Guidelines for the development of a critical software under emergency

Andrea Bombarda?, Silvia Bonfanti?, Cristiano Galbiati®<4, Angelo Gargantini®, Patrizio Pelliccione®, Elvinia Riccobene®,
Masayuki Wada'

“Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy
b Princeton University, Princeton, NJ, USA
“Gran Sasso Science Institute (GSSI), L’Aquila, Italy
4INFN Laboratori Nazionali del Gran Sasso, L’Aquila, Italy
¢University of Milan, Milano, Italy
TAstroCeNT, N. Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland

Abstract

Context. During the first wave of the COVID-19 pandemic, an international and heterogeneous team of scientists collaborated on
a social project to produce a mechanical ventilator for intensive care units (MVM). MVM has been conceived to be produced and
used also in poor countries: it is open-source, no patents, cheap, and can be produced with materials that are easy to retrieve.

Objective. The objective of this work is to extract from the experience of the MVM development and software certification a set of
lessons learned and then guidelines that can help developers to produce safety-critical devices in similar emergency situations.

Method. We conducted a case study. We had full access to source code, comments on code, change requests, test reports, every de-
liverable (60 in total) produced for the software certification (safety concepts, requirements specifications, architecture and design,
testing activities, etc.), notes, whiteboard sketches, emails, etc. We validated both lessons learned and guidelines with experts.

Findings. We contribute a set of validated lessons learned and a set of validated guidelines, together with a discussion of benefits
and risks of each guideline.

Conclusion. In this work we share our experience in certifying software for healthcare devices produced under emergency, i.e. with
strict and pressing time constraints and with the difficulty of establishing a heterogeneous development team made of volunteers.

We believe that the guidelines will help engineers during the development of critical software under emergency.

Keywords: Safety-critical systems development, Software certification, Lessons learned, Guidelines, Healthcare

1. Introduction

Certification is a mandatory step [1, 2, 3] for the develop-
ment of safety-critical devices, since a software failure or mal-
functioning can compromise the health of human beings that
interact with it. Safety-critical systems certification is required
in many domains, including avionics [4, 5, 6], robotic applica-
tions [7], cyber-physical systems [8], and healthcare [9].

In healthcare, a software certification is required when the
software is deployed on a medical device and controls it [10,
11, 12, 13, 14]; the software certification is regulated by the
FDA Guidelines [15] and the TEC 62304 [16]. IEC 62304 de-
fines safety classes of the software, based on the potential to
create an injury to the patient: Class A — no injury or damage to
health is possible, Class B — non-serious injury is possible, and
Class C — death or serious injury is possible. The standard it-
self prescribes a set of activities, which must be performed (and
documented) during the software development process.

Regardless of the class the software belongs to, the standard
requires a software development plan, as well as software re-

Preprint submitted to Information and Software Technology

quirements specification documents. A software development
plan establishes the process to be followed during the develop-
ment, the expected deliverables, and the software development
life cycle model. Once the software requirements are defined,
the software architecture design is derived for software belong-
ing to class B or class C. Furthermore, a software detailed de-
sign for each software unit is required for class C. System test-
ing is the only required testing for software in class A. Soft-
ware in class B and class C requires also unit verification at the
component level and software integration at the architectural
level. The standard is flexible about the organization of test-
ing by types and test stage, but coverage of requirements, risk
control, usability, and test types (e.g., fault, installation, stress)
should be demonstrated and documented. Finally, software re-
lease process, software maintenance process, and software risk
management process documents (the last only in the case of
class B and class C) are required for the certification.

This work is based on our experience regarding the develop-
ment and certification (IEC 62304 standard) of a mechanical
ventilator for COVID-19, called MVM (Mechanical Ventila-

July 14, 2023

tor Milano') [17]. The development of MVM started during
the first wave of the COVID-19 pandemic. In only 42 days
from the initial prototype production, FDA (Food and Drug Ad-
ministration) declared that MVM falls within the scope of the
Emergency Use Authorization (EUA) for ventilators?>. EUA has
been given to ventilators that the FDA determines meet speci-
fied criteria for safety, performance, and labeling. FDA rec-
ommends “that designing, evaluating, and validating these sys-
tems, is done in accordance with recognized standards for the
specific device type, including the IEC 62304.”

To get an authorization for use and not just an emergency use
authorization, MVM went through a software certification pro-
cess. This required a re-engineering of the entire software since
in the prototype the software component was underestimated,
together with the production of all the required documentation.
Specifically, we identified a number of activities to be under-
taken to assure the quality of the software embedded in MVM,
and a process of their organization able to combine the rigidity
of the ISO standard development process with the flexibility of
an agile attitude: the overall goal was to get the final certifica-
tion in the fastest and most collaborative way but still having
the rigor required by the standard.

Once produced the required documentation, the certification
request has been forwarded to the Health Canada agency by the
Canadian MVM manufacturer (Vexos). At the end of Septem-
ber 2020, MVM obtained the Health Canada Authorization?.
A similar process has been carried on by the European manu-
facturer (Elemaster) to get the CE marking from the European
Certification Authority, and this marking has been obtained at
the beginning of May 2021. Thanks to these achievements, the
MVM can be now sold and used in the USA, Canada, and Eu-
rope. Many countries all around the world have manifested in-
terest in MVM ventilators. There is an ongoing project which
aims to deliver MVM devices where they are most needed, and
it is currently being sold by an African Union charity*. At the
moment the ventilator is produced by Vexos, which has started
the first production batch of 10,000 pieces to be delivered to
the Government of Canada, and Elemaster, which has actively
contributed in the project.

This work extends a previous work [18], where we reported
the lessons learned matured during the software certification.

We here intend to answer to the following research ques-
tion: RQ: Which guidelines can be extracted from the lessons
learned to help engineers during the development of critical
software under emergency? By “under emergency” we mean
producing software under these two constraints: (i) time, mean-
ing that the software device should be produced as soon as pos-
sible’; (ii) team of volunteers, meaning that the development
team has to be rapidly established in a voluntary fashion, based

"http://mvm.care

2Ventilators with EUA by FDA — search for MVM

3Health Canada Authorization

“https://breathoflifeafrica.org/#MentorProject

SIndeed, we might argue that time is a constraint for every company and for
the production of almost every product. However, sometimes there are (emer-
gency) situations that push even more this constraint.

on the personal network, heterogeneous under various dimen-
sions, and composed by people that dedicate their private time
to the project, while still continuing their normal job. Note that,
in other emergency situations, like hurricanes or earthquakes,
there can be additional constraints like lack of energy power
or Internet connection. However, we limited ourselves to the
two constraints above, which are those that we observed in the
experience we report.

We validated the lessons learned through feedbacks and re-
sponses to surveys received during various events and, espe-
cially, in the context of two courses for an Italian engineering
society, which had 56 attendees. The feedback collected en-
abled us to define guidelines useful to develop critical software
under emergency. They are presented in this paper.

The paper is organized as follows. Section 2 presents the
research methodology we followed to perform this work. Sec-
tion 3 presents the lessons learned and their validation. Sec-
tion 4 presents the guidelines we derived from the lessons
learned and their validation, together with the validation of the
guidelines we performed. Section 5 presents the related works,
and finally, the paper concludes with final remarks in Section 6.

2. Research methodology

In this section, we present the research methodology we fol-
lowed. We conducted a case study [19] since it is the appropri-
ate research methodology to study a phenomenon in its natural
context, i.e., when the phenomenon is difficult to study in isola-
tion. In our MVM project, it is difficult to clearly and precisely
identify and delimit in a real context the process and the activ-
ities to be followed when producing software devices that are
supposed to be compliant to safety standards under emergency.

L Deliverables \

Code and
development notes —

Feedback
from seminars
Questionnaires

Discussion
with experts

Lessons
Learned

[Project meetings |

[Direct experience]

| Data Collection ISSRE paper
i
Guidelnes

7 .
Validation

Validation

Figure 1: Research Methodology

Figure 1 provides an overview of the research methodology.
As anticipated in the introduction, this paper extends a previ-
ous work [18]. As highlighted in the figure, the lessons learned
have been proposed in our previous work. In this paper, we
start with validation of the lessons learned through various sem-
inars, keynotes, and lectures. This enabled us to collect pre-
cious feedback and to reason about the potential generalization

http://mvm.care
https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/ventilators-and-ventilator-accessories-euas#ventilators
https://github.com/se4med/GuidelinesForCriticalSoftware/blob/fbe3838e3032572712bf8cc641294348748c1a1c/docs/assets/docs/Health%20Canada.pdf
https://breathoflifeafrica.org/#MentorProject

of them. We also collected feedback via questionnaires that not
only aimed at validating the lessons learned but we also posed
additional controversial questions to better collect the opinions
of the participants about the specific topic of each of the lessons
learned. This enabled us to provide a set of guidelines that we
then validated with experts via questionnaires and interviews.

2.1. Case description

MVM [17] is an electro-mechanical ventilator inspired by
the old and reliable Manley Ventilator [20]. MVM is intended
to provide ventilation support for patients that are in intensive
therapy and that require mechanical ventilation. MVM works
in pressure-controlled mode, i.e. the respiratory time cycle is
controlled by the pressure. In particular, it implements two
operative modes: Pressure Controlled Ventilation (PCV) and
Pressure Support Ventilation (PSV). In the PCV mode, the res-
piratory cycle is kept constant and the pressure level changes
between the target inspiratory pressure and the positive end-
expiratory pressure. New inspiration is initiated either after a
breathing cycle is over, or when the patient spontaneously initi-
ates a breath. The PSV mode is not suitable for patients that are
not able to start breathing on their own because the respiratory
cycle is controlled by the patient, while MVM partially takes
over the work of breathing. A new respiratory cycle is initiated
with the inspiratory phase, detected by the ventilator when a
sudden drop in pressure occurs. When the patient’s inspiratory
flow drops below a set fraction of the peak flow, MVM stops the
pressure support, thus allowing exhalation. If a new inspiratory
phase is not detected within a certain amount of time (apnea
lag), MVM will automatically switch to the PCV mode because
it is assumed that the patient is not able to breathe alone.

A prototype of the MVM device was built in around one
month and was available in the middle of April 2020. Till that
moment, the team working on MVM only included physicists,
physicians, and engineers as technicians and no well-defined
software development process was applied, no documentation
was produced, and the certification was not even pursued. How-
ever, as usually required by the governments of countries where
a medical device has to be marketed, the software certification
is mandatory before selling and using the device. Hence, a soft-
ware task force, a group of computer scientists (including the
authors), has been created to manage the software certification.

The need for certification brought to a strong re-engineering
of the MVM software components, while the hardware com-
ponents required only minimal changes. The whole process
lasted around two months and it involved, in a continuous inte-
gration manner, all the stakeholders. The first step of the pro-
cess has concerned the analysis of all the standards that must
be followed during the development of a medical device, and
the identification of those related to MVM. Then, a plan and a
process for all the activities to be performed have been devised.
Starting from the software requirement specification, we have
redefined the software architecture and we have rewritten some
of the MVM components. Moreover, before the deployment of
the software, we have performed all the testing activities (unit,
integration, and validation testing) required by the standards.

Activity # People Deliverables
System development plan 3 5
Supporting activities 22 12
System requirements 5 1
Software Architecture Design & 10 3
Risk Management

Software Requirement Spec. 21 15
Software Detailed Design Impl. 18 N/A
Unit Testing 22 20
Integration Testing 11 2
Validation Testing 9 2

Table 1: Summary of the effort required for each phase

The MVM software is released under MIT Licence®, and,
by following the advice of a legal office, it is stored in a pri-
vate repository to control access to it and avoid incorrect usage.
More information about the MVM might be found in the MVM
web site”.

2.2. Data collection and analysis

We collected data along the various activities of the software
development process, namely during requirements engineering,
architectural design, testing (unit, integration, and validation),
implementation, documentation, traceability checking. Table 1
summarizes the effort required in terms of (i) activities per-
formed; (ii) number of people involved in each activity; and
(iii) deliverables produced for documentation — each of these is
in most cases a Microsoft Word document.

For the two months of software re-engineering and certifica-
tion, activities required a large number of virtual plenary and
subgroups meetings. Collected data were heterogeneous: they
consist of the various deliverables created for the certification
purpose and stored in a Google Drive folder — shared among
the members of the certification team, authors included — but
also of work items created during the project completion, such
as whiteboard sketches, notes (personal or shared within sub-
groups), and emails. Moreover, the authors had full access to
the entire source code of the project, comments in the code,
changes requests, test reports, and so on.

To be used for the purpose of the case study research method-
ology, data coming from the sources described above, were col-
lected independently, merged, cleaned, and stored into a folder
not shared among the project members.

The collected data enabled us to formulate a set of lessons
learned, which are reported in Sect. 3.

2.3. Validation of the lessons learned

The lessons learned have been discussed in three internation-
als events, where the co-authors have been invited to provide
keynotes and invited presentations. Moreover, we discussed
them also in lectures for PhD courses and seminars provided
in three European universities. Finally, the largest validation

®https://opensource.org/licenses/MIT
"http://mvm.care/

https://opensource.org/licenses/MIT
http://mvm.care/

we performed has been executed in the context of two courses
for the Italian engineering society. The two courses have been
performed in date September 20" 2021 and October 2™ 2021
as virtual events and had, overall, 56 attendees.

During the courses, we performed the evaluation via ques-
tionnaires (see the replication package [21]). We alternated ses-
sions in which we were providing new content with validation
sessions in which we asked the participants to answer questions.
This gave us the possibility also to discuss each of the question
to better grasp the various opinions and reduce our misinter-
pretations and biases. In the questionnaires, we checked the
level of agreement and the importance of each lesson learned.
We also added additional questions that have been asked be-
fore performing the evaluation of the precise lessons learned to
grasp the opinions of our experts in a broader sense and with-
out risking to influence with the lessons learned formulation.
These questions were formulated in a way that they could not
influence the opinion of the experts on the lessons learned. Ex-
amples are provided in Section 3. This aspect was important
for us, since our evaluation of the lessons learned has been also
an instrument to formulate the guidelines. The survey, com-
posed of closed-ended questions, was spread during the entire
seminar. Each of the topic of the seminar was followed by the
validation of the related lessons learned. We filtered out the
responses of participants who only clicked through the survey
without having completed the entire survey. In total, we had 56
complete answers that we analyzed to draw conclusions.

The data collected during the validation of the lessons
learned enabled us to formulate a set of guidelines that can help
during the development of safety-critical systems under emer-
gency. In Section 4 we present the guidelines, and we show how
the guidelines have been synthesized from the lessons learned.

2.4. Validation of the guidelines

The guidelines have been validated via questionnaires and
interviews. The questionnaire basically contains a question for
each guideline asking the experts on how they agree or disagree
with the specific guideline. The possible answers are in the
5 points Likert scale from 5 (Strongly Agree) till 1 (Strongly
Disagree). We also added a general question at the end of the
questionnaire to contain free comments from the experts. More
details about the questionnaire, including the received answers,
can be found in the replication package [21]. We involved ex-
perts in the development of safety-critical systems in health-
care, but also in other domains. We mainly recruited experts
with which we collaborated in past projects (direct contacts)
and we recruited experts in specific groups of LinkedIn, such
as the “IEC 62304, “Agile in a Regulated Environment”, “ISO
26262 Functional Safety”, or “DO-178C” groups (indirect con-
tacts). In the case of indirect contacts, we payed particular at-
tention to check the expertise and the soundness of the answers
we got. There is no overlap between the group of people in-
volved in the evaluation of the lessons learned and those in-
volved in the evaluation of the guidelines. In fact, for general-
ization purposes, in the evaluation of the guidelines we aimed
at collecting opinion also from people not specifically work-
ing in the development of safety-critical systems in healthcare.

ID Years Industry/Academia/ Role
Other
1 <1 Open Source Ventilator
Team

2 1-3 Industry Mechanical engineer

3k 4-5 Industry CTO

4 >20 Academia Director of Technology

5 <1 Academia Scientist

6 11-20 Academia Assistant professor

7 <1 Academia PhD student

8% <1 Academia Assistant professor

9 4-5 Academia Associate professor

10 <1 Academia PostDoc

11 4-5 Academia PostDoc

12 <1 Academia PostDoc

13 <1 Academia Associate professor

14 >20 Industry CTO

15 <1 Academia Associate professor

16¥ >20 Industry Program manager/Quality
manager

17 1-3 Industry Developer

18 6-10 Industry System/Software architect

19 <1 Industry Developer

20 6-10 Industry Developer

21 11-20 Industry System/Software architect

22 1-3 Academia Assistant professor

23% 4-5 Academia Associate professor

24 1-3 Academia Assistant professor

25 6-10 Industry Developer

26 6-10 Industry System manager

27 11-20 Industry Developer

28 1-3 Industry CTO

29 11-20 Industry CTO

30% 1-3 Industry Developer

31 11-20 Academia Full professor

32% 11-20 Industry System manager

33% >20 High risk systems

34* >20 High risk systems

35 1-3 Academia Assistant professor

36 4-5 Industry Technical expert of soft-
ware quality

37% 6-10 Industry System/Software architect

Table 2: Experts overview. The column year stands for “Years of experience
in the development of critical software”. The IDs with asterisk are experts
interviewed.

Due to the heterogeneity of experts, we created identical copies
of the questionnaires and distributed to various groups of ex-
perts (i.e., (i) experts in health care safety-critical systems, (if)
experts in safety-critical systems in other domains, mostly au-
tomotive, (i) experts in agile and safety-critical systems, (iv)
experts involved in the development of the MVM, (v) experts
in computer science, and, finally, (vi) developers of other venti-
lators under emergency) to grasp different points of views. Ta-
ble 2 provides an overview of the experts involved in the val-
idation. In total we had 37 experts, which are practitioners or
academics, answering the questionnaires (21 practitioners and
16 academics), and 9 of them accepted to be contacted for an
interview (7 practitioners and 2 academics). Those experts that
performed an interview are highlighted by a * symbol in Ta-
ble 2.

As anticipated, our questionnaires mostly contain closed-
ended questions, except for an optional open-ended question

Name

Description

LL.1.1

LL.1.2

The development process was strongly influenced by the IEC 62304 standard, so the V-model, although not mandated, is the “best
fit” with regulatory requirements as it produces the necessary deliverables required when seeking regulatory approval.
However, it was necessary to integrate the V-model with agile practices, to combine efficiency, quality, maintainability, and flexibility.

LL.2.1

LL.2.2
LL.2.3

In the project, there was a quite huge overhead of coordination. The coordination of the team should not be underestimated. Open-
source software development could be a good development experience from which projects of this nature can learn.

Adding people is not necessarily a good solution to improve the efficiency and effectiveness of a team [22].

Having responsibility for each sub-activity and setting strict intermediate goals have favored commitment and participation.

LL.3.1

LL.3.2
LL.3.3

The use of a great variety of tools (one tool for each particular purpose) even if not integrated and not specific for software project
management, has provided indispensable support to the team.

Having a partner that provided the templates and a clear review process has helped to define which activities should be performed.
Standard graphical notations like UML shown to improve communication and to be easily usable by non-software experts (very
skilled in other fields, though).

LL.4.1

LL4.2

LL.4.3

Not having written requirements since the beginning led to having various attempts to address the requirements in different software
components. Precise system requirements are very important also in an emergency situation to reduce the development time.

For systems for which a prototype is present, especially if it is developed by domain experts, reverse engineering has shown to be a
viable solution for discovering functionalities and configuration parameters to be included in system requirements.

A traceability system helps developers to trace all the requirements and their changes through all the development process.

LL.5.1

LL.5.2

It is important to find a balance between upfront aspects (what is planned before the start of development) and emerging aspects
(decisions taken during development, e.g. by fixing wrong assumptions or making decision deliberately postponed) [23, 24].
Software architecture is important even during emergency development. Without a well-defined architecture (as for the prototype),
it was not clear how software components were supposed to synchronize and exchange information among them.

LL.6.1

Isolating safety-critical features, by organizing the system in different components, has allowed us to focus the safety assurance effort
on a limited portion of the system.

LL.7.1

LL.7.2

Designing a product in a modular way has been a successful decision, since, in a distributed project (such as the one of the MVM) it
has allowed different teams to work in parallel on different parts of the system.

We have found that using state machines, for the specification and the design, has contributed to favor the discussion on the adopted
solutions even with people not used to software development since graphical representations are easily understandable.

LL.8.1

LL.8.2

LL.8.3

Using several programming languages in a single project is usually discouraged [25]. However, under emergency, having more
languages allowed the inclusion of more developers and speed up the implementation process, with minimal effort in code integration.
Sharing the coding standards and guidelines (e.g., the importance of comments [26]) with all the people involved in the implementa-
tion phase is of key importance, in particular with heterogeneous development groups, even during emergency development.

State machines added flexibility and maintainability: it was very simple to make changes, regenerate, and integrate the fresh code.

LL.9.1

LL.9.2

LL.9.3

Isolating the critical components and defining in advance the safety classes of all the components in the developed system can
significantly facilitate the testing activities, since testing can focus on the most critical parts.

Besides what is required by the standards, testing activities are important when performed for safety-critical components. This is not
an obvious aspect in heterogeneous teams.

As MVM has been a community project, where a lot of people have worked at the same time on the same system, CI tools have
proved to be crucial for maintaining under control the modifications made by all the developers.

LL.10.1

It is challenging to develop and validate systems that integrate hardware, software, and mechanics by distributed teams. Often, real
hardware is needed for testing the software that is affected or affecting a piece of hardware. Software-in-the-loop simulation requires
a special setting with professional simulation tools and an accurate hardware model, which is not always available and reliable.

Table 3: Lessons Learned

at the end of the two groups of questions to collect free com-
ments from the participants. We mostly analyzed the number
of given responses and analyzed the optional open-ended ques-
tions to draw conclusions. We had also the possibility to in-
terview some of the participants of the questionnaires to better
understand their answers and feedback. The interviews were
driven by the questionnaires content and their answers. For
each interview, we then discuss in depth the main criticalities or
the stronger agreements of the specific expert. The interviews
have been performed by a minimum of 4 co-authors. One co-
author has the role of driver of the interview, supported by an-
other and the other two co-authors were mainly responsible for
taking notes. At the end of each interview, the co-authors met
to summarize the outcomes and findings of the interview. The
validation of the guidelines enabled us to discuss the benefits
and risks of each of them and to clarify their scope.

2.5. Research Validity And Limitations

We discuss three types of survey validity [27].

Internal validity is concerned with the relationship between
a treatment and its results and whether any unknown factors
influenced the outcome of the study. To improve the instrument
used in the study, we carefully designed the questionnaires and
tested internally in the team of the authors.

Conclusion validity relates to the certainty that correct con-
clusions can be drawn about the relation between the measures
and the observed outcome. To mitigate threats to conclusion va-
lidity, we included researchers and practitioners with different
backgrounds in the design of the study. Moreover, we highlight
that in the questionnaires for validating the lessons learned, as
explained in Sec. 2.3, we had the possibility to get comments
of the participants during the performed courses. For what con-
cerns the guidelines validation, as explained in Sec. 2.4, we

LL
-
E
[$]
=

LL9:2 !
LL9:3 4 .

40%30%20%10% 0% 10%20%30%40%50%60%70%80%90%L00%
EEm Strongly disagree I Agree
Disagree N Strongly agree
Neither agree nor disagree

(a) How do you agree/disagree with the LL?

LL
-
=
wu

-— - - - T T T T
30% 20% 10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
-1 2 3 mm4 mmS]

(b) How much is the LL important?

Figure 2: Validation of the lessons learned

complemented the questionnaire with interviews to understand
in depth the feedback and opinion of the participants.

External validity is about the limitations of this study to gen-
eralize conclusions to other cases and domains. Our study is
indeed in healthcare and in the development of devices under
emergency. We made an effort to generalize the guidelines to
the development of critical software in emergency. The evalu-
ation also involved experts outside the healthcare domain, and
this helped to assess the generality of the guidelines. At this
point, we cannot exclude that the guidelines can be of use even
when developing software not under emegency and studying
how much they could be extended in a general software devel-
opment is a future work.

3. Lessons Learned from the development of MVM

An in-depth description and rationale of the lessons learned
can be found in [18]. In this paper, we briefly summarize them,
as shown in Table 3. LL.1.1-1.2 are related to the development
process, while LL.2.1-2.3 are related to team definition and
meetings planning. LL.3.1-3.3 are about supporting activities.

The remaining lessons learned relate to the development pro-
cess phases: LL.4.1-4.3 relate to system requirements, LL.5.1-
5.2 relate to software architecture design, LL.6.1 relates to risk
management, LL..7.1-7.2 relate to software requirement analy-
sis and software detailed design, LL.8.1-8.3 relate to implemen-
tation, LL.9.1-9.3 relate to unit testing, and, finally, LL.10.1
relates to integration and validation testing.

After having defined the lessons learned, we have validated
them with a group of experts during two seminars, by follow-
ing these three steps: i) we have asked additional questions to
grasp the opinions of experts before presenting lessons learned;
ii) we have presented the lessons learned; iii) we have asked
how much they agree with the lessons learned and how much
are the lessons learned important.

The percentages of agreement/disagreement with the pre-
sented LL are reported in Fig. 2a. Generally, the participants
(strongly) agreed with the LL, except in few cases. Some partic-
ipants disagreed with LL.2.1 (Coordination effort) and LL.2.2
(Enlarging team). The former because they were skeptical of
using open source software, the latter because they thought that
having as many people as possible it would lead to faster re-
sults. We found also that it was confusing to ambiguously talk
about teams without clearly distinguishing between coordina-
tion and development teams. LL.3.1 (Multiplicity of tools) cre-
ated the most disagreement, mainly because it was not clear the
context where different tools would be used. Also about the
use of UML (LL.3.3) there were some disagreements, because
other visual notation could be used, nevertheless they are not
recognized as a standard in the community. For LL.6.1 (Safety
assurance effort) and LL.7.1 (Modularity and parallelization)
there were only few disagreements. For LLS8.1 the validation
highlights that the use of multiple programming language can
lead to integration problems.

The behavior of Fig. 2a is reflected in Fig. 2b. For some par-
ticipants, lessons learned with disagreement in Fig. 2a are also
not that important: LL.3.1 (Multiplicity of tools), LL.3.3 (Use
of UML), LL.6.1 (Safety assurance effort) and LL.7.1 (Modu-
larity and parallelization). Exceptions are LL.2.1 (Coordination
effort) and LL.2.2 (Enlarging team) for which the participants
did not agree, although they retain them important issues. On
the opposite, they agree/strongly agree with LL.3.2 (use already
available templates and define a clear review process), but some
of the participants do not think that it is important for critical
software development under emergency. As explained in the
following section, Table 4 provides a description of the valida-
tion of the lessons learned; it also shows how they are mapped
to the guidelines.

4. Guidelines from the development of MVM

After having gathered and validated our lessons learned
through a series of dissemination activities and surveys, we
have exploited the obtained results for defining a set of guide-
lines to be used during the development of critical systems un-
der emergency. We have grouped, filtered, and modified the
lessons learned, and, for each lesson learned, Table 4 reports

Lessons learned

Validation result

Guidelines

LL.1.1 IEC 62304 and V-Model
LL.1.2 Use of agile practices

Merge the two lessons learned LL.1.1 and LL.1.2
into a unique guideline.

GL1 Plan-drivenjpredictive and agile inte-
gration

LL.2.1 Coordination effort
LL.2.2 Enlarging team
LL.2.3 Commitment and participation

Distinction between coordination team and devel-
opment team in terms of responsibilities and ac-
tivities.

GL4 Resources initial estimation
GLS Coordination team and plan
GL6 Responsibilities assignment
GL7 Flexible development teams

LL.3.1 Multiplicity of tools

Distinction between tools for coordination and
communication of the coordination team and of
development teams.

GLS8 Inter-team coordination and commu-
nication
GL9 Intra-team coordination and commu-
nication

LL.3.2 Templates and review process

Clarification on what to do when existing tem-
plates are not available and a review process is not
already established.

GL2 Review process
GL3 Documentation templates

LL.3.3 Use of UML

Generalization to visual/graphical notation in gen-
eral

GL11 Use visual and graphical notations

LL.4.1 Written requirements
LL.4.2 Reverse engineering

Merge the two LLs.

GL12 Precise requirements and reverse en-
gineering

LL.4.3 Need of a traceability system

Recommendation of a practice (traceability sys-
tem) that was not employed during the original
development of the MVM but deemed to be im-
portant.

GL10 Define a traceability system

LL.5.1 Upfront aspects balancing
LL.5.2 Importance of the architecture
LL.7.1 Modularity and parallelization

Clarification of how to manage software architec-
ture changes and introduction of communities of
practice as an instrument to evaluate the impact
on architecture and to assess and validate archi-
tectural decisions.

GL13 Define an architecture upfront
GL14 Limit the upfront architecture to sta-
ble decisions

GL15 Update the architecture

GL16 Exploit communities of practices

LL.6.1 Safety assurance effort

Reformulation of the lesson learned.

GL17 Isolate safety-critical parts

LL.7.2 State machines for wide inter-
pretability

LL.8.3 Advantages of state machines in
implementation

Identification of the two main uses of state ma-
chines.

GL18 Use state machines in specifications
GL19 Use state machines for code genera-
tion

LL.8.1 Mix of programming languages

Specification of some caveats (e.g., when it does
not make integration difficult).

GL20 Different programming languages

LL.8.2 Coding standards and guidelines

Reformulation of the lesson learned.

GL21 Coding standards and guidelines

LL.9.1 Testing not only safety-critical
components

LL.9.2 Importance of testing

LL.9.3 Advantages of CI tools in commu-
nity projects

LL.10.1 Integration testing for SIMDs

The lessons learned were somehow overlapping
and we identified the need of a better organiza-
tion of them. This led to the reformulation of the
lessons learned in three more clear guidelines.

GL22 Continuous integration and unit test-
ing

GL23 Focus on testing activities

GL24 Role of emulators

Table 4: Mapping of lessons learned and guidelines of the development phases

how the validation activities have been used to obtain the cor-
responding guideline.

Overall, based on the validation of the lessons learned, in the
guidelines we made a clear distinction between the coordination
team, more structured and stable, and the development teams,
more agile and dynamic. Moreover, we better elaborated on
the architecture as a living artifact, i.e. containing both upfront
aspects and aspects that emerge during development. We also
exploited the validation of the lessons learned for precise and
specific feedback in the guidelines’ formulation.

In the following, we report the guidelines we have devised,
either in general on the development process, or related to a
specific development phase.

4.1. Guidelines on the development process

GL1 Plan-driven/predictive and agile integration: Inte-
grate plan-driven/predictive processes with agile practices, to
combine rigorousness with efficiency and flexibility. The inte-
gration of different processes allows benefiting from the good
characteristics of both plan-driven [28] (or predictive [29]) and
agile processes. A mix of different development processes has
already been proposed. For example, the pros and cons in
blending agile and waterfall processes are discussed in [30, 31],
while in [32] the authors integrate agile and V-model.

GL2 Review process: Define a clear review process to iden-
tify the activities that should be performed. A clear review pro-
cess allows to speed up the development since when a review is
required before continuing with the next activities, the steps to

follow are already well known and it does not become a bottle-
neck. It also offers an efficient way to improve the quality and
effectiveness of the development process [33].

GL3 Documentation templates: Reuse and/or adapt ex-
isting templates, when available, for producing the documen-
tation required by certification standards and processes, oth-
erwise produce precise templates to be adopted by the entire
project. Considering that saving time is important, especially
under emergency, it is better if there are already established
templates that can be reused (for example, given by a collab-
orating company). This aspect is usually underestimated, espe-
cially for agile-based software development processes [34] that
claim not to produce a lot of structured documentation. How-
ever, for safety-critical software, the regulations require produc-
ing a lot of deliverables that cannot be avoided. If templates are
not available, it is recommended to define them before starting
the development process in order to know from the beginning
which information must be reported.

GL4 Resources initial estimation: Estimate competencies,
resources, and commitment of the various team members in the
initial phases of the project since potential new members should
be added in this initial phase. Despite the emergency, in fact,
it is important to invest some time in this upfront activity in the
startup phase, as introducing members during the development
process could increase the time-to-market due to the time re-
quired to understand the project. This guideline is confirmed
by many other researchers, such as in [22] and [35].

GLS Coordination team and plan: Define the coordination
team and the coordination plan of the team upfront and in the
startup phase. Despite the emergency, the coordination team
needs to be ready to work as soon as possible and there must be
clear indications to the development teams. Not having precise
indications could lead to misunderstandings and increase the
time required for completing the project. The same conclusions
have been observed by [36] and [37], in which the importance
of coordination teams is highlighted.

GL6 Responsibilities assignment: Assign precise and sta-
ble responsibilities to the members of the coordination team.
We have observed that the coordination team should be as sta-
ble as possible to avoid delays that can easily propagate to the
development teams. The importance of building a coordina-
tion team is well-known in the literature. In particular, most of
research works consider the presence of effective leaders who
both steer the development and motivate the developers crucial
to ensure a successful product [38].

GL7 Flexible development teams: Development teams can
be created according to the needs during development and
members should be prepared to help in various tasks accord-
ing to their availability and competencies. In every iteration or
sprint, team members can be assigned to different tasks. De-
velopment teams should work agile and change should be the
norm rather than the exception. Under emergency, there are
string timing constraints and agility and flexibility within the
development team can greatly help. The idea of flexible devel-
opment teams is widely adopted in agile processes, especially
when the software has to be produced for an emergency, e.g.
the COVID-19 pandemic [39].

GLS Inter-team coordination and communication: De-
fine the communication and coordination instruments, tools,
and protocols for inter-team coordination. When working in
different groups, there is the need for clear and stable instru-
ments, tools, and protocols for communication and coordina-
tion among the different teams. Many of the responses we have
received from the surveys about LL3.2, i.e., the lesson learned
from which this guideline derives, had complained about the
use of multiple tools, instruments, and protocols. For this
reason, here we isolate the inter-team coordination, for which
the coordination mechanisms must be fixed, and the intra-team
communication (see GL9 for further details). Each project may
require specific mechanisms for inter-team coordination, such
as the one proposed in [40].

GL9 Intra-team coordination and communication: Del-
egate to the development team members the selection of in-
struments and tools for development and intra-team coordina-
tion and communication. Within development teams, members
should be able to select the development, communication, and
coordination instruments and tools they like. This could be con-
sidered counter-intuitive, but it can help in saving a lot of time
since no training in a specific instrument or tool is necessary
for the development team members. Note that the coordination
and communication inter-team must be fixed a priori, as defined
by GLS8. Guaranteeing a certain grade of autonomy is a well-
established principle in agile-based development teams, even if
there are still a lot of challenges to be faced when implement-
ing autonomous teams [41], mainly related to inter-team tasks.
This is not always possible, e.g., when the certification stan-
dards (for example in aerospace) require the exclusive use of
certified tools also for coordination.

4.2. Guidelines on the development phases

GL10 Define a traceability system: Define upfront and in
the startup phase a traceability system for the entire develop-
ment. Traceability is of key importance in the development of
safety-critical systems, both for security and for certification
purposes. Then, from the initial phases of the project, there is
the need for a traceability system for the entire development.
In fact, even under emergency, traceability information can be
used to support the analysis of implications and integration of
changes that occur in the system, its maintenance and evolution,
and its testing activities. This guideline is recognized as valid
from several works in the literature, such as [43] and [44].

GL11 Use visual and graphical notations: Use, when pos-
sible, visual, graphical, and easy-to-understand notations, e.g.
UML, for communication among team members with hetero-
geneous expertise and competencies. The importance and the
wide interpretability of graphical notations are universally rec-
ognized. This is even more important during an emergency,
when the teams can be composed of members with different
backgrounds and knowledge. In this case, graphical notations
might facilitate communication among the team members [45].

GL12 Precise requirements and reverse engineering:
Write precise system requirements also in an emergency situ-
ation. If a prototype exists, use reverse engineering to extract

Guideline

Benefits

Risks

GL1 Plan-driven/predictive
and agile integration

o It enables to benefit from the good characteris-
tics of predictive and agile processes.

e It could result in an inefficient approach if ad-
vantages/disadvantages of both processes are not well
known.

GL2 Review process

o It permits to clearly define the review process
to speed up the development.

o Misidentification of activities if inexperienced people
are in charge of review process.

GL3 Documentation tem-
plates

e Precise templates permit to speed up the devel-
opment while guaranteeing quality.

e Reusing templates permits to save time and
build on consolidated experience.

e Too specialized template may not include all the in-
formation required by certification standards.
e Producing precise template is expensive.

GL4 Resources initial esti-
mation

¢ Despite the emergency, investing some time on
this upfront activity in the startup phase permits
to speed-up the development process, as well as
reduce risks.

o Sometimes the competencies and resources needed
for a project may be unknown when it is in its initial
stage, or their estimation may be not completely reli-
able.

GL5 Coordination
and plan

team

o This permits to have a coordination team ready
to work and to have clear indications for the de-
velopment teams.

e Sometimes the project can be not well defined at the
beginning, and thus it can be difficult to define upfront
who to insert in the coordination team.

GL6 Responsibilities as-
signment

e Having the coordination team as stable as
possible permits to avoid delays that can easily
propagate to the development teams.

o Some new tasks and responsibility may emerge during
the development.

GL7 Flexible development
teams

e When development teams work agile, they
are ready to deal with unavoidable and frequent
changes.

e Moving a developer from a task to another can be dif-
ficult, if the developer is not familiar with the new one.

GLS8 Inter-team coordina-
tion and communication

e Having clear and stable instruments, tools,
and protocols for the communication and coor-
dination among different teams permits to easily
communicate and to focus on the development
activities.

e The chosen tools may be not the optimal ones for all
the needs or users.

GL9 Intra-team coordina-
tion and communication

o Allowing development teams to select the
development, communication, and coordination
instruments for the intra-team work will permit
them to work in their comfort zone.

e Some certification standard requires using only cer-
tified tools during all the activities of the software life
cycle. In these cases, only a limited set of certified tools
should be chosen.

o It can be difficult to retrieve the information at a later
moment if no specific tools are used.

e This freedom to choose the instruments is beneficial
in the short term, but can be chaotic in the long term and
in big companies.

Table 5: Benefits and risks of the guidelines on the development process

useful information. Requirements are important to guide the de-
velopment and the validation phase. Even if in agile processes
is common to skip or not to focus on requirement specifications,
although under emergency, the requirements must be written in
a precise way. This guideline is particularly useful for safety-
critical systems, since certification authorities require a set of
documents among which there are the requirements. The neces-
sity of precise (even formal) requirements has been advocated
for a long time, for instance in [46, 47].

GL13 Define an architecture upfront: Define an architec-
ture upfront to allow different teams to work in parallel on dif-
ferent parts of the system and to facilitate integration. When
working under emergency, every aspect that could increase the
rapidness of the development is important. For this reason, a
clear identification of components and interfaces might help de-
velopment teams being faster, by working independently and in
parallel. The architecture upfront should be stable as much as
possible (see GL14), but teams must be ready to adapt it in case

change of requirements [48].

GL14 Limit the upfront architecture to stable decisions:
Limit the upfront architecture to stable decisions, while pay-
ing attention to concerns that matter across team borders. An
architecture description can be considered a boundary object
between multiple cross-functional teams: it can be used to cre-
ate a common understanding across sites while preserving each
team’s identity [24]. For this reason, an upfront architecture
should be limited to stable decisions, and then it should be up-
dated with emerging aspects. The upfront architecture should
include aspects that influence the coordination and those inter-
faces that are shared among different teams (see GL13).

GL15 Update the architecture: Integrate system architects
into teams to capture emerging aspects during development and
update the architecture accordingly. Since the upfront architec-
ture should be limited to stable aspects, architects, or those team
members playing the role of architects and taking architectural
decisions, should capture emerging aspects during development

Guideline

‘ Benefits

Risks

GL10 Define a traceability
system

e It is important to properly manage traceabil-
ity from the initial phases of the project.

o The traceability system might require tuning and adap-
tation during the entire development.

e When the traceability system is not properly defined,
some people will not follow it and it will become useless.

GL11 Use visual and graph-
ical notations

o Graphical notations might facilitate the com-
munication among team members with differ-
ent background and knowledge.

e Focus modeling on the most important parts otherwise
the return on investment will be questionable.

GL12 Precise requirements
and reverse engineering

e Requirements are important to guide the de-
velopment and the validation phase.

e Writing precise requirements may require a lot of time
for complex systems.

o If people not experienced in the field are involved, writ-
ing upfront precise requirements could be difficult.

GL13 Define an architec-
ture upfront

o A clear identification of components and in-
terfaces might help development teams to work
independently and in parallel.

o It can be difficult to define all the components upfront,
since sometimes the need for a new component emerges
during the development.

GL14 Limit the upfront ar-
chitecture to stable deci-
sions

e An architecture description can be used to
create a common understanding across sites
while preserving each team’s identity.

e It can become obsolete and misaligned with the imple-
mentation.

GL1S Update the architec-

ture

o This enables to enrich the upfront archi-
tecture with aspects emerging during develop-
ment and update the architecture accordingly.

o Development team members should interact with soft-
ware architects, since some emerging aspect may be not
seen by them.

GL16 Exploit communities
of practices

e Community of practices (CoP) [42] enables
architects to reason about changes and to re-
duce assumptions that can become inconsisten-
cies.

e When the CoP is not clearly connected to the manage-
ment team, it will become less effective and will only play
the role of knowledge dissemination.

GL17 Isolate safety-critical
parts

e The isolation of safety-critical features in
specific components or modules permits to
limit the validation and certification activities.

o It could result in creating a single point of failure, which
should be avoided.

GL18 Use state machines in
specifications

e State machines are used in various domains
and are a good instrument to easily communi-
cate complex behaviors.

e In general, only limited parts of a system can be mod-
eled using state machines.

o Considering the artifact as a living object, it requires
keeping it updated during the development.

GL19 Use state machines
for code generation

o The use of executable state machines pro-
motes modifiability, maintainability, and un-
derstandability.

o Some certification standard may require the use of cer-
tified tools for developers, and generating code from state
machines can be inapplicable in this case.

GL20 Different program-
ming languages

e When the use of different programming lan-
guages does not create integration problems,
e.g. when the code is deployed on different
hardware components, it would be beneficial
to allow developers to use familiar languages.
o It allows using a language that fits better with
the specific needs (e.g, to avoid using C for
GUI programming).

o Some certification standard requires the certification of
the compiler to be used by developers. In this case, using
different programming languages should be avoided.

e If coding guidelines are followed, one should assure
that they are available for all the chosen programming
languages.

o Using various programming languages might also make
more difficult code review activities.

GL21 Coding standards and
guidelines

o Coding standards are often required by safety
standards, and in general they promote quality
of the code.

e Following coding standards may slow up the develop-
ment process if developers are not used to them.

GL22 Continuous integra-
tion and unit testing

e CI tools and automatic testing instruments
enable various teams to work in parallel with-
out breaking the code, and permit to avoid the
big bang integration problem.

e For complex systems may be difficult to initially set up
the continuous integration environment.

GL23 Focus on testing ac-
tivities

o Safety critical components are those that re-
quire major attention. The parts of the system
that are not critical can follow classic quality
management recommendations.

o The usability of a system is affected also by non-safety-
critical components, thus focusing only on the critical
ones may reduce it.

GL24 Role of emulators

e Simulators and emulators can speed up de-
velopment and validation, but, integration, sys-
tem, and acceptance testing are unavoidable.

e Simulators may be slightly different from the real en-
vironment (e.g., noises and interferences can be difficult
to be simulated) and testing using them can be not com-
pletely reliable.

Table 6: Benefits and risks of the guidelines on the development phases.

10

and update the architecture accordingly [49].

GL16 Exploit communities of practices: Exploit communi-
ties of practices to reason about changes that impact the archi-
tecture, and to assess and validate architectural decisions. In
order to reduce assumptions that can become inconsistencies,
it is important to carefully assess decisions before setting them
into stone. Community of practices is a good instrument for en-
abling architects to reason about changes [24]. They can be ef-
fectively used to solve issues that span over multiple teams [50].

GL17 Isolate safety-critical parts: Isolate safety-critical
features in specific components or modules to focus the safety
assurance effort on a limited portion of the system. Safety stan-
dards often require different levels of attention and different
validation activities. The isolation of safety-critical features in
specific components or modules permits limiting the validation
and certification activities and, so, saving time under emergency
development. The aim is similar to the well-known practice of
using a security kernel with the desire to isolate and localize all
“security critical” software in one place [51].

GL18 Use state machines in specifications: Use state ma-
chines to specify modes and mode’s transitions in the require-
ment specification. State machines are used in various domains
and are a good instrument to easily communicate complex be-
haviors, especially when the development teams are heteroge-
neous. Moreover, if some kind of formal verification is needed,
with state machines (or equivalent methods) it can be easily
performed [52].

GL19 Use state machines for code generation: Use, when
possible, executable state machines for specifying the main
functional logic and the critical part of the system, and, then,
generate code from the state machines. Based on our experi-
ence, the use of executable state machines promotes modifiabil-
ity, maintainability, and understandability (see GLI§). In par-
ticular, tools like Yakindu SCT?® or other state-machine-based
tools can be a good choice when it comes to developing a crit-
ical part of the system, as they allow generating automatically
actual code [53, 54], which can be verified and tested at state-
machine-side [55].

GL20 Different programming languages: Allow the use
of different programming languages to facilitate the inclusion
of heterogeneous developers and speed up the implementation
process, when this does not create integration problems. When
the use of different programming languages does not create
integration problems, e.g. when code produced with differ-
ent languages is deployed on different hardware components
or when the communication mechanisms between modules are
language-independent, it would be beneficial to allow develop-
ment teams to use languages they are familiar with [25]. As
explained in LL8.1 in [18], when developing software under
emergency, with heterogeneous development teams, exploiting
the competencies that every member has on a particular pro-
gramming language can aid in reducing the time required for
the completion of the project.

GL21 Coding standards and guidelines: Adopt coding
standards and guidelines from the beginning. Safety standards

8https://www.itemis.com/en/yakindu/state—machine/

11

often require coding standards and in general, they promote the
quality of the code. Using coding standards and guidelines can
increase the readability of the code, which is important for code
inspections and static analysis. Moreover, even under emer-
gency, if the composition of the development teams is hetero-
geneous defining in advance coding standards and guidelines is
useful for preventing possible errors or hardly-understandable
code. The importance of adhering to coding standards from the
beginning is highlighted by many researchers, such as in [56],
where the authors empirically assess the value of coding stan-
dards and suggest not to insert them at a later time as any mod-
ification (aimed at adapting the software to the chosen coding
standards) has a non-zero probability of introducing a fault or
triggering a previously concealed one.

GL22 Continuous integration and unit testing: Use CI
tools and automated unit testing in order to continuously in-
tegrate the contributions of the various teams, to keep and pro-
mote quality, and to maintain under control the modifications
made by all the developers. CI tools and automatic testing
instruments enable various teams to work in parallel without
breaking the code, and permit to avoid the big bang integra-
tion problem. The importance of continuous integration is high-
lighted in [57], where CI tools are claimed to be effective since
they allow a shorter time between the possible introduction of a
bug in the system and its detection. This is of paramount impor-
tance, especially for complex safety-critical systems developed
under emergency and in a distributed way.

GL23 Focus on testing activities: While guaranteeing the
quality of the whole system, focus the testing activities to safety-
critical components as required by the standard. Safety critical
components are those that require major attention, in terms of
quality and test effort. The parts of the system that are not crit-
ical can follow classic quality management recommendations.
Focusing software testing activities on critical components is
often used in practice, especially when companies want to re-
duce their time-to-market [58]. Anyhow, testing is important
on all the components of a safety-critical device, regardless of
the safety classification.

GL24 Role of emulators: When possible, use simulators
andjor emulators, but plan for an integration, system, and ac-
ceptance testing phase. Simulators and emulators can speed
up the development and validation, but they are often limited
and integration, system, and acceptance testing cannot be per-
formed using them. This is a well known aspect of integra-
tion testing for safety-critical systems, such as for train and
ships [59], or automotive [60]. Especially if the system under
development is composed of hardware and software, the festing
in the field activity must be planned and performed in the real
environment, with the real hardware.

4.3. Guidelines validation

After having defined the guidelines, we have validated them
in two different ways, i.e., through questionnaires and inter-
views as explained in Sect. 2.4. During the questionnaires,
the participants have been asked about their agreement with
each guideline, using a Likert scale (from strongly disagree,
to strongly agree), the results of these surveys are presented in

GL1 1] e —
GL2 1 -
GL3 1 = =
GL4 e
GL5 A = :
GL6 - '
GL7 1 - !
GLS - ™ b
GL9 1 - :
GL10 =
GL11 A = .

- GL12 A -

O GL13 4 -
GL12 - m
GL15 - m
GL16 - ;

GL17 A e

GL18 A =

GL19 A = !

GL20 4 n— I E—
GL21 =l

GL22 |

GL23 A = -

GL24 A e

40% 20% 0%
Il 1 (Strongly disagree)
2

20%
3
- 4

40% 60% 80% 100%
N 5 (Strongly agree)

Figure 3: How do you agree/disagree with the GL?

Fig. 3. The agreement levels over the guidelines are generally
lower than those over the lessons learned (see Fig. 2a). This was
somehow expected since the guidelines are given in more affir-
mative and prescriptive style. Moreover, this is also due to the
wider experience and expertise of the involved experts. In fact,
we decided to involve international practitioners with various
expertise, as explained in Section 2, with the aim of collecting
different points of view. In all the cases (except for GL20), the
agreement levels remain very positive.

To further investigate the results obtained during the ques-
tionnaires, we have conducted several interviews (see Sect. 2.4)
to examine the reasons for which the participants were partic-
ularly agreeing or disagreeing with our guidelines. Tab. 5 and
Tab. 6 summarize the opinions we have collected in terms of
benefits expected if one follows the guideline and what are the
risks. Especially for those with lower agreement (like GL20),
we were able, thanks to the direct interaction with the experts,
to better identify the limits and circumscribe their intended use.
This will enable users of the guidelines to carefully assess how
each guideline should be applied to their project. For instance,
for GL20 we have identified a typical scenario in which it can
be followed, when different programming languages are used
on different hardware components.

5. Related works

In this section, we (i) analyze papers that describe the role of
software systems in helping manage the COVID-19 pandemic,
and (ii) compare our guidelines with works exploring the use of
agile practices for the development of safety-critical systems.

5.1. Software systems and COVID-19

In the literature, we might find studies and experience reports
on the use of existing software and IT approaches for managing
the COVID-19 emergency; there are also cases of application
of software systems to COVID-19 patients [61, 62]. However,
no particular attention is given to software development. Other
studies are focused on developing new medical software but in

12

a classical software development environment [63, 64]. Some
suggestions like the integration of agile practices and the need
for rigorous requirement specification have been applied to our
project as well, but we expect that medical software develop-
ment without any emergency is more planned and structured,
and some of the lessons we learned may not hold.

Other studies describe the development of new software and
Al solutions for COVID-19 during the emergency. The area of
medical imaging is, as expected, the most relevant [65]. Ma-
chine Learning algorithms have been promptly adapted to the
diagnosis of COVID-19 cases. In [66], the authors present a
rapid Al development cycle for an automated detection solu-
tion using deep learning CT Image Analysis. Those papers fo-
cus more on data collection and management than software de-
velopment. Regarding, instead, the SW development of med-
ical devices for COVID-19, we can compare MVM with the
numerous open-source community-driven projects working on
mechanical ventilators [67]. We could not find reports on their
experience in SW development and certification. Not surpris-
ingly, only a few of them® reached the certification while many
others, even if very promising, are still behind. We believe that
this paper could provide a guideline for them as it would help,
God forbid, future similar projects.

5.2. Safety-critical systems and agile development practices

Agile development practices might be seen in antithesis with
the development of safety-critical systems. However, there are
various attempts to bring benefits of agility and flexibility of
agile practices to more rigorous, stage-gate, and predictive de-
velopment methodologies.

In automotive, rigorous, stage-gate, and predictive processes
have previously been the norm, with requirements elicited and
described at the beginning of the project and with architecture
created mainly during an early phase and then used to guide
subsequent development phases [68, 69, 23]. However, vehi-
cles are becoming software-intensive complex systems, they are
shocked by various emerging business and technological needs
like electrification, autonomy, connectivity, and they are in-
creasingly expected to evolve continuously. This drives the au-
tomotive domain towards more exploratory, iterative, and agile
ways of working [70, 71, 68, 69]. To testify the importance of
the topic in the automotive domain, we mention EchoScrum!©,
which is an agile development model specifically designed to
ensure compliance with ISO 26262, ISO 21434 (Cyber Secu-
rity), and ISO/PAS 21448 (SOTIF).

Due to safety and legal concerns, requirements must be prop-
erly elicited, analyzed, and described [68]. This is aligned with
our guideline GLI12. However, traditional ways of working
are no longer sufficient for various reasons [68]. Similarly to
what we do recommend in guideline GLI7, the work in [68]
recommends to focus requirement efforts where crucial, e.g.,
on safety-critical functionality. Aligned with guidelines GLI1,
GL18, and GL19, the authors recommend to use model-based

https://bit.1ly/2P0Pm3g
Onttps://fsq-experts.com/products/

https://bit.ly/2POPm3g
https://fsq-experts.com/products/

RE and especially executable models for having early feedback.
Aligned with guidelines GLI/3 and GLI4, the authors of [68]
recommend postponing and delegate some decisions to devel-
opers. This aspect will be further explored in the remainder
of this section, when we will discuss the role of architecture
in agile. Aligned with guideline GL22, in paper [68], the au-
thors recognize that test automation is essential for CI. They
also touch traceability that we address in guideline GL10. How-
ever, the authors highlight that current solutions are not satisfac-
tory for the industrial needs. The work in [72] highlights that
existing traceability management approaches show their limita-
tions when integrated in constantly changing development con-
texts involving multiple stakeholders: there is the need of flex-
ible tool solutions, support for varying levels of data quality,
change propagation and versioning facilities, as well as trace-
ability covering also the organization part. In our work, we did
not go so deep in the investigation of traceability aspects, but
it would be interesting in future work to better analyze these
aspects.

Traditionally, software architectures are mostly produced up-
front and provide a blueprint for the entire development. More
recently, there is a transition toward “just-in-time architec-
ture” [23]: it is recognized that some upfront is needed and that
“a clear and well-defined architecture facilitates and enables
agility” [23], since it facilitates integration while providing flex-
ibility to the various agile teams working in parallel. This is
much in line with our guideline GLI3. However, it is also rec-
ognized that architecture is not a phase of development [73],
but, instead, some decisions and aspects might emerge during
development and it is important to capture these emerging el-
ements to keep the architecture description consistent with the
implementation [24]. This is also confirmed by our guidelines
GLI4 and GLI5.

As anticipated, when transitioning towards agility in the de-
velopment of software-intensive complex systems, there is the
need for scaling agility beyond teams, and this requires specific
strategies to support such scaling, and it has also implications
on the organizational structure [74]. This has been found chal-
lenging [75, 76]; one of the main impediment to provide engi-
neers with continuous feedback on system level is the lack of
infrastructure and tools [77]. Useful practices for scaling agile,
e.g. set-based design [78] and avoiding narrow product defini-
tions [79], have been promoted by scaled agile frameworks, e.g.
SAFe!! [78] and LeSS'2. Another approach to scale benefits of
agile approaches beyond teams are boundary objects [80, 49],
i.e. objects that are relevant for more than one team and then
allow for aligning across organizational boundaries.

6. Final remarks

In this paper, we report our experience in the certification
of the software of a mechanical ventilator that has been pro-
duced by a team of researchers all around the world during the

Unhttps://www.scaledagileframework.com/
https://less.works/less/framework

13

first wave of the COVID-19 pandemic. Out of this experience,
we synthesized a set of lessons learned that might help other
researchers to develop and certify software under emergency,
i.e. with strict time constraints and with volunteers dedicating
their private time to a social project. We validated the lessons
learned with 56 experts during a professional course we held.
We made use of questionnaires, where each question was fol-
lowed by a consequent discussion. The validation of the lessons
learned enabled us to extract from them a set of 24 guidelines
spanning from the development process, development phases,
and people management and coordination. Then, through ques-
tionnaires and interviews, we validated the guidelines with aca-
demic and industrial experts with different profiles: (i) experts
in developing software for health care devices, (ii) experts in
developing safety-critical software for automotive, and (iii) ex-
perts in combing agile methods with rigorous methodologies
for the development of safety-critical software. The variety of
typologies of experts enabled us to collect different points of
view and opinions about the guidelines. Our guidelines offer
concrete support for engineers during the development of criti-
cal software under emergency. Each guideline is offered with a
discussion of its benefits and risks. In this way, engineers can
decide and evaluate whether a specific guideline is appropriate
in their specific context. Our study opens to the possibility of
using agile methods together with document-driven and stricter
development processes. Part of the guidelines stem from agile
practices (e.g., GL4 to GL9, and GL14), while others come from
stricter processes (e.g., GL12,13,18,21). Others already strive
to combine the two (e.g. GLI). Studying this topic is of great
interest and brings up several questions: How much the two ap-
proaches can be combined and what is the best way? Are there
conflicts (for example GL13 vs GL15)? Can we define specific
guidelines on how to combine elements of both “worlds”? Pre-
cise answers to these questions will be provided in our future
works.

Acknowledgement

This work is partially supported by the FIRS Italian project
MVM-Adapt (Milano Ventilatore Meccanico Adattativo in pre-
senza d’incertezza), FISR2020IP_05310. The authors would
like to thank the entire team who contributed to the realization
of the MVM project. We would like to thank also the experts
that helped us in the validation of lessons learned and guide-
lines.

References

[1] A. Kornecki, J. Zalewski, Software certification for safety-critical sys-
tems: A status report, in: 2008 International Multiconference on Com-
puter Science and Information Technology, 2008.

G. Ferreira, C. Kistner, J. Sunshine, S. Apel, W. L. Scherlis, De-
sign dimensions for software certification: A grounded analysis, CORR
abs/1905.09760 (2019).

A. Gannous, A. Andrews, Integrating safety certification into model-
based testing of safety-critical systems, in: 2019 IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE), 2019.

A. Wolfl, N. Siegmund, S. Apel, H. Kosch, J. Krautlager, G. Weber-
Urbina, Generating qualifiable avionics software: An experience report
(e), in: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015.

(2]

[3]

(4]

https://www.scaledagileframework.com/
https://less.works/less/framework

[3]

[6]

(7]

[8]

[9]

[10]

(11]

[12]

(13]

[14]
[15]

[16]
[17]

(18]

[19]

[20]

(21]

[22]
(23]

[24]

[25]

[26]

[27]
[28]
(29]
(30]

(31]

A. Wolfl, Data management in certified avionics systems, Ph.D. thesis,
Universitit Passau (2018).

A. Hovsepyan, D. Van Landuyt, S. Op de beeck, S. Michiels, W. Joosen,
G. Rangel, J. Fernandez Briones, J. Depauw, Model-driven software de-
velopment of safety-critical avionics systems: an experience report, Vol.
1249, 2014.

R. Pietrantuono, S. Russo, Robotics software engineering and certifica-
tion: Issues and challenges, in: 2018 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 2018.

J. L. de la Vara, E. Parra, L. Alonso, R. Mendieta, B. Lépez, J. M.
Alvarez—Rodrl’guez, Integration of tool support for assurance and certi-
fication and for knowledge-centric systems engineering, in: IEEE Int.
Symp. on Software Reliability Eng. Workshops (ISSREW), 2019.

N. Hrgarek, Certification and regulatory challenges in medical device
software development, in: 2012 4th International Workshop on Software
Engineering in Health Care (SEHC), 2012, pp. 40-43.

S. Pelayo, S. Bras Da Costa, N. Leroy, S. Loiseau, M.-C. Beuscart-Z¢éphir,
Software as a medical device: Regulatory critical issues, Studies in health
technology and informatics 183 (2013) 337-42.

I. Lee, G. J. Pappas, R. Cleaveland, J. Hatcliff, B. H. Krogh, P. Lee, H. Ru-
bin, L. Sha, High-confidence medical device software and systems, Com-
puter 39 (4) (2006) 33-38.

M. N. K. Boulos, A. C. Brewer, C. Karimkhani, D. B. Buller, R. P.
Dellavalle, Mobile medical and health apps: state of the art, concerns,
regulatory control and certification, Online Journal of Public Health In-
formatics 5 (3) (Feb. 2014).

J. Neto, J. Damasio, P. Monthaler, M. Morais, Product-based safety cer-
tification for medical devices embedded software, Studies in health tech-
nology and informatics 216 (2015).

W. J. Gordon, A. D. Stern, Challenges and opportunities in software-
driven medical devices, Nature Biomedical Engineering 3 (7) (2019).

A. Ohne Autor Fd, General Principles of Software Validation; Final Guid-
ance for Industry and FDA Staff, V.2.0, FDA document formal (2002).
IEC 62304 Medical device software — Software life cycle processes.

A. Abba, et al., The novel mechanical ventilator milano for the COVID-
19 pandemic, Physics of Fluids 33 (3) (2021) 037122.

A. Bombarda, S. Bonfanti, C. Galbiati, A. Gargantini, P. Pelliccione,
E. Riccobene, M. Wada, Lessons learned from the development of a
mechanical ventilator for COVID-19, in: 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE), 2021.

P. Runeson, M. Host, Guidelines for conducting and reporting case study
research in software engineering, Empirical software engineering 14 (2)
(2009) 131.

R. N. Westhorpe, C. Ball, The manley ventilator, Anaesthesia and inten-
sive care 40 (5) (2012) 749-750.

A. Bombarda, S. Bonfanti, C. Galbiati, A. Gargantini, P. Pelliccione,
E. Riccobene, Replication package. available online at: https://
sedmed.github.io/GuidelinesForCriticalSoftware/ (2022).

F. P. Brooks, The Mythical Man Month, Prentice Hall, 1995.

P. Pelliccione, E. Knauss, R. Heldal, S. Magnus /o\gren, P. Mallozzi,
A. Alminger, D. Borgentun, Automotive architecture framework: The ex-
perience of volvo cars, Journal of Systems Architecture 77 (2017).

R. Wohlrab, U. Eliasson, P. Pelliccione, R. Heldal, Improving the consis-
tency and usefulness of architecture descriptions: Guidelines for archi-
tects, in: 2019 IEEE Int. Conf. on Software Architecture (ICSA), 2019.
P. Mayer, M. Kirsch, M. A. Le, On multi-language software development,
cross-language links and accompanying tools: a survey of professional
software developers, Journal of Software Engineering Research and De-
velopment 5 (1) (2017).

J. Raskin, Comments are more important than code: The thorough use of
internal documentation is one of the most-overlooked ways of improving
software quality and speeding implementation., Queue 3 (2) (2005).

C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, A. Wessln,
Experimentation in Software Engineering, 2012.

B. Boehm, R. Turner, Balancing agility and discipline: evaluating and
integrating agile and plan-driven methods, in: Proceedings. 26th Interna-
tional Conference on Software Engineering, 2004.

B. Meyer, Agile!, Springer International Publishing, 2014.

C. Quist, Benefits of blending agile and waterfall project planning
methodologies, Tech. rep., University of Oregon (2015).

R. J. Kusters, Y. van de Leur, W. G. M. M. Rutten, J. J. M. Trienekens,

14

[32]

[33]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]
[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

When agile meets waterfall, in: 19th Int. Conf. on Enterprise Information
Systems, 2017.

M. McHugh, E. McCaffery, G. Coady, An agile implementation within a
medical device software organisation, in: Software Process Improvement
and Capability Determination, 2014.

P. Kess, H. Haapasalo, Knowledge creation through a project review pro-
cess in software production, International Journal of Production Eco-
nomics 80 (1) (2002) 49-55, innovation of Technology Management.
doi:https://doi.org/10.1016/50925-5273(02)00242-6.

URL https://www.sciencedirect.com/science/article/pii/
S0925527302002426

J. A. Livermore, Factors that significantly impact the implementation of
an agile software development methodology., J. Softw. 3 (4) (2008).

T. Marks, Accelerating the project, in: The Practitioner Handbook of
Project Controls, 2020.

N. B. Moe, T. Dingsgyr, K. Rolland, To schedule or not to schedule?
an investigation of meetings as an inter-team coordination mechanism in
large-scale agile software development (2018).

A. Subbarao, M. Mahrin, A systematic review of coordination approaches
and indicators in global software development projects, Journal of Ad-
vanced Research in Dynamical and Control Systems 11 (10) (2019).

Y. Li, C.-H. Tan, H.-H. Teo, Leadership characteristics and developers’
motivation in open source software development, Information and Man-
agement 49 (5) (2012) 257-267. doi:10.1016/j.im.2012.05.005.
J. a. Varajdo, Software development in disruptive times: Creating a soft-
ware solution with fast decision capability, agile project management, and
extreme low-code technology, Queue 19 (1) (2021).

H. Nyrud, V. Stray, Inter-team coordination mechanisms in large-scale
agile, in: Proceedings of the XP2017 Scientific Workshops, 2017.

V. Stray, N. B. Moe, R. Hoda, Autonomous agile teams: Challenges and
future directions for research, in: Proceedings of the 19th International
Conference on Agile Software Development: Companion, 2018.

Scaled Agile, Communities of practice, available online at https://
www.scaledagileframework.com/communities-of-practice/
(2022).

G. Spanoudakis, A. Zisman, Software Traceability: A Roadmap, in:
Handbook Of Software Engineering And Knowledge Engineering, 2005.
C. Ingram, S. Riddle, Cost-benefits of traceability, in: Software and Sys-
tems Traceability, 2011.

M. R. V. Chaudron, W. Heijstek, A. Nugroho, How effective is UML
modeling ?, Software & Systems Modeling 11 (4) (2012).

D. L. Parnas, J. Madey, Functional documents for computer systems, Sci-
ence of Computer Programming 25 (1) (1995) 41-61.

P. Arcaini, S. Bonfanti, A. Gargantini, A. Mashkoor, E. Riccobene, In-
tegrating formal methods into medical software development: The ASM
approach, Science of Computer Programming 158 (2018) 148—167. doi:
10.1016/j.scico0.2017.07.003.

J. Eckstein, Architecture in large scale agile development, in: Lecture
Notes in Business Information Processing, 2014.

R. Wohlrab, P. Pelliccione, E. Knauss, M. Larsson, Boundary objects and
their use in agile systems engineering, Journal of Software: Evolution and
Process 31 (5) (2019).

T. Kahkonen, Agile methods for large organizations - building communi-
ties of practice, in: Agile Development Conference, 2004, pp. 2-10.

J. M. Rushby, Design and verification of secure systems, ACM SIGOPS
Operating Systems Review 15 (5) (1981).

P. Arcaini, A. Bombarda, S. Bonfanti, A. Gargantini, E. Riccobene,
P. Scandurra, The ASMETA Approach to Safety Assurance of Software
Systems, 2021.

A. Bombarda, S. Bonfanti, A. Gargantini, Developing medical de-
vices from abstract state machines to embedded systems: A smart
pill box case study, in: Software Technology: Methods and Tools,
Springer International Publishing, 2019, pp. 89-103. doi:10.1007/
978-3-030-29852-4_7.

A. Bombarda, S. Bonfanti, A. Gargantini, E. Riccobene, Developing a
prototype of a mechanical ventilator controller from requirements to code
with ASMETA, Electronic Proceedings in Theoretical Computer Science
349 (2021) 13-29. doi:10.4204/eptcs.349.2.

F. Wagner, Modeling Software with Finite State Machines, Auerbach
Publications, 2006.

C. Boogerd, L. Moonen, Assessing the value of coding standards: An em-

https://se4med.github.io/GuidelinesForCriticalSoftware/
https://se4med.github.io/GuidelinesForCriticalSoftware/
https://www.sciencedirect.com/science/article/pii/S0925527302002426
https://www.sciencedirect.com/science/article/pii/S0925527302002426
https://doi.org/https://doi.org/10.1016/S0925-5273(02)00242-6
https://www.sciencedirect.com/science/article/pii/S0925527302002426
https://www.sciencedirect.com/science/article/pii/S0925527302002426
https://doi.org/10.1016/j.im.2012.05.005
https://www.scaledagileframework.com/communities-of-practice/
https://www.scaledagileframework.com/communities-of-practice/
https://doi.org/10.1016/j.scico.2017.07.003
https://doi.org/10.1016/j.scico.2017.07.003
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.4204/eptcs.349.2

(571

(58]

(591

[60]

[61]

[62]

(63]

[64]

(65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

pirical study, in: 2008 IEEE Int. Conf. on Software Maintenance, 2008.
P. Duvall, S. Matyas, A. Glover, Continuous Integration: Improving Soft-
ware Quality and Reducing Risk, 2007.

M. Felderer, R. Ramler, Risk orientation in software testing processes
of small and medium enterprises: an exploratory and comparative study,
Software Quality Journal 24 (3) (Aug. 2015).

C. Dufour, G. Dumur, J.-N. Paquin, J. Belanger, A pc-based hardware-
in-the-loop simulator for the integration testing of modern train and ship
propulsion systems, in: 2008 IEEE Power Electr. Specialists Conf., 2008.
J. Schroeder, C. Berger, T. Herpel, Challenges from integration testing
using interconnected hardware-in-the-loop test rigs at an automotive oem:
An industrial experience report, in: Proceedings of the First International
‘Workshop on Automotive Software Architecture, WASA 15, Association
for Computing Machinery, 2015.

B. A. Jr, Use of telemedicine and virtual care for remote treatment in
response to covid-19 pandemic, J. Medical Syst 44 (7) (2020) 132.

A. Asadzadeh, S. Pakkhoo, M. M. Saeidabad, H. Khezri, R. Ferdousi,
Information technology in emergency management of covid-19 outbreak,
Informatics in Medicine Unlocked 21 (2020) 100475.

C. Denger, R. L. Feldmann, M. Host, C. Lindholm, F. Shull, A snapshot
of the state of practice in software development for medical devices, in:
First Int. Symp. on Emp. Software Eng. and Measurement (ESEM), 2007.
M. McHugh, O. Cawley, F. McCaffcry, I. Richardson, X. Wang, An agile
V-model for medical device software development to overcome the chal-
lenges with plan-driven software development lifecycles, in: 2013 5th Int.
Work. on Software Engineering in Health Care (SEHC), 2013.

F. Shi, J. Wang, J. Shi, Z. Wu, Q. Wang, Z. Tang, K. He, Y. Shi, D. Shen,
Review of artificial intelligence techniques in imaging data acquisition,
segmentation, and diagnosis for COVID-19, IEEE Reviews in Biomedical
Engineering 14 (2021).

0. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Zhang, W. Ji,
A. Bernheim, E. Siegel, Rapid ai development cycle for the coronavirus
(covid-19) pandemic: Initial results for automated detection & patient
monitoring using deep learning ct image analysis (2020). arXiv:2003.
05037.

J. M. Pearce, A review of open source ventilators for COVID-19 and fu-
ture pandemics, F1000Research 9 (2020) 218.

S. M. Agren, E. Knauss, R. Heldal, P. Pelliccione, G. Malmgqvist,
J. Bodén, The impact of requirements on systems development speed:
a multiple-case study in automotive, Req. Engineering 24 (3) (2019).

S. M. Agren, E. Knauss, R. Heldal, P. Pelliccione, A. Alminger, M. An-
tonsson, T. Karlkvist, A. Lindeborg, Architecture evaluation in continu-
ous development, Journal of Systems and Software 184 (2022).

P. Hohl, J. Miinch, K. Schneider, M. Stupperich, Real-life challenges on
agile software product lines in automotive, in: Proc. of Int. Conf. on
Product-Focused Software Process Improvement (PROFES), 2017.

M. Stupperich, S. Schneider, Process-focused lessons learned from a
multi-site development project at daimler trucks, in: Proc. of 6th Int.
Conf. on Global Software Engineering (ICGSE), 2011.

R. Wohlrab, P. Pelliccione, A. Shahrokni, E. Knauss, Why and how your
traceability should evolve: Insights from an automotive supplier, IEEE
Software 38 (4) (2021).

R. N. Taylor, N. Medvidovic, E. M. Dashofy, Software Architecture:
Foundations, Theory and Practice, Addison-Wesley, 2007.

S. M. Agren, R. Heldal, E. Knauss, P. Pelliccione, Agile beyond teams
and feedback beyond software in automotive systems, IEEE Transactions
on Engineering Management (2022).

R. Kasauli, E. Knauss, J. Horkoff, G. Liebel, F. G. de Oliveira Netoa,
Requirements engineering challenges and practices in large-scale agile
system development, Systems and Software 172 (2021).

R. Kasauli, E. Knauss, J. Nakatumba-Nabende, B. Kanagwa, Agile is-
lands in a waterfall environment: Requirements engineering challenges
and strategies in automotive, in: Proc. of Int. Conf. on Evaluation and
Assessment in Software Engineering (EASE), 2020.

E. Knauss, P. Pelliccione, R. Heldal, M. Agren, S. Hellman, D. Mani-
ette, Continuous integration beyond the team: a tooling perspective on
challenges in the automotive industry, in: 10th ACM/IEEE Int. Symp. on
Empirical Software Eng. and Measurement, 2016.

R. Knaster, D. Leffingwell, SAFe 4.0 Distilled: Applying the Scaled Ag-
ile Framework for Lean Software and Systems Engineering, Addison-
Wesley Professional, 2017.

15

[79] C. Larman, B. Vodde, Large-scale scrum: More with LeSS, Addison-
Wesley Professional, 2016.

[80] T. Sedano, P. Ralph, C. Péraire, The product backlog, in: IEEE/ACM 41st
International Conference on Software Engineering (ICSE), 2019.

http://arxiv.org/abs/2003.05037
http://arxiv.org/abs/2003.05037

	Introduction
	Research methodology
	Case description
	Data collection and analysis
	Validation of the lessons learned
	Validation of the guidelines
	Research Validity And Limitations

	Lessons Learned from the development of MVM
	Guidelines from the development of MVM
	Guidelines on the development process
	Guidelines on the development phases
	Guidelines validation

	Related works
	Software systems and COVID-19
	Safety-critical systems and agile development practices

	Final remarks

