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Abstract. We introduce a formal framework to provide an efficient
event-based monitoring technique, and we describe its current imple-
mentation as the MahaRAJA software tool. The framework enables the
quantitative runtime verification of temporal properties extracted from
occurring events on Java programs. The monitor continuously evaluates
the conformance of the concrete implementation with respect to its for-
mal specification given in terms of Time Basic Petri nets, a particular
timed extension of Petri nets. The system under test is instrumented by
using simple Java annotations on methods to link the implementation
to its formal model. This allows a separation between implementation
and specification that can be used for other purposes such as formal
verification, simulation, and model-based testing. The tool has been suc-
cessfully used to monitor at runtime and test a number of benchmarking
case-studies. Experiments show that our approach introduces bounded
overhead and effectively reduces the involvement of the monitor at run
time by using negligible auxiliary memory. A comparison with a number
of state-of-the-art runtime verification tools is also presented.

Keywords: Runtime verification · Formal methods @ runtime · Timing
analysis · Temporal properties · Petri nets

1 Introduction

Software systems are increasingly employed in most domains and activities,
including safety critical ones. Therefore, the society increasingly relies on soft-
ware, and unreliable or unpredictable behavior is becoming less and less toler-
ated. As a consequence, over the past years, the validation of software systems
has become an increasingly important and active research area.

Event-based runtime verification [1] is the monitoring of running programs to
verify the occurring events against the requirements. A particularly challenging
aspect is the monitoring of temporal properties in the presence of strict time
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constraints. In fact, monitoring at runtime introduces overheads on the System
Under Test (SUT) that may affect the correctness of the verified properties.

In this paper, we introduce a formal event-based runtime verification frame-
work and we describe its current implementation as a Java software tool, so
called MahaRAJA1. This framework enables the monitoring of Java programs,
by evaluating the conformance of the concrete implementation with respect to
its formal specification given in terms of Time Basic (TB) Petri nets [2] (or sim-
ply TB nets), a powerful temporal extension of Petri nets (PNs) for modeling
concurrent/distributed systems with real-time constraints.

Although descriptive formalisms are very popular in runtime verification
[3], the adoption of operational specifications, like in our approach, offers some
advantages with respect to declarative specifications [4,5]. They are usually eas-
ier to write, visualize, understand, and allow for step-wise model refinement [6].
Moreover, although other operational formalisms such as timed-automata [7] or
finite-state-machines [8] support the modeling of temporal or behavioral aspects,
PNs-based approaches can be more concise and easier to use [9]. Furthermore,
aspects such as messaging, communication protocols, which are commonly used
in concurrent or distributed systems, can be difficult to model with the language
primitives of timed-automata [10,11]. Finally, despite several state-based, logic-
based, and event-based notations have been used for runtime verification [1], our
work is the first attempt (to the best of our knowledge) exploiting the expres-
siveness of the TB nets for verifying temporal properties at runtime.

The MahaRAJA framework requires the SUT to be instrumented by using
simple Java annotations on methods, in order to link the implementation to its
formal model. Then, at runtime, the execution of the events of interest triggers
the conformance verification of temporal properties. Rather than using heavy
offline computation to predict the generation rate of possibly invalid events to
estimate the maximum detection latency [12], we use an online approach that
focuses on maintaining the analysis as lightweight as possible. MahaRAJA
operates on and in conjunction with the SUT and it performs data collection
and processing asynchronously with the SUT execution. The monitor and the
SUT run concurrently on separated CPU cores using a buffer-based mechanism
for communication. Our approach tries to bound the cost of executing the SUT
instrumentation by having a bounded number of instructions executed upon
the generation of possible invalid events. This runtime verification procedure is
highly scalable because it does not depend on the size of the entire state space
(often far larger than the model size [13]). It operates using just an occurring
event and the 1-step reachability set of the current model’s state, thus using
limited extra memory.

The tool has been applied to a number of benchmarking case studies [14]
and we experimentally evaluated the runtime overhead, making it possible for
a system designer to reason about the timing constraints of the SUT. The
experiments show that MahaRAJA introduces limited monitoringoverhead and

1 Monitoring at Runtime of temporAl properties on Java Applications.
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limited detection latency, thereby opening up the possibility to adopt a fast
failing approach or implement a self-healing procedure [15] in a latency-aware
adaptation setting.

The paper is organized as follows. Section 2 introduces the proper background
on TB nets. Section 3 introduces the formalization of our technique and Sect. 4
describes our current software implementation. Section 5 introduces our exper-
imental evaluation of the runtime overhead, making it possible for a system
designer to reason about the timing constraints of the SUT. Section 6 compares
our monitoring framework with a number of state-of-the-art runtime verifica-
tion tools, thus showing both advantages and disadvantages of our framework.
Finally, Sect. 7 presents our conclusion and future directions of our work.

2 Background on Time Basic Nets

This section briefly introduces the TB nets formalism by means of a running
example, i.e., the timed producer/consumer (P/C) model reported in Fig. 1.

TB nets are a formal model for distributed systems with real-time constraints.
This modeling formalism is more expressive then other temporal extensions of
PNs and it supports both time and functional extensions in a semantically clear
and rigorous way [2]. Thus it represents an effective formal model to deal with
specification of highly concurrent systems with real-time constraints.

The structure of a TB net [2,16] is a bipartite graph N = (P, T, F ), where
P is the finite set of places (i.e., system state variables), T is the finite set of
transitions (i.e., events causing state changes), F ⊆ (P × T ) ∪ (T × P ) is the
flow relation. The pre/post-sets of t ∈ T are •t= {p ∈ P : (p, t) ∈ F} and
t•={p ∈ P : (t, p) ∈ F}, respectively.

P2

P1

Buffer

Produce

C2

Consuming

CTask

Consume-e

PRODUCER CONSUMER

PTask
C1

Consume-s

Initial marking: m0 : P1{T0}, C1{T0}, T0 = 0

Time functions:
PTask [P1 + 1000, P1 + 2500]
Produce [P2, P2 + 1000]
Consume-s [C1, C1 + 1000]
Consume-e [max(Buffer, Consuming+1000), max(Buffer, Consuming+1000) + 5000]
CTask [C2 + 1000, C2 + 2000]

Fig. 1. Producer-consumer TB net model.



118 M. Camilli et al.

The P/C example describes two processes that asynchronously interact
through the place Buffer. After producing (respectively, consuming), the two
processes perform some local activity (i.e., PTask and CTask).

In TB nets, tokens are enriched by timestamps recording their creation time.
Each place can contain a multiset (bag) of tokens2. A marking (i.e., a represen-
tation of the system state) is a mapping m : P → Bag(R≥0), that associates
time-stamps to tokens in places (e.g., m0 in Fig. 1).

Time constraints are associated with transitions: two (linear or linearizable)
functions associated to each transition t define the lower and the upper bounds
([lb, ub]t) of the interval of real values representing its possible firing times (e.g.,
[P1 + 1000, P1 + 2500] associated with PTask). Tokens produced by the atomic
firing of a transition are time-stamped with the same value. The actions of
removing and creating tokens are performed instantaneously.

A binding of t is a function bt : •t → R≥0 that represents a set of time-stamps
possibly causing t to be fired. The numerical interval fbt : [lb(bt), ub(bt)] holds
the possible firing times for bt and it is evaluated by replacing each occurrence
of a place p (free variable) with bt(p).

For instance, consider the transition Consume-e and the following binding:
bConsume-e: {Buffer → 2000, Consuming → 2500}. According to the time function
of Consume-e, the firing times range over [3500, 8500].

Starting from the marking m, a binding bt is enabled if and only if fbt �= ∅.
A firing instance of t is a pair (bt, τ) composed of an enabled binding and a real
value τ ∈ fbt . The firing of t results in a new marking m′:

∀p ∈ P,m′(p) = m(p) − ibt(p) + oτ
t (p)

where ibt(p) is 1 · bt(p) if p ∈ •t, the null bag otherwise, oτ
t (p) is 1 · τ if p ∈ t•,

the null bag otherwise, and +,− operators are extended to bags. This is denoted

m
(bt,τ)−→ m′.
For instance, the binding bConsume-s: {C1 → 0} is enabled in the marking m0.

Thus, the firing instance (bConsume-s, 450) is valid. The firing process produces a
new marking m1. In particular, it withdraws the token from place C1 and it puts
a fresh new token, time-stamped with the value 450, into Consuming.

The interval fbt can be interpreted in two different ways. The weak seman-
tics states that t can fire at any instant in fbt . The strong semantics instead
states that t must fire at any instant in fbt , unless it is disabled by a conflicting
transition fired before the upper bound of fbt (refer to [2] for the details). Our
running example adopts a strong semantics.

The marking mn is reachable from m0 if and only if there exists a path σ
(sequence of firing instances and markings) such that:

σ = m0

(bt0 ,τ0)

−−−−→ m1

(bt1 ,τ1)

−−−−→ m2, . . . ,mn−1

(btn−1 ,τn−1)

−−−−−−−−→ mn

The transitions associated with the enabled bindings in m are called enabled
transitions and they are denoted by enab(m).
2 b ∈ Bag(X) is a map X → N, formally expressed as a weighted sum of X elements.
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3 Event-Based Runtime Verification

This section introduces the formalization of our event-based monitoring app-
roach. In order to abstract the behavior of a running program P, let us introduce
the observable components of P, so called action methods.

Definition 1 (Action method). Given a program P, an action method is
a subroutine performing a specific task, such that its execution is observed at
runtime.

The action methods are the events of interest that we want to observe and
verify with respect to the expected behavior provided in terms of a TB net formal
specification. During the execution of P, we extract temporal information from
the action methods depending on their own action time.

Definition 2 (Action time). Given a program P and a set of action methods
A, the action time function Γ maps action methods in A to a non empty set of
elements in T = {initial, final}.

Intuitively, the action time determines the moment (i.e., time instant) at
which we want to observe the action methods. Γ (a) = {initial}, implies that
a is observed at its own invocation time. The temporal information extracted
from the execution of a is a timestamp representing the initial time. Similarly, if
Γ (a) = {final}, a is observed at its own final time; if Γ (a) = {initial, final},
a is observed both at invocation and termination time.

Given the observable components and the action time function, we use the
notion of timed trace to abstract the behavior of a running real-time system.

Definition 3 (Timed trace). Given a program P and a set of action methods
A = {a0, a1, . . . , am}, a timed trace is a finite sequence of events π = e0, e1, . . . , en,
such that each event e ∈ π is a triplet 〈a, g, v〉, where:

– a ∈ A is the action method that triggers the event. We denote it with α(e).
– g ∈ Γ (a) is the moment associated with the event. We denote it with γ(e).
– v ∈ R>0 is the timestamp associated with the event. We denote it with ρ(e).

As an example, consider the code excerpts reported in Fig. 2. They represent
a Java implementation of the Producer and the Consumer, respectively, in a
simple producer-consumer program. The Consumer calls the consume method
that retrieves and removes a Data object from the Buffer, waiting if necessary
until an element becomes available. Then it performs some additional tasks using
the new element through the consumerTask method. The Producer creates a
new Data object through the producerTask method and then it pushes the
element into the Buffer.

The set of action methods is defined as A = {produce, producerTask, con-
sume, consumerTask}, while the action type function is Γ : {produce → {final},
producerTask → {final}, consumerTask → {initial}, consume → {initial,
final}}.
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The rationale behind the Γ function is explained by means of the following
example. Both the produce (Fig. 2, line 8) and the producerTask (line 12) action
methods maps to {final} action time. In fact, the two action methods affect
the behavior of the program at the end of their own execution: the producerTask
method creates a new data element that becomes available at the end of the
method execution; the produce puts the new data element into the buffer data
structure and then terminates itself. Therefore, we want to observe only the final
time of these action methods. Instead, the consumerTask action method (Fig. 2,
line 13) processes the new data by launching an external asynchronous task. In
this case we are just interested in knowing whether the external task is called in
due time. Therefore, the consumerTask maps to {initial} action time. Finally,
the execution of the consume action method (Fig. 2, line 8) causes the program
to wait until a new element becomes available, which is consumed and returned
at the end of the method execution. Hence, for each (multiple) execution of the
consume action method, we want to observe both the initial and the final time.
In fact, we may want to check that the consumer does not wait for available data
more than a specific time limit.

The execution of the producer-consumer program can generate, for instance,
the timed trace π reported in (1).

π = e0 : 〈consume, initial, 450〉,
e1 : 〈producerTask , final, 1100〉,
e2 : 〈produce, final, 1205〉,
e3 : 〈consume, final, 1650〉,
e4 : 〈consumerTask , initial, 2886〉.

(1)

It is worth noting that consume occurs twice in π. In fact, the Γ function maps
the consume action method both to initial and final, thus its own execution
generates two different events timestamped with the initial and the final time,
respectively.

Fig. 2. Java implementation of the Producer and Consumer.
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Another important observation is that the program can perform inside the
action methods different nested methods calls not belonging to A, therefore these
are not observed at runtime. This allows us to build timed traces with different
levels of granularity.

The construction of a timed trace is formalized as follows.

Definition 4 (Timed trace construction). Given a running program P, the
set of action methods A and the action time function Γ , the timed trace π is
constructed from the execution of each a ∈ A such that:

∀g ∈ Γ (a), 〈a, g, v〉 ∈ π,

where v is the timestamp associated with the moment g.

The timed trace constructed following Definition 4 includes only the events
of interest defined by the action methods and the action time function.

To formalize the conformance relation between a running program P and its
formal specification, let us introduce first the notion of action method mapping.

Definition 5 (Action method mapping function). Given a TB net struc-
ture (P, T,E) and the set of action methods A associated with the program P,
the action method mapping function Λ associates each element a ∈ A and each
moment g ∈ Γ (a) to a transition Λ(a, g) ∈ T .

We use this mechanism to bind action methods in the implementation to
transitions in the model. This way, the conformance verification can be per-
formed by checking that all the events of a timed trace correspond to feasible
firing transitions in the formal specification. The formalization is reported below:

Definition 6 (Path Conformance). Given a timed trace π and an execution
path σ of a TB net model, there exists a conformance relation between π and σ
iff. for each ei ∈ π, there exists mi ∈ σ such that:

(i) Λ(α(ei), γ(ei)) = ti (i.e., ei is mapped to transition ti)
(ii) ρ(ei) ∈ fbti

(i.e., the timestamp of ei belongs to the firing times of ti)

Definition 7 (Model Conformance). Given a timed trace π and a TB net
model N and the Λ function, there is a conformance relation between π and N
iff. there exists a feasible execution path σ of N , such that π conforms to σ,
according to Λ.

For example consider the timed trace π introduced in (1) and the following
definition of the mapping function Λ :

Λ(producerTask , final) = PTask Λ(produce, final) = Produce
Λ(consume, initial) = Consume-s Λ(consume, final) = Consume-e
Λ(consumerTask , initial) = CTask

In this case, there exists a conformance relation between π and the producer-
consumer TB net reported in Fig. 1. In fact, from the initial marking m0 the
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transition Consume-s is enabled with the following binding bConsume-s: {P1 → 0}.
The timestamp ρ(e0) = 450 belongs to fbConsume−s

: [0, 1000], thus we observe a
valid event, and we can compute the next marking m1, reachable from m0 by
firing the Consume-s transition at time 450.

m1 : P1{T0},Consuming{T1};T0 = 0, T1 = 450.

The transition PTask is enabled from m1 by the binding bPTask: {P1 → 0}.
The timestamp 1100, associated with the second event e1 belongs to fbPTask :
[1000, 2500], thus we observe a valid event, and we can compute the next marking
m2, reachable from m1 by firing the PTask transition at time 1100.

m2 : P2{T1},Consuming{T0};T0 = 450, T1 = 1100.

And so forth, until we process the last action method. The complete path σ,
such that π conforms to σ is:

m0

(bConsume-s,450)−−−−−−−−→ m1

(bPTask,1100)−−−−−−−−→ m2

(bProduce,1205)−−−−−−−−→ m3

(bConsume-e,1650)−−−−−−−−→ m4

(bCTask,2886)−−−−−−−−→ m5

4 The MahaRAJA Framework

We implemented the runtime verification technique presented in the previous
section as a Java library3. The main component of the library is the Monitor,
i.e., a system that observes and analyzes an executing SUT (Java program) in
order to verify its correctness by comparing the observed behavior (i.e., ordered
timed trace) with an expected behavior (i.e., feasible execution path) of the TB
model given in input as a PNML file [18]. The model can be easily generated
using a graphical user interface that allows the user to create and edit arbitrary
complex TB net models through simple drag and drop gestures.

The input program is linked to the formal specification exploiting the mech-
anism of Java annotations to map action methods to corresponding transitions
(i.e., the mapping function introduced in Definition 5). The Monitor is executed
in a separated thread and is composed of the following modules: the Observer,
the Analyzer and the Executor.

The Observer module makes use of AspectJ [19] to observe code execution
and trigger the verification of the conformance relation, performed by the Ana-
lyzer component. The framework defines a set of annotations4 used to define
the Γ action type function and the Λ action methods mapping function. The
following annotations were inserted into the producer-consumer program:

3 The source code, binaries, and some runnable examples can be found at [17].
4 They are recorded in class files by the compiler and retained by the virtual machine

at run time, so they can be read reflectively by the Observer component.



Event-Based Runtime Verification of Temporal Properties 123

Algorithm 1. Conformance verification procedure
1: function verify(m, e)
2: conformance = False
3: if Λ(e) ∈ enab(m) then
4: τ = ρ(e)
5: for all 〈bt, fbt 〉 ∈ enab(m) s.t. t = Λ(e) do

6: if τ ∈ fbt then

7: m′ = computeNext(m, t, τ)
8: addNext(m′)
9: conformance = True
10: end if
11: end for
12: end if
13: return conformance
14: end function

As an example, the @AroundType annotation maps the consume action
method to {initial, final} action times, thus observable both before and after
its own execution. For each invocation we observe two events: the first event is
bound to the trI transition; the second event is bound to the trF transition.

The execution of the methods annotated by @BeforeType, @AfterType and
@AroundType are handled by @Before, @After and @Around AspectJ advice
types [19], respectively, to generate the proper inital and/or final observable
events. The Observer module inspects the execution of the SUT by using the
facilities of AspectJ and generate observable events into the event queue by
injecting additional code upon the execution of the action methods.

The Analyzer module incrementally builds the timed trace π through the ver-
ification procedure reported in Algorithm1. For each occurring event e, extracted
from the event queue, the Analyzer launches the verification procedure, passing
as argument the current marking m ∈ σ and the current event e. Thus, it verifies
that in the input model, the transition t, retrieved by applying the Λ function,
is enabled from the current marking m (line 3) and the time ρ(e) belongs to fbt

(line 6). If this condition holds, the Executor component updates the trace σ
(line 7) creating a new reachable marking with the proper timestamp ρ(e).

It is worth noting that, given an event e and a reachable marking m, there
can be multiple enabled bindings for the transition t (line 5). In this case, for
each binding, we compute a new reachable marking m′ and we put it into the
reachability set (line 8) representing all the valid next steps of σ. During the
construction of the σ path, for each event e it is fundamental to maintain the
entire 1-step reachability set for the transition t (instead of a single reachable
marking), in order to avoid false alarms (i.e., unreal inconsistencies between
the code and its specification) during the conformance checking. The Verify
function is executed for each marking in the reachability set. If there does not
exist any marking in the reachability set such that the verification procedure
is successful, the Analyzer does not verify the conformance relation between π
and σ, thus a conformance failure exception is thrown. This exception contains
useful information about the throwing action method, along with the timestamp
associated to this event and the set of enabled bindings (i.e., the expected events).
The Analyzer module do not need to store the full history of both π and σ, thus
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it requires limited extra memory. Moreover, the verification procedure is scalable
with respect to the SUT size, in fact its own time complexity (i.e., O(|enab(m)|))
does not depend on either the model size or the entire state space, but just on
the number of enabled bindings in the current marking.

To alleviate possible burst of the monitoring overhead, our framework makes
use of the Java Thread Affinity [20] library to separate the execution of
the SUT and the Monitor into different isolated CPU cores, decreasing the
latency caused by suspending and resuming important running tasks. Moreover,
MahaRAJA let the user define a tolerance that should be set to the expected
monitor invocation overhead. The tolerance allows two levels of risk to be defined:
warning and error corresponding to a timing constraint violation respectively
in- and outside the tolerance range. By default the tolerance is disabled, in fact,
its definition involves the evaluation of the monitor invocation overhead, which
is not an easy task and it strictly depends on the underlying hardware/software
environment.

In order to help the user to increase the confidence about the correctness of
the SUT, the MahaRAJA software tool can be used in conjunction with JUnit
to generate different monitored test cases. This way, the user can integrate our
runtime verification technique with assertions on variables and on specific goal
conditions, given in terms of time constraint (i.e., a logical predicate formed by
linear inequalities involving timestamps) on the observed timed trace [17].

The next section introduces our experimental results that could also be used
as a guide to evaluate the runtime overhead in order to reason about the timing
constraints of the SUT.

5 Experimental Validation

We validated the MahaRAJA framework by collecting data at runtime and per-
forming a testing activity on a number of real-time benchmarking examples [14]
summarized in Table 1: a simple producer-consumer (P/C) application, a cruise-
control (CC) system, an automated teller machine (ATM) software system, an
elevator (EL) controller and a factory (FA) automation distributed system.

Table 1. Case studies.

Case study |P | |T | SLOC Tasks Frequency

P/C 5 4 208 3 4,19

CC 11 16 1185 4 2,65

ATM 12 25 1409 3 1,57

EL 18 24 1231 5 1,12

FA 14 12 996 10 1,09

The model size is reported in terms of number of places (|P |) and number of
transitions (|T |). The SLOC column reflects the source lines of code number in



Event-Based Runtime Verification of Temporal Properties 125

the corresponding Java SUT. The tasks column contains the number of parallel
threads (or process in case of distributed computing) composing the SUT. The
frequency column reports the average number of monitor invocations per second.

The monitoring process ran in parallel with the SUT in a machine equipped
with a Intel Xeon E5-2630 at 2.30 GHz CPU, 32 GB of RAM, the Ubuntu 14.04.3
LTS (GNU/Linux 3.13.0-39-generic x86 64) operating system with a completely
fair scheduler [21], and the Java HotSpot 1.8 64-Bit Server virtual machine
using the Garbage-First (G1) collector tuned to avoid full runs5. Data about
runtime overhead is reported in this section. They were extracted from program
executions monitoring ∼106 events. The runtime overhead has been assessed
considering the following metrics.

– Monitoring Overhead: The monitoring overhead is caused by the AspectJ
instrumentation (AJO) and the monitor invocation overhead (MIO). Table 2
reports the average values (in μs) of these two different components, for each
running case study. The average AJO values, introduced by the invocation
of AspectJ advices, strictly depend on the byte code generated from the
annotated program by using the ajc compiler [19]. Generally, we observed a
lower AJO within @Before advices (i.e., events with initial action time)
and a higher AJO within @Arounde advices (i.e., events with both initial
and final action time). The order of magnitude of the measured AJO values
is approximately 10µs (see Table 2).
The MIO (i.e., the time required to enqueue an occurring event into the event
queue) does not depend on the action time. In general, both the MIO and the
AJO have the same order of magnitude, but the average MIO is 50% lower.
Thus, the overhead introduced by AspectJ dominates the overall monitoring
overhead. Although the distribution of the MIO values for different programs
are very similar, a different monitor invocation frequency (e.g., the CC fre-
quency is 47% lower than the P/C one) impacts on the average MIO. For
instance, the average P/C MIO is lower then the average CC MIO (approxi-
mately 16% lower).

– Jitter: The Jitter represents the deviance between the monitoring overhead
values. The results reported in Table 2 show that the order of magnitude of
the AJO jitter and the MIO jitter is the same (approximately 10µs). We
found that the AJO jitter, for all the action method types, is approximately
43% lower than the MIO jitter. While the AJO jitter strictly depends on the
behavior of AspectJ at runtime, the MIO jitter depends on the state of the
Monitor during the execution of the action methods. In fact, a suspended
Monitor causes a burst of the MIO due to the time required by resuming it,
during the enqueuing of an acton method into an empty event queue.

– Detection latency: Bounding the detection latency (DL) makes it possi-
ble for the Monitor to quickly recognize a conformance failure, thus making
the SUT able to promptly react to a degraded situation though a recovery
procedure.

5 Additional information about the configurations of MahaRAJA and the JVM is
available at [17].
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Table 2 reports the average DL in μs. Our experience indicates the follow-
ing trend: the higher the frequency is, the lower the DL is. This behavior is
caused by the overhead of resuming a suspended Monitor thread. In fact, a
low frequency implies an empty event queue almost all the execution time
long. In this case, it is very likely to observe the Monitor resumption upon
an incoming event. Therefore, although different programs lead to similar DL
distribution, lower monitor invocation frequency results in more scattered DL
values. The results obtained from our experiments show that MahaRAJA
reacts to a conformance failure with a DL of the order of 1 ms.

– Memory Overhead: The memory overhead is the space used by the Java
virtual machine to run and maintain the Monitor component. Table 2 shows
that MahaRAJA requires negligible auxiliary memory (few KBytes on aver-
age). Gathered data shows that this value is related to the monitor invocation
frequency: the higher is the frequency, the higher is the memory overhead. In
fact, a high frequency implies the accumulation of events into the event queue.

Table 2. Monitoring overhead experiments results.

Case study P/C CC ATM EL FA

AJO (µs) Before 43.8 48.5 45.0 44.5 50.1

After 59.0 51.5 47.4 52.3 52.8

Around 53.4 53.8 53.1 61.4 58.3

AJO Jitter (µs) Before 28.2 30.9 36.6 37.1 33.0

After 27.2 24.8 19.6 20.6 20.3

Around 22.8 12.5 26.2 27.6 34.5

MIO (µs) 28.0 23.6 24.0 23.0 24.1

MIO Jitter (µs) 45.5 45.4 44.8 50.4 45.7

DL (µs) 874.7 1221.9 1243.9 1274.4 1335.6

Memory (KB) 10838 5302 3503 2083 1734

6 Related Work and Comparative Evaluation

This section mentions the main approaches in the field of event-based runtime
verification, and reports also a qualitative comparative evaluation of these tools
for the runtime verification of Java programs. A preliminary quantitative com-
parison is available at [17].

CoMA [22] is a formal specification-based software tool that can continu-
ously monitor the behaviors of a target Java program and recognize undesirable
behaviors in the implementation with respect to its formal specification given
in terms of Abstract State Machines (ASMs). Java PathExplorer (JPaX) [23] is
a system for monitoring the execution of Java programs. The system extracts
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an execution trace (as a sequence of events) from a running program and veri-
fies that the trace satisfies certain (past and future) LTL properties. Monitored
bytecode is instrumented (by using JTrek) and an observer can check during run-
time that the properties are never violated. The Java Monitoring and Check-
ing (MaC) architecture [24] supplies two different specification languages: the
Primitive Event Definition Language (PEDL) and Meta Event Definition Lan-
guage (MEDL) allowing for a separation between the definition of the primitive
events of a system and the system properties. Instrumented programs send an
event stream to the event recognizer to identify higher-level activities, which are
in turn processed to find property violations. HAWK [25] is a programming-
oriented extension of the rule-based EAGLE logic [26] that has been shown
capable of defining and implementing a range of finite trace monitoring logics,
including future and past time temporal logic, extended regular expressions, and
state machines. It is implemented as a Java library able to perform monitoring
through a state-by-state comparison, avoiding to store the entire input trace.

Larva [27] is an event-based runtime verification monitoring tool for temporal
and contextual properties of Java programs. The technique implemented in Larva
makes use of dynamic communicating automata with timers and events (DATE)
to describe properties of systems.

Monitored-oriented programming (MOP) [3] allows the source code of the
SUT to be annotated with formal property specifications that can be written in
any supported formalism. The formal specifications are translated in the target
programming language. Thus, the obtained monitoring code can be used either
at runtime or offline by checking traces recorded by probes. In this case, the
violation handling mechanism is itself part of the design of the SUT, rather than
an additional component on top of the system.

The analysis technique in [12] tries to estimate the rate of possible invalid
occurring events and the maximum detection latency to realize predictable mon-
itoring schemas. However, this is not always applicable due to different patterns
in the occurrence of monitored events for different execution scenarios of the
SUT [28]. An alternative approach used to decrease the monitoring overhead
is time-triggered monitoring [28,29] which makes use of periodic sampling of
the SUT state and different strategies to reduce the monitoring overhead by
dynamically adjusting the sampling period.

Table 3 reports a comparative evaluation between MahaRAJA and some
representative state-of-the-art runtime verification software tools. The following
key features have been taken into account (for a more general comparison see [1]):

– formalism: it represents the formalism used to specify the SUT;
– operational/descriptive: it represents whether the tool uses a operational or

descriptive formalism;
– state/event-based : state-based monitoring approaches rely on a state-by-state

comparison, where a state stores the relevant data about the SUT;
– exceptions: it represents whether or not the user can express properties which

include exception handling;
– real-time: it refers to the ability to verify quantitative temporal properties;
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Table 3. Features comparison of different Java runtime monitoring tools.

Tool MahaRAJA Coma Larva Java-MOP Java-MaC Hawk JPaX

Formalism TB nets ASMs DATEs variousa PEDL, MEDL LTL, PLTL LTL, PLTL

O/Db O O O O, D D D D

S/Ec E S E E E E E

Exceptions � ✗ � ✗ ✗ ✗ ✗

Real-time � ✗ � ✗ � ✗ ✗

Variables ✗ � � � � ✗ ✗

Self-awareness � � � � � ✗ �
Testing � ✗ ✗ � ✗ ✗ ✗

aDepending on the plug-in: Finite State Machines, Regular Expressions, Context Free Grammar,

PLTL, LTL, String Rewriting Systems. bOperational/Descriptive formalism. cState/Event-based

approach.

– variables: it refers to the ability of monitoring value changes of variables;
– self-awareness: it refers to the capability of the monitoring system to return

feedback to the SUT upon failure;
– testing : it represents the possibility to use the facilities of the monitoring

framework to write test cases.

The results of our comparative evaluation show for each selected monitor-
ing tool, the explicit support for the considered features. As we can see, the
MahaRAJA framework has some interesting features, not directly supported
by other tools. For instance, it allows both the runtime verification and testing of
quantitative temporal properties. MahaRAJA does not support the monitoring
of variables (Coma, Larva, Java-MOP and Java-MaC have this feature).

7 Conclusion

We presented an event-based runtime verification approach and its supporting
tool MahaRAJA to verify temporal properties on Java programs. The proposed
framework adopts TB nets to represent the desired behavior of the SUT, includ-
ing real-time requirements. The designer annotates the source code to link Java
methods to transitions of the model. Then, MahaRAJA exploits AspectJ to
observe code execution and trigger the conformance verification at runtime. The
usefulness of the approach has been assessed by monitoring a number of real-
time benchmarking case-studies to discover both modeling and implementation
faults. MahaRAJA focuses on the monitoring of timed events and its main
limitation is that it does not support the monitoring of variables, although they
can be easily checked during testing activity using MahaRAJA in conjunction
with JUnit. Nonetheless, we believe that our approach represents a viable tech-
nique for checking temporal properties of Java programs with respect to their
formal specifications. Our experience shows that the monitoring overhead can
be numerically evaluated and we found AspectJ as the major bottleneck. For
this reason, we plan to replace AspectJ with other efficient bytecode transfor-
mation techniques [30]. The auxiliary memory used by the instrumentation is
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negligible and a preliminary quantitative comparison with other representative
state-of-the-art runtime verification software tools individuates MahaRAJA as
the less invasive [17]. The detection latency is also limited, thus allowing for a
prompt recover after a failure.

The quantitative evaluation lead us to consider MahaRAJA as a viable
light-weight pluggable tool to support the verification at runtime of real-time
self-adaptive systems [15,31]. We will explore this last topic in our future work.
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