19

rule guard 31 1 5 84 2.71 79.0% 77.8% 55.6% 33

MCDC 28 1 5 81 2.89 78.8% 77.8% 54.1% 30

2-wise 10 1 1 10 1.00 52.9% 40.7% 29.6% 10

3-wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

all criteria 98 0 5 281 2.87 79.0% 77.8% 55.6% 114

manual 2 4 8 12 6.00 82.0% 81.5% 58.5% //

ASM3 basic rule 28 1 8 102 3.64 90.4% 92.6% 65.9% 32

complete rule 1 2 2 2 2.00 55.4% 40.7% 34.1% 1

rule update 25 1 8 95 3.80 90.6% 92.6% 67.4% 25

rule guard 43 1 8 156 3.63 90.6% 92.6% 67.4% 47

MCDC 42 1 8 168 4.00 90.4% 92.6% 65.9% 46

2-wise 24 1 1 24 1.00 52.9% 40.7% 29.6% 24

3-wise 12 1 1 12 1.00 52.6% 39.5% 29.6% 20

all criteria 175 1 8 559 3.19 90.6% 92.6% 67.4% 195

manual 2 4 10 14 7.00 90.2% 92.6% 65.2% //

ASM4 basic rule 28 1 8 102 3.64 90.4% 92.6% 65.9% 32

complete rule 1 2 2 2 2.00 55.4% 40.7% 34.1% 1

rule update 39 1 8 144 3.69 90.6% 92.6% 67.4% 39

rule guard 57 1 8 205 3.60 90.6% 92.6% 67.4% 61

MCDC 42 1 8 168 4.00 90.4% 92.6% 65.9% 46

2-wise 24 1 1 24 1.00 52.9% 40.7% 29.6% 24

3-wise 12 1 1 12 1.00 52.6% 39.5% 29.6% 20

all criteria 233 1 8 657 2.82 90.6% 92.6% 67.4% 223

manual 2 4 10 14 7.00 90.2% 92.6% 65.2% //
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TABLE 6 Coverage results for each refinement/test generation strategy applied to the PHD protocol case study

Refinement Test generation strategy

Test sequences Code coverage

# Test predicates
#

steps

sequences min max total avg statement function branch

ASM1 basic rule 21 1 4 62 2.95 34.1% 54.3% 22.8% 45

complete rule 3 1 4 8 2.67 32.6% 51.8% 23.2% 3

rule update 21 1 4 64 3.05 35.6% 54.3% 23.8% 42

rule guard 22 1 4 66 3.00 35.6% 54.3% 24.1% 66

MCDC 21 1 4 62 2.95 35.6% 54.3% 24.6% 48

2-wise 0 — — — — — — — 0

3-wise 0 — — — — — — — 0

all criteria 24 1 4 71 2.96 35.6% 54.3% 24.1% 204

manual 1 34 34 34 34.00 35.6% 54.3% 27.0% //

ASM2 basic rule 27 1 4 83 3.07 42.1% 67.1% 27.8% 57

complete rule 3 1 4 8 2.67 33.2% 53.0% 21.8% 3

rule update 27 1 4 85 3.15 43.6% 67.1% 29.2% 54

rule guard 27 1 4 85 3.15 43.6% 67.1% 29.2% 84

MCDC 27 1 4 83 3.07 43.6% 67.1% 25.0% 60

2-wise 0 — — — — — — — 0

3-wise 0 — — — — — — — 0

all criteria 31 1 4 95 3.06 43.6% 67.1% 29.2% 258

manual 1 46 46 46 46.00 43.6% 67.1% 29.2% //

ASM3 basic rule 56 1 4 182 3.25 58.2% 76.8% 37.5% 115

complete rule 5 1 4 15 3.00 39.5% 55.5% 25.3% 5

rule update 56 1 5 187 3.34 58.2% 76.2% 31.9% 110

rule guard 60 1 5 203 3.38 58.2% 76.2% 38.8% 170

MCDC 56 1 4 182 3.25 60.9% 77.4% 39.8% 120

2-wise 0 — — — — — — — 0

3-wise 0 — — — — — — — 0

all criteria 68 1 5 230 3.38 58.2% 76.2% 38.8% 520

manual 5 11 33 104 20.80 58.2% 72.2% 39.0% //

ASM4 basic rule 71 1 4 234 3.30 63.5% 79.9% 42.6% 141

complete rule 5 1 4 15 3.00 42.3% 61.0% 28.4% 5

rule update 69 1 5 235 3.41 60.8% 78.7% 41.6% 136

rule guard 75 1 5 259 3.45 60.8% 78.7% 41.6% 209

MCDC 68 1 4 222 3.26 60.8% 78.7% 41.6% 146

2-wise 0 — — — — — — — 0

3-wise 0 — — — — — — — 0

all criteria 86 1 5 298 3.47 60.8% 78.7% 41.6% 637

manual 5 11 38 121 24.20 61.1% 78.7% 42.0% //

ASM5 basic rule 69 1 4 222 3.22 63.9% 79.9% 43.0% 145

complete rule 5 1 4 15 3.00 39.8% 57.9% 25.3% 5

rule update 71 1 5 239 3.37 61.2% 78.7% 41.6% 140

rule guard 78 1 5 267 3.42 61.2% 78.7% 41.6% 215

MCDC 69 1 4 222 3.22 61.2% 78.7% 42.0% 150

2-wise 0 — — — — — — — 0

3-wise 0 — — — — — — — 0

all criteria 88 1 5 301 3.42 61.2% 78.7% 41.6% 655

manual 5 14 38 124 24.80 64.0% 79.9% 43.0% //

(Continues)
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combinations can be created during the initial state of the ASM. For this reason, all the sequences generated with these
two criteria have only one step, and the majority of the states in the system are never reached.

We can say that the choice of coverage criteria at model level impacts also the coverage at the implementation level,
and some criteria offer better coverage. Indeed, if we compare the effect of choosing a test generation strategy rather
than the other, we can say that complete rule, 2-wise and 3-wise have low coverage, while the others have higher cover-
age and the difference between them is minimal.

6.5 | RQ3: RATE testing effort dependency on the refinement level and testing criteria

Refinement and the use of stronger testing criteria during generation allow us to improve code coverage. However, their
impact over the testing effort differs. The indicators for testing effort are the number of test sequences, the number of
steps in the test sequences, and the number of test predicates, that correspond to the testing requirements. The data are
reported in Tables 5,6 and 7 and shown graphically in Figure 9; we can say that they increase linearly by refining the
models. Considering the testing criteria adopted, more effort is required for basic rule, rule update, rule guard and all cri-
teria, those that guarantee higher code coverage.

In general, as expected, test sequences generated from more abstract specifications are fewer and shorter. If one
assumes that the effort in executing and concretizing an abstract test is proportional with the test sequence length,
shorter test sequences are easier to deal with. This happens if for instance, the test execution requires a human interven-
tion to perform parts of the actions manually. In this case, using more abstract specifications can reduce the actual
effort for test execution and facilitate fault localization and debugging.

6.6 | RQ4: Difference between manual tests and generated tests in RATE

To make the manual and generated tests comparable, we wrote manual tests systematically by covering all the transi-
tions of the state machines presented in Section 3. At each refinement step, we wrote scenarios able to cover all the tran-
sitions modelled.

TABLE 6 (Continued)

Refinement Test generation strategy

Test sequences Code coverage

# Test predicates
#

steps

sequences min max total avg statement function branch

ASM6 basic rule 83 1 4 272 3.28 64.0% 79.9% 43.1% 157

complete rule 5 1 4 15 3.00 41.4% 59.1% 26.0% 5

rule update 82 1 5 277 3.38 61.3% 78.7% 42.2% 152

rule guard 90 1 5 307 3.41 61.3% 78.7% 42.2% 233

MCDC 96 1 4 316 3.29 64.0% 79.9% 43.1% 294

2-wise 0 — — — — — — — 0

3-wise 0 — — — — — — — 0

all criteria 117 1 5 400 3.42 64.0% 79.9% 43.1% 841

manual 5 15 41 135 27.00 64.0% 79.9% 43.1% //

ASM7 basic rule 95 1 4 307 3.23 64.2% 79.9% 43.8% 169

complete rule 5 1 4 15 3.00 40.4% 59.8% 26.6% 5

rule update 93 1 5 310 3.33 64.2% 79.9% 43.8% 176

rule guard 103 1 5 347 3.37 64.2% 79.9% 43.8% 257

MCDC 109 1 4 356 3.27 64.2% 79.9% 43.8% 318

2-wise 28 1 3 61 2.18 35.1% 54.3% 24.8% 44

3-wise 0 — — — — — — — 0

all criteria 134 1 5 446 3.33 64.2% 79.9% 43.8% 969

manual 7 12 41 159 22.71 64.2% 79.9% 43.8% //
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The main differences between manual tests and generated tests are the average sequences length and the number of
sequences (see Tables 5,6 and 7). In automatic test generation, test predicates are used to automatically generate the test
sequences. Each sequence is generated to cover one test condition, this results in shorter sequences and a higher number
of sequences needed to cover all the generated test predicates. In manual testing, the length of test sequences is higher,
but their number is lower: we can conjecture that the user tends to cover more test predicates in each scenario.

Even if the total number of sequences in manual testing is significantly lower than the other criteria (in some refine-
ment level also more than 90% lower), the coverage is, in general, equal or only a bit lower than the automatic test gen-
eration with the highest coverage.

TABLE 7 Coverage results for each refinement/test generation strategy applied to the MVM case study

Refinement Test generation strategy

Test sequences Code coverage

# Test predicates
#

steps

sequences min max total avg statement function branch

ASM1 basic rule 23 1 44 136 5.91 46.8% 36.3% 57.2% 25

complete rule 2 1 1 2 1.00 25.4% 10.8% 31.9% 2

rule update 24 1 44 289 12.04 46.9% 37.0% 57.2% 24

rule guard 37 1 44 326 8.81 47.6% 38.1% 57.2% 39

MCDC 44 1 44 229 5.20 46.8% 36.3% 57.2% 50

2-wise 128 1 1 128 1.0 26.0% 12.2% 33.3% 128

3-wise 216 1 1 216 1.0 26.0% 12.2% 33.3% 560

all criteria 474 1 44 1316 2.78 47.6% 38.1% 57.2% 828

manual 5 1 65 89 17.80 45.4% 36.3% 56.5% //

ASM2 basic rule 38 1 44 275 7.24 61.1% 57.5& 77.5% 38

complete rule 2 1 1 2 1.00 25.8% 10.8% 31.9% 2

rule update 44 1 44 512 11.64 62.2% 60.8% 77.5% 44

rule guard 65 1 44 612 9.42 61.8% 59.7% 77.5% 75

MCDC 73 1 73 522 7.15 61.5% 58.6% 77.5% 92

2-wise 220 1 1 220 1.00 26.4% 12.2% 33.3% 264

3-wise 520 1 1 520 1.00 26.4% 12.2% 33.3% 1320

all criteria 962 1 73 2663 2.77 63.0% 62.2% 77.5% 1771

manual 8 1 84 225 28.12 60.0% 59.7% 77.5% //

ASM3 basic rule 39 1 44 276 7.08 61.4% 57.9% 77.5% 42

complete rule 2 1 1 2 1.00 25.8% 10.8% 31.9% 2

rule update 44 1 44 512 11.64 62.2% 60.8% 77.5% 52

rule guard 66 1 44 613 9.29 62.2% 59.7% 77.5% 75

MCDC 75 1 73 528 7.04 61.8% 58.6% 77.5% 92

2-wise 264 1 1 264 1.00 26.8% 12.2% 33.3% 264

3-wise 708 1 1 708 1.00 26.8% 12.2% 33.3% 1760

all criteria 1198 1 73 2903 2.42 63.0% 62.2% 77.5% 2287

manual 9 1 104 329 36.56 61.0% 60.8% 77.5% //

ASM4 basic rule 65 1 45 730 11.23 84.2% 82.7% 94.4% 72

complete rule 2 1 1 2 1.00 25.8% 10.8% 31.9% 2

rule update 71 1 45 1115 15.70 84.5% 83.1% 93.0% 89

rule guard 105 1 45 1358 12.93 85.1% 84.5% 94.4% 124

MCDC 122 1 73 1425 11.68 84.5% 83.8% 94.4% 148

2-wise 420 1 1 420 1.00 27.4% 12.2% 33.3% 420

3-wise 1592 1 1 1592 1.00 27.4% 12.2% 33.3% 3640

all criteria 2377 1 73 6642 2.79 85.8% 85.6% 94.4% 4495

manual 11 1 104 392 35.64 66.7% 65.1% 80.4% //
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An exception is ASM4 of the MVM case study for which the coverage reached with manual tests is significantly
lower than the coverage obtained with automatic test generation. Based on the outcomes and considering the great
effort in writing tests manually, we can say that the automatic test generation can substitute the manual tests since they
guarantee the same coverage with lower effort by the user. Moreover, with manual tests one can miss covering a specific
behaviour, make a mistake in test writing or in defining the test oracle. In general, we can conclude that there are no
evident differences in terms of coverage reached using automatic tests generation or manual tests in simple systems,
while for complex systems (like MVM) automatic test generation reaches higher coverage.

6.7 | RQ5: Specification without refinement

Beginning from the complete official requirements specifications of the three analysed case studies, two of the authors,
who have not participated in the refinement process, have written three complete ASM models starting from scratch
and trying to include all the features as in the final specifications obtained by refinement. Table 8 reports the results, in
terms of coverage reached and testing effort (number of test predicates, test sequences, and steps) for the three models,
referenced as TLCSnr,PHDnr and MVMnr.

For the TLCS, writing the specification without applying refinement is easier but does not allow reaching the same
code coverage than the one obtained with model refinement. In case of the PHD protocol, as shown in the experiments,
the coverage is considerably higher when using refinement. We have also observed some differences in terms of testing
effort, but this strongly depends on the style in which the model has been written. In fact, we have verified that the two
models are behaviourally equivalent by cross-validating ASM7 with PHDnr (by generating test scenarios from a model
and executing them on the other, and vice versa). For the MVM, writing the specification without applying refinement

F I GURE 8 How does the code coverage depend on the refinement level?
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is very complicated due to the complexity of the system and, also in this case, it does not allow obtaining the same code
coverage than the one reached with model refinement. As for the previous case study, we have verified the behavioural
equivalence between MVMnr and ASM4 by generating test scenarios from a model and executing them on the other, and
vice versa.

There is no enough evidence to conclude that using refinement leads to better coverage, although we observed that
specifications obtained by refinement tend to have a richer structure (more rules and conditions) and this can increment
the number of tests and hence the coverage. However, we confirm that for complex system, writing the specification
with all details upfront is more difficult. In our experience [21,22], producing a specification by refinement steps eases
the modeller work when details are gradually added to the specification.

6.8 | RQ6: RATE suitability to discover faults in the implementation

In all the presented case studies, we have found faults/conformance errors thanks to the application of the RATE
approach.

In the TLCS implementation, we have found—by running tests generated from the first refined model ASM2—that
when the controller had received standby command, the traffic lights were not always set to attention mode, as required
by the specification. When a traffic light had been in released or preparing for block mode, it had passed through
blocked mode before setting its state to attention mode. Furthermore, a new command was required to move from
blocked to attention mode. To make the implementation compliant with the specification, we have fixed the inconsis-
tency. Once standby command is received by the controller, both traffic lights are set simultaneously to attention mode.

F I GURE 9 How does the testing effort depend on the refinement level?
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In the IEEE 11073-20601 Antidote protocol implementation, we have found a few mismatches in some of the test
executions, namely the actual response from the manager was different from the expected, according to the model. We
have analysed these inconsistencies, and most of them turned out to be real bugs in the implementation, with respect to
the protocol specification. The main faults we have found and fixed are:

F I GURE 1 0 A test sequence execution, and coverage report, with ProTest [19]

TABLE 8 Coverage reached by the models obtained without the use of refinement

Model Test generation strategy

Test sequences Code coverage

# Test predicates
#

steps

sequences min max total avg statement function branch

TLCSnr basic rule 13 1 6 28 2.15 84.1% 86.4% 58.5% 13

complete rule 1 2 2 2 2.00 60.7% 53.1% 36.3% 1

rule update 7 1 6 22 3.14 84.4% 86.4% 60.0% 7

rule guard 14 1 6 33 2.36 84.4% 86.4% 60.0% 14

MCDC 21 1 6 53 2.52 84.1% 86.4% 58.5% 28

2-wise 24 1 1 24 1.00 52.9% 40.7% 29.6% 24

3-wise 12 1 1 12 1.00 52.6% 39.5% 29.6% 20

all criteria 92 1 6 174 1.89 84.4% 86.4% 60.0% 107

PHDnr basic rule 37 1 5 122 3.30 34.0% 51.2% 28.3% 76

complete rule 0 — — — — — — — 0

rule update 0 — — — — — — — 0

rule guard 38 1 5 126 3.32 33.8% 51.2% 23.2% 76

MCDC 69 1 5 237 3.43 42.2% 60.4% 29.0% 152

2-wise 28 1 4 67 2.39 33.6% 50.0% 24.1% 44

3-wise 0 — — — — — — — 0

all criteria 83 1 5 298 3.59 42.4% 60.4% 29.0% 272

MVMnr basic rule 65 1 45 491 7.55 81.8% 77.6% 92.2% 75

complete rule 2 1 1 2 1 24.8% 9.0% 28.4% 2

rule update 63 1 45 906 14.38 80.0% 77.3% 87.0% 84

rule guard 98 1 45 942 9.61 79.5% 76.2% 87.0% 121

MCDC 185 1 73 2683 14.50 81.7% 81.2% 87.0% 264

2-wise 420 1 1 420 1.00 29.5% 12.3% 33.3% 420

3-wise 1592 1 1 1592 1.00 27.0% 10.5% 28.1% 3640

all criteria 2425 1 73 7036 2.90 81.7% 81.2% 87.0% 4606
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• The specification of the standard IEEE 11073-20601 requires rx_abrt as response for the sequence “unassocciated +
req_assoc_abort”. The original Antidote implementation used “no response” instead. The fault has been revealed by
the first model (ASM1) and we have fixed it by modifying the response provided by the manager in the Antidote
code.

• The sequence “checking_config + rx_aarq ! rx_abrt” caused a transition mismatch. In the code, three transitions
for subtypes of event rx_aarq_* were implemented, but the case when rx_aarq message was received in state check-
ing_config was missing. This bug means that the Antidote Manager only responded to three subtypes of event
rx_aarq_*, but it did not respond to rx_aarq itself. The fault has been revealed by the first refinement (ASM2). Since
the IEEE specification requires “rx_abrt” as response when an unexpected message is received by the manager, we
have added the transition “checking_config + rx_aarq! unassociated + rx_abrt” into the Antidote manager state
table.

• The sequence “disassociating + rx_rors ! unassociated + rx_abrt” was erroneously implemented in the previous ver-
sion of Antidote. Indeed, the answer was “no response” when a valid invoke-id was provided, but the IEEE specifica-
tion always requires “rx_abrt” as response for this message. The fault has been revealed by the third refinement
(ASM4) and we have fixed it by modifying the manager response.

• The original implementation of Antidote did not check the invoke-id contained into “rx_roer” and “rx_rorj” mes-
sages. The official IEEE specification requires “rx_abrt” as response to these two messages when the invoke-id is
invalid, and “no response” otherwise. The bug has been revealed in the last refinement (ASM7) and we have fixed it
by adding a function that checks the value of the invoke-id to decide the type of response to provide.

Figure 10 shows an example of test case execution in ProTest, ending with a conformance error between the model
and the implementation, denoted by a red cross in the tool.

We have refactored the original implementation in order to improve testability and corrected the bugs we found as
explained. A new modified version of Antidote without the bugs we fixed is available7. Furthermore, we have found
that the state Associating is not part of the Antidote FSM table, since it was joined together with Unassociated state. In
order to make our process work, we had to ignore this state also in the ASMs, but we believe that this is an implementa-
tion fault due to oversimplification done by the Antidote team, and we plan to fix this issue in the next releases of
Antidote.

Finally, for the MVM case study we have identified a conformance fault by executing tests generated from ASM1.
In all the states in which the ventilation is off (startup, self test, and ventilation-off) the poweroff command is sup-
posed to have a higher priority than all the other commands. However, by applying RATE, we have discovered that

7https://github.com/fmselab/antidote3

TABLE 9 PIT Score obtained for the TLCS case study

Ref. Mutation Score RATE [%] Mutation Score manual [%]

ASM1 56.00 16.00

ASM2 75.00 38.00

ASM3 82.00 40.00

ASM4 83.00 45.00

TLCSnr 80.00 46.00

TABLE 1 0 Mutation Score obtained for the PHD case study

Ref. Mutation Score RATE [%] Mutation Score manual [%]

ASM1 20.00 20.00

ASM2 26.67 26.67

ASM3 40.00 40.00

ASM4 40.00 40.00

ASM5 40.00 40.00

ASM6 100.00 100.00

ASM7 100.00 100.00

PHDnr 100.00 100.00
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the implementation of the MVM controller was not giving the expected precedence to input events. For this reason we
have investigated the real system, and we have discovered that the revealed fault is not a real fault, since with the real
system it is not possible to have two events at the same time. However, we have proposed a fix for the code of the
MVM controller in order to be compliant with the specification and the new version is planned to be deployed in the
next release of the product.

In conclusion, in all the case studies, we were able to identify several faults or possible conformance errors even
before reaching the last refinement. This shows that RATE can help the designer in pinpointing a bug when models are
simpler than modelling the entire system once, and that a complete specification may not be needed to find faults. If a
fault is found, we know it must be caused by the refinement increment, i.e., we only need to check the code implement-
ing the behaviours introduced in the last refinement step. This does not exclude the fact that faults can be found given
directly the complete specification, but more effort is required because it is not possible to easily isolate where the error
is, due to the complexity of the specification.

6.9 | RQ7 Impact of refinement in RATE with mutation analysis

Mutation testing has been executed for each case study as explained at the beginning of Section 6, and using the tests
generated with the all criteria strategy.

The results of the mutation analysis are reported in Tables 9, 10, and 11.
For the TLCS case study, more than half of the total mutants generated by PITest could be killed with tests

generated from the first model ASM1.
By inspecting the code and mutants which have not been covered, we have discovered that the main reasons for

which the mutation score is not 100% are related to two different factors. First, some of the methods that are supposed
to return a value (mainly boolean) are called without checking the returned value, so mutations involving the change of
the returned value can not be killed. Second, given that the code coverage is not 100%, possible mutations in part of the
code not covered by the tests can not be revealed. Furthermore, we highlight that tests automatically generated with the
RATE approach guarantee higher mutation scores than that obtained with manual tests.

For the PHD case study, on the contrary, a mutation score of 100% has been obtained with the last refinement
steps. Indeed, from the results in Table 10, we can notice that even if the coverage for the PHD is lower than the one
obtained with the TLCS, the obtained mutation score is higher. This is because, with the custom mutation tool, we per-
form changes in the code which are more focused on the same aspects we modelled in our ASMs, from which tests are
derived. Furthermore, we have noticed that tests automatically generated with the RATE approach guarantee the same
mutation score as that obtained with manual tests.

Finally, for the MVM the results are slightly different from the two previous analysed case studies: the majority of
the faults are revealed only with ASM4. This is justified by two different aspects. First, MVM is a system with a higher
complexity than the TLCS and PHD, so covering all code is more difficult. In fact, despite the coverage is higher than
the TLCS and PHD, a full coverage has not been reached even in this case. Second, an important part of a medical
device is the management of alarms and boundary conditions that are introduced only with the last refinement level.
So, mutations changing the transitions in these states are only revealed with ASM4. Furthermore, we have noticed that
tests automatically generated with the RATE approach lead to a mutation score comparable to that obtained with
manual tests, as in the first two levels only an additional mutation is killed by the automatically generated tests, while
for the other levels the same mutations are killed.

From these considerations, we can conclude that, in the most of the cases, modelling by refinement and executing
tests level by level can be considered an effective manner to discover faults even at the beginning of the process and
intervene when they are more easily fixable. Note that, also in this case, the final ASMs perform as well as those
obtained without model refinement (TLCSnr, PHDnr, and MVMnr) and automatically generated tests lead to better or
equal mutation score than the manual ones.

TABLE 1 1 Mutation Score obtained for the MVM case study

Ref. Mutation Score RATE [%] Mutation Score manual [%]

ASM1 18.85 17.21

ASM2 31.15 30.33

ASM3 31.15 31.15

ASM4 100.00 100.00

MVMnr 100.00 100.00
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6.10 | Threats to validity

Some potential threats to the validity of RATE are presented as follows.

6.10.1 | Non-determinism of test generation strategies

Although in theory the test generation is non-deterministic because there is some non-determinism in the models (due
to the inputs taken from the environment and possible use of internal non-determinism), in practice we observed that
the test sequences do not change due to the way the model checker operates and how the ASM models are translated in
the model checker language. In the future, we may extend the test generation algorithm to introduce some grades of
freedom and hence some variations in the generated test cases.

6.10.2 | Measuring testing effort

To measure testing effort we have used the number of test sequences, the number of steps in the test sequences, and the
number of test predicates. We believe that these measures can show better the impact of refinement; indeed they gener-
ally increase at each step of refinement because the specification becomes more complex and covers more details of the
modelled system. Another possible effort measure is the time required for performing testing activities. However, in this
paper we consider the time required directly proportional with the number of steps and of sequences. In the future, we
may better investigate this relation.

6.10.3 | Controlling the test suite size

In our experiments we do not control the test suite size, which depends on the used testing criteria and the refinement
level. This mimics a real scenario in which the user can choose only these two parameters (changing test strategy and
adding details to the model). However, the effectiveness of a test suite could depend on its size, as often observed in the
literature. We plan in the future to investigate this matter, for example by trying to compare test suites with equal size
where one is generated by some testing criteria and one is built randomly. Although this is currently outside the scope
of this paper, we believe that these experiments could confirm the validity of a systematic model-based testing
approach.

6.10.4 | Mutations are not real bugs

Some bugs were suggested by the mutation tools (like PIT for TLCS) because, based on the literature [23], there is some
correlation between mutants and real faults (but this is outside the scope of this paper). In the other two case studies
(PHD and MVM) we have preferred to insert bugs in the code more specific to faults like omission or errors in transi-
tions among states, which are the most common errors when developing this kind of systems [24].

6.10.5 | Generalization of the results

This paper and its use of the case studies can be mainly classified as exploratory: finding out what is happening,
seeking new insights and generating ideas and hypotheses for new research and explanatory: seeking an explanation
of a situation or a problem [25]. The three case studies were selected intentionally, because they needed to have cer-
tain characteristics (like implementation availability), but they differ in terms of size, structure, number of refine-
ments, language of implementation, and test execution techniques. However, there is a threat to validity regard to
what extent it is possible to generalize the findings, and to what extent the findings are of interest to other people
outside the investigated cases [26]. Moreover, we have presented only a descriptive statistics, such as mean values
and scatter plots, which are used to get an understanding of the data that has been collected because there is no
population from which a statistically representative sample can be drawn. Nevertheless, the intention of this study is
to enable analytical generalization where the results are extended to cases which have common characteristics and
hence for which the findings are relevant.
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6.10.6 | Human involvement

In several points, the unavoidable human involvement impacts the results of our experiments:

(A) application of the refinement (RQ1-3),
(B) writing the manual tests (for RQ4), and
(C) writing the specifications without refinement (for RQ5)

. Regarding 6.10, there is the risk that we could have applied too fine-grained or, on the contrary, too coarse refine-
ments and this may impact the testing activities and their evolution during refinement. To avoid this, we have carefully
checked that every refinement step actually introduces a reasonable number of improvements in terms either of number
of functions or rules (Tables 1,2, and 3). We then checked that the testing effort progresses regularly (for instance as in
Figure 9). The only situation which alerted us, is the refinement from ASM4 to ASM5 for the PHD case study. By a
deeper analysis, we found that refinement is justified by the introduction of a behaviour very important for the connec-
tion procedure. Regarding 6.10, the quality of manual tests depends on the ability of the tester to cover more or fewer
behaviours of the ASM specification. To mitigate this risk, we decided to write the manual tests systematically, by cov-
ering all the transitions of the state machines presented in Section 3. Finally, regarding 6.10, in RQ5, we have compared
the use of manual specifications and the use of specifications obtained by applying RATE, and we have registered sev-
eral differences. However, we want to exclude that these differences are due to the fact that one specification contains
faults or it is incomplete, i.e., we want to be sure that both of them capture equally the desired behaviour. To verify this,
we have cross-validated the specs: we have generated the tests from one and validated against the other, as explained in
Section 6.7.

6.10.7 | Equivalent mutants

In RQ7, we apply mutation analysis and rely on mutation score to evaluate and compare the proposed approaches.
However, equivalent mutants may reduce the significance of the mutation score. We have tried to minimize their impact
on our conclusions in two ways. First, we have tried to avoid, when possible, the use of the mutation score as absolute
value, and we favour its use to compare techniques. In case of comparison between two approaches, equivalent mutants
are not so relevant, since they reduce the mutation score equally for both approaches. Second, we try to generate as few
equivalent mutants as possible. PITest, used for the TLCS case study, automatically filters mutants in order to reduce
the number of equivalent mutants8. For the MVM and PHD case studies, we perform mutations with our script that
has been designed for avoiding the generation of equivalent mutants; indeed, we are able to kill all the mutants in both
case studies.

7 | RELATED WORK

Refinement is often used in combination with formal methods [14] since it helps the user to deal with changes and new
requirements, and to incrementally model complex systems. Refinement techniques have been proved to be a viable
solution for developing and testing safety-critical systems, for instance, by using ASMs [27] or Event-B [28]. Our paper
assumes that refinement techniques offer advantages at least when modelling [29-31].

There are already some works that combine refinement and testing. In [32] the authors introduce the tool-set
ARME (automated refinement of models fo MBT using exploratory testing) in order to automatically refine system
models based on exploratory testing performed by test engineers. Then models are used to regenerate test cases to incor-
porate any omitted system behaviour, and test cases are executed on the SUT in order to detect critical faults. In [33]
the authors derived the state machine model starting from tests. State machine models are automatically derived from
the implementation, then tests are derived and executed on the SUT. If there are discrepancies the model is inferred
from the test traces. The process continues until no further discrepancies are found by testing. The approaches presented
in both papers [32,33] differ from RATE, because their main goal is to use test cases in order to obtain system models
which replicate the system behaviour as correctly as possible.

In [34,35], tests are automatically refined instead of generating them from refined models as proposed by RATE.
More in detail, in [34] the authors refine the models and derive from the last refinement step the system implementation.
Then tests are unfolded into the executable test cases that are then applied to the SUT. In [35] tests are obtained from

8https://pitest.org/quickstart/mutators/
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the model using atomic action refinement, and an abstract action is replaced by more complex behaviour. Moreover,
considering the refinement as a model evolution, there are approaches that generate tests considering the evolution of
the models in order to avoid the complete regeneration of the test cases [36,37]. In [38], tests are refined together with
the ASM specification in order to speed up the test generation phase. All these techniques and methodologies focus on
the test generation phase, overlooking the refinement phase, while RATE tries to combine both phases, refinement and
testing. A possible extension of RATE could make use of these techniques to speed up the test generation after each
refinement is applied.

Here we have applied RATE using ASMs, but it can be generalized to other formalisms that can automatically gen-
erate test sequences from the models. For example, test sequences can be derived from FSMs, such as in [39,40], from
extended finite-state model [41] or from timed-automata [42,43]. Furthermore, depending on the formalism used to
model the system, different testing criteria can be applied, for example, transition [42], fault-based [43], and
requirement-based [44] coverage criteria. These formal methods, however, do not envisage a systematic refinement
method while RATE is based on it.

Regarding testing safety-critical systems, a rigourous development process should be applied, and conformance test-
ing is a key part of this process [45]. More generally, formal methods are widely used in safety-critical systems for test
case generation [46]. Other examples of conformance testing application to safety-critical systems include those on the
HL-7 medical protocol standard [47] and the general conformance testing for the IEEE 11073 PHD protocol proposed
by Yu et al. [19]. In this paper, we have shown that RATE can be successfully applied to safety-critical systems, such as
the three proposed case studies.

8 | CONCLUSION

In this paper, we have presented the RATE approach and its application to three case studies, extending the testing
framework presented in [7]. With RATE, starting from an initial model of the system, further refinements are per-
formed by following the testing results of the previous refinement. Tests are derived from Avalla scenarios written
manually during validation or automatically generated from the model using the ATGT tool. Tests are then executed on
the code implementation to obtain coverage information. Coverage data are used to identify system features or behav-
iours that are not captured in the model. These missing features or behaviours are then added into the next refinement,
independently of the implementation. Step by step, using the model refinement technique, the tester can verify the com-
pliance of the actual implementation with respect to the specification of the SUT.

The RATE approach has been applied to three different case studies, that is, a traffic light control system, the IEEE
11073 PHD’s communication protocol, and the MVM, and we have shown that RATE leads to satisfactory testing
results. In particular, through a series of experiments, we have shown that with RATE we were able to reach good code
coverage and discover faults in the implementations even with the first ASMs in the refinement. Coverage information
collected during testing has guided the refinement and this has allowed to increase step by step the coverage of the
implementation.
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