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Abstract—Many researchers have been focusing on building
combinatorial test generators having the best possible perfor-
mances, in terms of smaller test suites and shorter generation
times. The majority of tools generates test suites from scratch.
This means that when the test suite must be regenerated, the old
tests are discarded and a new test suite is built. However, there
are many cases in which old test cases, possibly written by hand,
need to be (or could be) included in the final test suite, and the test
suite completed with new tests in order to reach the desired level
of combinatorial coverage. These existing tests that are reused
are generally called seed tests. Seed tests could be important
for testing domain-specific critical parts of the system, or they
could represent old test suites that must be enriched to reach
the desired (possibly higher) strength of coverage. In this paper,
we propose a new architecture for incremental test generation
that starts from existing test seeds. This new architecture is
supported by the pMEDICI+ tool which extends our previous
effort done for pMEDICI. We evaluate the proposed approach
on the benchmarks given in the context of the second edition of
the CT-Competition and w.r.t. two application scenarios. For each
scenario, we automatically generate seed tests and then we apply
pMEDICI+ to obtain the desired test suite. The experiments
highlight that using incremental test generation can contribute
significantly in the reduction of test generation time and, in many
cases, in the reduction of the test suite size.

Index Terms—Incremental test generation, Combinatorial test-
ing, Test suite completion, Test strength increasing, Seed tests

I. INTRODUCTION

Combinatorial Interaction Testing (CIT) has been a topic of
intense research for many years and has proven very useful in
the testing of complex systems, especially those with multiple
input parameters. Combinatorial test suites are generated using
test generators which exploit different algorithms. Searching
for ever more powerful algorithms capable of generating fewer
tests for complex models has led the community to introduce
new combinatorial test generator tools every year. However,
the majority of these tools suffer from the same limitation:
the test generation builds a test suite from scratch and every
time it is repeated, a new one is generated and old tests are lost.
In practice, considering already existing tests may be needed
for many reasons, such as: 1) some tests were generated by
a different test generator that has not covered all the testing
requirements; 2) some test cases (even partial) written by hand
are available and testers want to complete them; 3) a new
test suite with higher strength is needed; 4) the combinatorial

model used for generating tests has changed and some tests
must be discarded. In these cases, generating a new test suite
from scratch is not the optimal solution. Reusing some of the
old tests or their parts is desirable, since the old test suite may
include some tests that are important in order to test specific
and critical conditions of the system under test. Moreover,
completing an existing test suite may require less time than
building a new one from scratch.

For all these reasons, incremental generation of combina-
torial tests from existing tests is important. There are already
some tools supporting this (for example, ACTS [16], jenny [1],
and PICT [2]). In this paper, we show how to extend an
architecture that allows testers to generate combinatorial test
suites by exploiting the boost in performance offered by
multithreading and by taking into account test cases previously
available. We present pMEDICI+, an extension of the tool
pMEDICI [6], which is capable of producing combinatorial
tests by starting from a non-empty test suite. It is able to deal
with both tests that are still valid for the system under test and
tests that are partially invalid. Old tests are given as input to
pMEDICI+ in the csv format. They are automatically filtered
and polished in order to keep only those that are still valid
or only their parts that are still valid. Then, new tests are
incrementally added until the desired coverage is reached.

We have identified two main scenarios in which such
incremental generation can be useful: when the tester wants to
complete an existing incomplete test suite (TSCP scenario) and
when the tester wants to increase the strength of an existing
test suite (SINC scenario). For these two scenarios, we have
devised a set of research questions and designed experiments
able to give us the answers to those questions.

The experiments confirm that using pMEDICI+ and starting
from an already generated test set, in general, allows practi-
tioners to generate test suites in a shorter time, w.r.t. generating
them from scratch, and, in some cases, to reduce the total
number of test cases.

The remainder of this work is structured as follows. Sect. II
introduce the background concepts on using multivalued deci-
sion diagrams for generating combinatorial test suites and on
the concept of seed tests. Sect. III presents the pMEDICI+ tool,
the incremental generation of test suites approach implemented
by the proposed tool, and the main scenarios in which incre-



mental generation may be useful. In Sect. IV we present the
experimental methodology we have used in the experiments
we have carried out in order to evaluate our approach on a
set of combinatorial models, and in Sect. V we present the
obtained results. Sect. VI discusses the possible threats to
the validity of our findings. Finally, Sect. VII introduces the
related work on the incremental generation of combinatorial
test suites and Sect. VIII concludes the paper.

II. BACKGROUND

In this section, we report the background on combinatorial
test generation using Multivalued Decision Diagrams (MDDs)
with pMEDICI and we recall the concept of seed tests, used
by the incremental test generation approach.

A. Combinatorial problems, MDDs, and pMEDICI

In [6], we presented pMEDICI and proposed to use MDDs
for dealing with combinatorial test generation, i.e., to use them
for representing both parameters and constraints, and for ex-
tracting test cases. In particular, with MDDs one can represent
boolean functions. While dealing with combinatorial testing,
it is possible to encode in an MDD the Boolean functions
computing the validity of assignments to each parameter in
the combinatorial model. In this way, when trying to insert
a new assignment for a parameter in a test case (denoted by
⟨par, val⟩), if it is accepted by the MDD it means that the
assignment is compatible with that test case and can be added.
Otherwise, it may be compatible with a different test case or
definitely incompatible with the combinatorial model, due to
the constraints.

This approach has been used in pMEDICI and allows
creating a complete test suite, which contains only valid
tests, i.e., those that do not clash with the constraints of the
combinatorial problem. Each test case is handled through a
test context, defined as follows:

Definition 1 (Test context). We call TC = ⟨A,MTS⟩ a test
context for the combinatorial problem P , where A is a list
of assignments to some parameters pi to one of their possible
values vi,j and MTS is the MDD representing a combinatorial
problem P and the assignments committed to the context so
far.

The operations on the context can be: isCompAssign to
check if an assignment is compatible, addAssignment to add
an assignment to the context, and isImplied if the test context
contains already or implies a given assignment.

In this work, we extend the concept of test context, allowing
A to be not empty when the test generation process starts.

B. Seed tests

The incremental approach proposed in this paper is based
on seed tests or simply seeds. Seeds can be user-defined tests
that are prescribed, for instance by a requirement specification
[8]. They represent a first set of tests that must be included at
the start in the test suite; for this reason, they constitute the
old test suite and they are guaranteed to be included in the

Algorithm 1 Test Early Filler procedure: Preprocessing step
of pMEDICI+

Require: seedTests, the seeds (e.g., an old test suite)
Require: citModel, the combinatorial model
Ensure: tcList, the list of test contexts created starting from

the seeds

1: for each seed ∈ seedTests do
2: tc← newTestContext(citModel)

▷ Fill the test context with values taken from the seed
3: for each par ∈ citModel.getParamList() do
4: val← seed.getV al(par)
5: if val ̸= NULL then

▷ Check if the new assignment is compatible
▷ with model constraints

6: if tc.isCompAssign(⟨par, val⟩) then
7: tc.addAssignment(⟨par, val⟩)
8: end if
9: end if

10: end for
▷ Check if at least one assignment has been
▷ added to the context

11: if not tc.isEmpty() then
12: tcList.add(tc)
13: end if
14: end for

final test suite [10]. Then, a new test suite is created by taking
the old test suite (the seeds) and adding the necessary tests
covering the required t-way interactions not already covered
by the seeds.

Note that, in this work, we consider the seed tests to be only
the valid tests. However, the architecture and tool we propose
in Sect. III can be used also with seeds that are no longer valid
for the system to be tested and need to be polished or filtered.

III. PMEDICI+: INCREMENTAL TEST GENERATION

In this paper, we present pMEDICI+, a tool that allows the
incremental generation of combinatorial test suites. It exploits
the basic structure of pMEDICI [6] and extends it by adding
an optional preprocessing stage in which the seeds are handled
and initialized to be used as a starting point for generating the
new test suite. The dataflow of pMEDICI+ is shown in Fig. 1
and described in the following.

A. Seeds preprocessing

The preprocessing stage is composed of the activities 1
and 2 in Fig. 1. Initially, the seeds (e.g., the old test suite),
composed of m test cases, are processed and each test case
is translated into the corresponding Test Context (as defined
in Sect. II-A) by the Test Early Filler procedure reported in
Alg. 1. The preprocessing phase cyclically takes each test
case from the seedTests list (line 1), and creates a new test
context tc, which is initially empty with its own internal MDD
(line 2); it is initialized with the parameters and the constraints
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Fig. 1: Data flow in the pMEDICI+ tool

of the combinatorial model and continuously updated when
each assignment of the analyzed test case is checked for
compatibility (line 6) and added (line 7).

This operation is necessary and performed not at the test-
case level but at the single-assignment level since the seed
test may not be completely compatible with the combinatorial
model and, thus, only valid assignments must be kept. Then,
all test contexts created are stored in a tcList (line 12), which
is the one used by the pMEDICI subcomponent. Note that
this preprocessing phase is performed in single-thread mode
since from our preliminary experiments we have not observed
significant improvement by parallelizing the preprocessing
stage.

B. Test suite completion

After having pre-processed and filtered all the seeds, new
test cases are generated with the regular procedure executed
by pMEDICI. Initially, given the strength t and the combina-
torial model citModel, all tuples are generated by the Tuples
Generator Thread (step 3 in Fig. 1) and stored into a tuple
buffer.

Then, n test builder threads (step 4 in Fig. 1) execute in
parallel the operations reported in Alg. 2. Each builder inserts,
if possible, the selected tuple in one of the test contexts stored
in the tcList (findImplies and findCompatible methods
at lines 3 and 7). If no compatible test context is found, the
test builders build a new test context, containing only the
constraints of the analyzed model and no assignments, and
check if the considered tuple is compatible (lines 12 and 13).
If the tuple is compatible, it is added to the newly created test
context; otherwise it means that the tuple can not be covered.

C. Tool limitations

Being based on pMEDICI and MDDs, pMEDICI+ shares
the same limitations when dealing with combinatorial models.
In fact, it is not able to deal with models containing constraints

Algorithm 2 Incremental test generation step of pMEDICI+

Require: TupBuffer , the buffer containing the tuple already
produced and ready to be consumed

Require: tcList, the list of all the test contexts previously
created during the preprocessing stage

Require: citModel, the CIT model

1: while not TupBuffer.isEmpty() do
▷ Extract the tuple from the tuple buffer

2: ⟨par, val⟩ ← TupBuffer .extractF irst()
▷ Try to find a test context which implies the tuple

3: tc← findImplies(tcList, ⟨par, val⟩)
4: if tc is not NULL then
5: continue
6: end if

▷ Try to find a test context that is compatible with
▷ the tuple ⟨par, val⟩

7: tc← findCompatible(tcList, ⟨par, val⟩)
8: if tc is not NULL then
9: tc.addAssignment(⟨par, val⟩)

10: continue
11: end if

▷ Create a new empty test context
12: tc← newTestContext(citModel)
13: if tc.isCompAssign(⟨par, val⟩) then
14: tc.addAssignment(⟨par, val⟩)
15: end if
16: end while

with arithmetical operators (such as +, −, × and /) or compar-
isons between parameters (such as p1 = p2 or p1 ̸= p2). Note
that the presented approach may be applied in other tools based
on the same architecture but different solvers, e.g., KALI [7],
allowing testers to overcome these limitations.
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TABLE I: Use case scenarios for incremental test generation

ID Description Goal Traditional approach

TSCP Test cases are themselves complete, but some test
case is missing, so the test suite is not complete

Test suite completion, for
achieving the t-wise coverage

A new t-wise test suite is generated and the old test
cases, or those that are still applicable, are added

SINC A complete test suite for the t-wise coverage is
available and a new one for the (t+1)-wise is needed

Strength increasing A new (t+ 1)-wise test suite is generated

D. Typical application scenarios of the approach

We have identified two typical scenarios in which the
incremental approach is useful; they are reported in Tab. I
and better described in the following. They are suitable for
two different types of experiments as we will see in Sect. IV.

The TSCP scenario typically occurs when an incomplete
test suite (let’s call it TSold) is available and the tester wants
to build a test suite that reaches the desired coverage and
include the seeds. This case can occur for several reasons:
some tests are written by hand by the tester in order to test
critical conditions of the SUT, or the model has been modified
and some old tests may have become invalid and need to be
discarded. Invalid tests due to model evolution are studied in
[14], while the use of seeds to represent tests requested by the
user is presented in [8], [10]. In this scenario, traditionally,
a completely new test suite TSnew is generated from scratch
and, after that, the old tests are checked in order to filter only
those that are applicable and merged to the new test suite,
obtaining the final test suite TS′

new = TSnew∪TSold. Instead,
with the incremental approach proposed in this paper, testers
can build test suites incrementally, by starting from TSold.

The second scenario we have identified, the SINC scenario,
typically occurs when practitioners already have a complete
test suite TSold achieving the t-wise coverage, but a new one
covering all t + x (where x ≥ 1) interactions is needed.
This can occur when the tester has found no fault with
interactions at strength t, and he/she wants to increase the
test strength to exclude faults due to higher interaction levels.
This is the scenario presented and addressed also in [11] with
x = 1. Traditionally, this problem is tackled by generating
a completely new test suite with the desired higher strength
and dumping existing tests. However, this may be not the
optimal solution, especially if the test suite generation requires
a significant amount of time or if the existing tests have
particular importance (for example they have been already
manually executed). The existing test suite instead could be
reused in order to discard all the t+ x-uples that are already
covered by TSold. In this scenario, with the incremental
generation, the new test suite is built starting from a non-
empty TSold.

IV. EXPERIMENTAL METHODOLOGY

The experimental methodology we have used for gathering
data for the evaluation of the approach is depicted in Fig. 2
and described in the following.

For the TSCP scenario (see Tab. I), given a combinatorial
model we aim at comparing two different approaches: the
one based on test generation from scratch and the incremental
generation. Initially, by using pMEDICI, we generate the test
suite starting from scratch (step 1 in Fig. 2a), as normally
done when generating combinatorial test sets. Then we apply
the incremental approach. In order to avoid possible influ-
ences given by test suites generated with the same tool, the
incremental generation is performed starting from an initial
test suite, representing TSacts, generated by a different tool,
namely ACTS [16] (step 2 in Fig. 2a). This test suite then is
used to obtain the test suite TSold by randomly selecting half
of the test cases from TSacts (step 3 in Fig. 2a). Finally, we
apply incremental test generation using pMEDICI+ (step 4 in
Fig. 2a) starting from TSold.

On the other hand, for the SINC scenario (see Tab. I), given
a combinatorial model we aim at comparing two different
approaches generating test suites at higher strength (in our
experiments 3): the one based on test generation from scratch
and the incremental generation starting from a test suite with
lower strength (in our experiments 2). Initially, we use the
traditional approach by generating the test suite achieving the
desired final combinatorial coverage (t = 3) with pMEDICI
(step 1 in Fig. 2b). Then, we apply the incremental approach.
First, we generate a test suite TSold for strength t = 2 using
pMEDICI (step 2 in Fig. 2b). Finally, we execute pMEDICI+
(step 3 in Fig. 2b) in order to generate a test suite with strength
t = 3 starting from TSold.

Research questions

For comparing the traditional approach with that based on
incremental generation, we have considered two measures:

• Size: the final size of TSnew vs TSinc

• Time: test generation time required by pMEDICI+ com-
pared with the time required by pMEDICI

By combining measures and scenarios, we have devised the
following four Research Questions:

Size Time

TSCP RQ1 RQ2
SINC RQ3 RQ4

Note that, for a higher statistical relevance and better
generalization, we have decided to repeat each experiment
5 times and to consider the average results when answering
the research questions. We emphasize that for the TSCP,
in which the half of the test suite produced by ACTS is
selected, a different random subset is taken at every repetition.
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Fig. 2: Experimental methodology for the two analyzed scenarios

Moreover, in order to compare the results obtained by each
test generation strategy, we have decided to use the one-tailed
Wilcoxon-Signed Rank test [15], a general test to compare the
distributions in paired samples that does not require data to
be normally distributed. Given x the measure to be compared
between the two techniques (e.g., generation time or test suite
size), the test is performed using a significance level α = 0.05,
the null hypothesis H0 stating that the mean values of x in the
two techniques are equal (i.e., x̄1 = x̄2), and the alternative
hypothesis H1 stating that the measure for the traditional
technique is higher than that of the incremental one.

V. EXPERIMENTAL RESULTS

In this section, we answer the research questions previ-
ously identified by executing the experiments as presented
in Sect. IV. The experiments have been performed using the
example benchmarks1 given by the organizers of the second
edition of the CT-Competition [4] at IWCT 2023 (with the
exception of NUMC models with which pMEDICI+ can not
deal) on a machine using a Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10GHz (16 physical cores, 32 logical cores) with 256
GB RAM. As per the CT-Competition rules, we have set a
timeout of 300 seconds.

Tab. II shows the results we have obtained with the ex-
periments described above, both for TSCP and SINC. In
particular, the column referenced as pMEDICI reports the
results obtained using the traditional approach, while that
referenced as pMEDICI+ reports the results obtained with
the incremental approach.

1Benchmarks are available online at: https://github.com/fmselab/CIT
Benchmark Generator/tree/main/Benchmarks CITCompetition 2023

ACTS

seeds

pMedici+

generated

extra tests

pMedici

generated

Fig. 3: Expected size of the test suites

RQ1: TSCP- Test suite size

In this research question, we analyze the impact of using
the incremental test generation process with pMEDICI+ on
the resulting test suite size. For this purpose, we compare
the test suite size obtained when the generation is performed
from scratch and the one obtained with incremental generation.
The expected behavior is represented in Fig. 3. Let’s suppose
to have a former test suite (the one generated with ACTS),
where half of the tests should be kept even after the new
test generation. If we use pMEDICI+ with the incremental
approach, the kept tests are used as seeds and only the missing
interactions have to be covered in the generated part. On
the contrary, if we generate the new test suite from scratch
with pMEDICI, the probability of generating the same tests
we wrote manually is very low, thus we need to append them
to the generated test suite (those in the middle) and, possibly,
to remove duplicates. For this reason, the number of tests is
expected to be higher with pMEDICI than with pMEDICI+.

Our expectations have been confirmed by the results re-
ported in Tab. II and Fig. 4: pMEDICI+ always produces test
suites with a size lower (or equal) than those of pMEDICI.
Note that these results are valid in the context of the TSCP,
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TABLE II: Average of the results obtained in our experiments. In red those measures in which pMEDICI+ is outperformed by
pMEDICI, in yellow those in which the two tools perform equally, and in green those in which pMEDICI+ performs better than pMEDICI

t = 2 (TSCP) t = 3 (SINC)
pMEDICI pMEDICI+ pMEDICI pMEDICI+

Model Size Time [s] Size Time [s] Size Time [s] Size Time [s]

UNIFORM_BOOLEAN_0 20.8 0.03 10.4 0.02 32.8 0.03 29.8 0.03
UNIFORM_BOOLEAN_1 22.0 0.04 10.8 0.02 35.8 0.05 36.0 0.05
UNIFORM_BOOLEAN_2 18.0 0.06 10.6 0.06 28.4 0.03 25.0 0.02
UNIFORM_BOOLEAN_3 21.8 0.03 10.6 0.02 32.6 0.04 34.0 0.04
UNIFORM_BOOLEAN_4 15.2 0.02 8.8 0.02 22.6 0.03 19.8 0.03

UNIFORM_ALL_0 116.8 0.03 83.8 0.03 735.0 0.85 741.4 0.84
UNIFORM_ALL_1 339.6 0.60 236.4 0.48 – – – –
UNIFORM_ALL_2 190.0 0.17 136.2 0.14 1519.8 45.65 1529.2 41.99
UNIFORM_ALL_3 433.2 0.51 300.8 0.36 5139.8 256.15 5126.8 259.95
UNIFORM_ALL_4 14.4 0.02 8.2 0.02 19.4 0.06 20.2 0.06

MCA_0 294.0 0.26 198.6 0.12 2542.4 30.25 2537.8 27.74
MCA_1 124.2 0.04 83.2 0.04 192.6 0.27 192.0 0.22
MCA_2 230.2 0.05 155.2 0.05 1443.4 1.33 1459.8 1.29
MCA_3 318.2 0.24 215.6 0.15 2882.4 44.28 2881.2 41.42
MCA_4 357.4 0.28 248.0 0.14 2926.4 32.61 2923.4 32.29

BOOLC_0 26.8 0.06 22.2 0.05 33.0 0.16 37.4 0.18
BOOLC_1 30.4 0.05 23.2 0.04 41.8 0.12 45.0 0.12
BOOLC_2 34.6 0.06 28.4 0.04 40.2 0.08 48.8 0.08
BOOLC_3 14.2 0.05 8.8 0.05 17.4 0.03 17.2 0.03
BOOLC_4 4.0 0.02 4.0 0.02 4.0 0.02 4.0 0.02

MCAC_0 – – – – – – – –
MCAC_1 532.0 61.39 356.2 66.42 – – – –
MCAC_2 206.4 0.51 140.6 0.48 894.2 9.49 896.6 8.87
MCAC_3 145.8 17.97 106.0 15.94 579.8 93.05 586.6 81.72
MCAC_4 – – – – – – – –

FM_0 24.6 0.19 20.8 0.20 40.4 3.40 39.6 2.78
FM_1 23.2 0.03 15.2 0.02 31.0 0.06 34.4 0.05
FM_2 27.6 0.07 19.6 0.05 42.6 0.94 43.6 0.76
FM_3 24.6 0.06 24.0 0.06 43.0 0.97 44.2 0.76
FM_4 14.8 0.05 10.8 0.04 19.6 0.19 20.2 0.12

CNF_0 329.2 10.37 225.4 6.90 – – – –
CNF_1 209.2 0.19 143.0 0.11 1333.6 5.28 1342.2 4.91
CNF_2 282.6 0.23 195.2 0.17 2030.6 9.83 2041.0 9.06
CNF_3 481.6 0.95 336.0 0.57 5564.2 224.33 5571.2 206.59
CNF_4 – – – – – – – –

INDUSTRIAL_0 41.0 0.13 33.8 0.09 76.6 1.09 76.2 1.15
INDUSTRIAL_1 – – – – – – – –
INDUSTRIAL_2 34.6 0.05 23.0 0.04 58.2 0.17 56.0 0.15
INDUSTRIAL_3 83.4 0.09 60.4 0.09 170.0 0.42 170.2 0.36
INDUSTRIAL_4 20.4 0.03 17.2 0.02 25.0 0.09 25.0 0.09

HIGHLY_CONSTRAINED_0 440.0 5.08 294.4 3.32 1485.0 235.43 1490.2 175.14
HIGHLY_CONSTRAINED_1 – – 351.8 284.81 – – – –
HIGHLY_CONSTRAINED_2 85.6 0.07 67.6 0.05 180.0 0.20 180.0 0.17
HIGHLY_CONSTRAINED_3 289.2 8.94 194.6 6.35 2002.4 104.76 2014.8 108.29
HIGHLY_CONSTRAINED_4 259.4 1.27 180.0 1.49 1326.4 24.49 1329.2 24.07

in which the tests in TSold are needed even after the new test
generation. Indeed, the size of pMEDICI includes the portion
of tests generated by ACTS to be kept (excluding repetitions).
However, as previously introduced, in order to statistically
verify our considerations, we have performed a Wilcoxon-
Signed Rank test and we have obtained pvalue = 2.63 · 10−8

which has allowed us to reject the null hypothesis and claim
that applying the incremental generation leads to a lower test
suite size than the non-incremental approach.

RQ2: TSCP- Test suite generation time

In this research question, we analyze the impact of using the
incremental test generation process with pMEDICI+ on the test
suite generation time. For this purpose, we compare the time
required for the generation, for each model, of the test suite
from scratch and that required when using the incremental
generation. Given that the incremental generation is based
on seeds possibly generated by another tool (ACTS in our
case), the impact depends on the tuple density of the tests in
the seeds. However, when a new tuple has to be covered by
pMEDICI, it is required to check the compatibility of the tuple
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Fig. 4: Test suite size comparison between pMEDICI and
pMEDICI+ in the TSCP scenario

with the constraints by computing intersections among MDDs
and, in general, it is one of the most expensive operations
performed by the test generation tool. On the contrary, starting
from a non-empty test suite allows avoiding that costly check
(since comparing the values of the parameters in the tuple with
those in the seeds is enough) and to saving lot of time.

These preliminary observations have been confirmed by the
results reported in Tab. II: pMEDICI+ performs worse than
pMEDICI in only three benchmarks (i.e., MCAC_1, FM_0 and
HIGHLY_CONSTRAINED_4 - those highlighted in red) and
is able to complete the test generation process also for the
model HIGHLY_CONSTRAINED_1 which is not completed
by pMEDICI.

As previously introduced, in order to statistically verify our
considerations, we have performed a Wilcoxon-Signed Rank
test and we have obtained pvalue = 5.71 · 10−5 which has
allowed us to reject the null hypothesis and claim that applying
the incremental generation leads to a lower generation time
than the non-incremental approach.

RQ3: SINC- Test suite size

In this research question, we analyze the impact of incre-
mental test generation on the test suite size when testers want
to increase the strength of the test suite. As a preliminary
consideration, we can suppose that using a test suite produced
for a lower strength may contribute in increasing the final test
suite size. Indeed, in that case, the former test suite may not
be optimized for the desired new strength and generating the
new test suite from scratch may be advised.

These considerations have been confirmed by the results
reported in Tab. II: 22 out of the 37 solved benchmarks have
an higher test suite size with pMEDICI+ than with pMEDICI.

As previously introduced, we have statistically verified our
considerations by performing a Wilcoxon-Signed Rank test.
The analysis produced pvalue = 0.99 which has not allowed
us to reject the null hypothesis. Thus, we cannot draw any
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Fig. 5: Test suite generation time comparison between
pMEDICI and pMEDICI+ in the SINC scenario

conclusion from this test. In order to analyze whether the
incremental approach actually performs worse or equally than
the most traditional one, we have also executed Wilcoxon-
Signed Rank test by inverting the data. In this way, the alterna-
tive hypothesis H1 states that the non-incremental technique is
lower than that of the incremental one. This additional analysis
produced pvalue = 0.01 which has allowed us to reject the
null hypothesis and to determine, as stated in the preliminary
observation of this RQ, that the incremental technique is
outperformed by the traditional approach, in terms of test suite
size, in the SINC scenario.

RQ4: SINC- Test suite generation time

With this research question, we analyze the impact of using
the incremental test generation process with pMEDICI+ on
the test suite generation time, when a test suite with lower
strength (e.g., t = 2) is available and a new one with higher
strength (e.g., t = 3) is needed. As highlighted in RQ2, being
based on seeds allows pMEDICI+ to start from a non-empty
test suite and, thus, to avoid checking the compatibility of
the already covered tuples with the MDD internal to the test
contexts. Considering that updating the MDD and checking the
compatibility are the two most expensive operations, avoiding
them for a set of tuples allows reducing the generation time.

The results obtained with our experiments are reported in
Fig. 5 and Tab. II. Those results confirm our preliminary
considerations. In fact, pMEDICI+ (with the incremental ap-
proach) requires more time for generating test suites in only 5
instances, while in all the others, it performs equally or better
than pMEDICI.

The statistical confidence of these considerations has been
investigated by performing a Wilcoxon-Signed Rank test that
produced pvalue = 1.1 · 10−3. In this way, we have been
able to reject the null hypothesis and claim that applying the
incremental generation leads to a lower generation time than
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the non-incremental approach, even when the strength of the
test suite needs to be increased.

VI. THREATS TO VALIDITY

This work presents our technique for incremental generation
of combinatorial test cases and preliminary experiments show
its viability. However, we are aware that this study has several
threats to validity [13] we discuss in this section together with
the actions we have taken to mitigate them and possible future
works.

A first threat to validity regards how we have generated the
seeds in the experiment for the first scenario TSCP. Normally
we can assume that these seeds are generated by humans,
looking at the specifications or by some domain experts that
design a required set of tests. In our experiments, instead, we
have generated the initial seeds using another tool (ACTS)
and taken only half of them. The use of a tool is required
because we wanted to apply our technique to several randomly
generated case studies (those for the CT-Competition), so
writing manually the initial tests would have been time-
consuming without any real benefit. We have preferred to use
another tool and not ours because using the same tool for the
generation of the seeds and then for the rest of the test suite
could imply benefits for pMEDICI+. We plan in the future
to generate the initial test suite using other techniques (also
randomly) or other tools. Furthermore, an additional threat to
validity regards the impact of seeds’ size on the performance
of the generation algorithm. In our experiments, we have kept
half of the tests in TSACTS as seeds, but different percentages
may lead to different results. We plan to investigate the impact
of this aspect in future work.

Another threat to internal validity regards the correctness of
our implementation of the incremental generation. To mitigate
this risk, we have validated all the test suites [3] in order to be
sure that also pMEDICI+ generates test suites that are valid
and complete.

An external threat to the validity of the entire approach
is that incremental generation of tests may be not so useful
in practice. For this reason, we have identified two scenarios
in which we believe incremental generation is useful, as
demonstrated by the other incremental approaches available
in the literature (see Sect. VII). As future work we plan to
find other use cases, for instance when a test suite contains
some tests that are incomplete, i.e., they do not assign values
to all the parameters, or scenarios in which some tests or part
thereof must be discarded because some new constraints are
added. We believe that incremental generation can be useful
in many cases when test suite and combinatorial models co-
evolve [14].

VII. RELATED WORK

Incremental generation of test suites has been tackled in
other papers by applying it in different contexts as well. Our
framework aspires to recap in a single framework different
approaches and scenarios in which incremental test generation
is advisable.

Incremental generation of combinatorial test suites is often
applied when the system under test evolves and tests need to be
checked and, possibly, adapted in order to be still applicable to
the new version of the system. The problem is highlighted, in
the case of combinatorial test suites, in [14] where the authors
combine three building blocks, allowing to minimally modify
existing tests, enhance them, or choose from them selected test
cases for obtaining a new test suite, composed of only valid
tests. Unfortunately, the tool FOCUS presented in [14] is not
available, otherwise we could have compared pMEDICI+ with
FOCUS. Similar considerations are presented in [12], where
an approach for automatically repairing and generating test
cases during software evolution is devised. In our scenarios,
we assume that the model does not change and that the seed
tests are valid, but the entire approach and the algorithm would
work even if the seed tests are partially invalid or even if the
seeds are incomplete.

The idea of seeding we exploit in pMEDICI+ was originally
proposed in [10]: “The tester can also guarantee inclusion of
their favorite test cases by specifying them as seed tests or
partial seed tests for a relation. The seed tests are included
in the generated test set without modification. The partial
seed tests are seed test cases that have fields that have not
been assigned values”. The problem of using seeds is tackled
also by [8], in which an algorithm for prioritized interaction
testing for 2-wise coverage is described. It supports mainly soft
constraints, but it is shown to be extensible to allow seeds.

Using a previously computed test suite for achieving higher
strengths coverage has been proposed in [11], where the
authors present an approach that incrementally builds covering
array schedules: it begins at low strength, and then iteratively
increases strength as resources allow using previous tests as
seeds. However, the authors do not commit to any specific
algorithm for generating test cases as we, instead, do in this
paper being based on the one-test-at-a-time approach with
pMEDICI+. Moreover, since a limit in resources is set, in
that approach it is not guaranteed that the desired strength t
is reached and the t-wise coverage fully achieved.

Another tool, called INWARD, for incremental generation
is presented in [9]. It exploits some algebraic properties of
Covering Arrays (CA) and allows the fast generation of a
CA of strength t given an already CA of strength t− 1. The
algorithm is very fast, but it produces very large test suites
and it is not able to consider also constraints. Generating
test sets from seeds is also supported by other tools such as
ACTS [16], jenny [1], and PICT [2]. However, none of them
is based on a multithread algorithm as pMEDICI+. Moreover,
with pMEDICI+ we are able to deal with test cases that are
not valid anymore, but can still be partially reused. Instead,
at the best of our knowledge, other available tools completely
discard non valid test cases.

VIII. CONCLUSION

Many CIT generators have been proposed in the last
decades. However, with the majority of them, when the test
generation is repeated, all the old tests are generally lost.
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This may be an inefficient approach, especially when part
of the former test suite is still applicable. For this reason,
in this paper, we propose an architecture, supported by the
pMEDICI+ tool, allowing testers to reuse a former test suite
during the test generation process. This approach can be used
in several different scenarios and, in this paper, we analyze
two different scenarios of interest: when some of the former
tests have been manually written and are still required, and
when a new test suite with higher strength is to be generated.

With our experiments, carried out on the training set given
in the context of the second edition of the CT-Competition, we
have verified that using the incremental test generation plays
an important role in reducing the test suite generation time
and, for many benchmarks, the size. As a consequence, the
cost of the test generation process is reduced as well.

As a future work, we are working on letting users choose
the solver to be used in test contexts (to be substituted to
the MDDs), in order to overcome the limitations highlighted
for pMEDICI+ while still keeping the same tool structure
and functionalities. This may be useful also in terms of
performance, since more powerful structures, or different
MDDs implementations, may be used for constraint handling.
Moreover, we are working on a preprocessing activity on the
test cases in order to randomly generate the seeds and start
the test generation from those. In this way, we could exploit
the boost in performance given by incremental generation of
pMEDICI+ without the need of asking users to provide a
former test suite. Additionally, we believe that incremental
generation may be applied to other architectures and problems,
given that they are based on collecting tuple and producing one
test at a time, such as the one presented in [5]. Finally, we
plan to compare pMEDICI+ with the tools already supporting
test generation from seeds, and to investigate the impact of
using multithreading for incremental test generation.
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