
Introducing CreaTest: a Framework for Test
Case Generation in itemis CREATE

Andrea Bombarda[0000−0003−4244−9319], Silvia Bonfanti[0000−0001−9679−4551],
Angelo Gargantini[0000−0002−4035−0131], and Nico

Pellegrinelli[0009−0000−4944−6845]

University of Bergamo, Bergamo, Italy
{andrea.bombarda, silvia.bonfanti, angelo.gargantini,

nico.pellegrinelli}@unibg.it

Abstract. In model-driven engineering, models are used to specify, val-
idate, and verify the system design and generate code and tests. In all
these activities, assuring the correctness of the model is paramount, as to
derive correct code and tests, a correct model is required. In this paper,
we introduce CreaTest, a framework designed to generate abstract tests
for itemis CREATE Statecharts by leveraging existing code-based test gen-
erators. Our approach consists of translating Statecharts into executable
Java code, and then applying a white-box test generation tool, like Evo-
suite, to produce JUnit test cases. Test cases are subsequently abstracted
back into a format supported by the original modeling tool for model val-
idation. We evaluate CreaTest on a large set of Statecharts retrieved
from GitHub. Our results show that CreaTest generates high-coverage
abstract tests for Statecharts and that optimizing the generated code
significantly enhances the effectiveness of test generation.

Keywords: Abstract Tests · Statecharts · EvoSuite · itemis CREATE

1 Introduction

Automatic test generation from models has been a challenge for many years [13,
30]. It is a fundamental aspect of applying model-based testing (MBT) ap-
proaches. In the literature, many formal notations for models have been pro-
posed, ranging from Finite State Machines [22] to Abstract State Machines [5]
and from Extended Finite State Machines [3] to UML Statecharts [6] and Harel
Statecharts [20], to name a few. In this paper, we analyze itemis CREATE,1, a
commercial modular toolkit for developing, simulating, and generating code
from a particular type of executable finite-state machines known as CREATE
Statecharts, a variant of Harel Statecharts.2 It has been used in real-world
projects [1, 23], where developers have taken advantage of its automatic code
generation features and, unlike UML, its precise semantics.

1 https://www.itemis.com/en/products/itemis-create/
2 Up to version 3.x, itemis CREATE was named itemis Yakindu and was open source:
https://github.com/itemisCREATE/Statecharts

https://www.itemis.com/en/products/itemis-create/
https://github.com/itemisCREATE/Statecharts

One of the desired features of a formal notation is the possibility of writing
and executing abstract tests [12,28]. Such tests can be used to validate the formal
model, for regression testing, and for conformance testing of the implementa-
tion. However, most formalisms do not provide a feature for automatic abstract
test generation. Indeed, given the great number of formalisms and the non-
standardization between tools, while test generation from code has made great
strides, providing significant results in terms of applicability, research effort, and
effectiveness [17], model-based test generation is still not well-supported, and
many tools completely lack test generation functionality. This is the case with
CREATE: despite its excellent support for test execution and coverage evalua-
tion, it does not provide any mechanism for automatic test generation.

To bridge this gap, in this paper, we propose a framework exploiting test
generators for code to generate abstract tests aimed at achieving the desired
level of structural coverage. The approach briefly consists of exploiting a code
generator that translates the model to code in a target programming language
(e.g., Java), applying white-box test generators to obtain test cases in the target
language, and, finally, abstracting them back to the formalism supported by the
modeling tool. We implement this approach in CreaTest: by starting from the
itemis CREATE Statecharts,we generate Java code thanks to the code generation
utility offered by the tool. Then, we use EvoSuite [16] to generate JUnit test
cases, and we abstract them into the SCTUnit format supported by itemis

CREATE. We apply some optimizations during this process, reducing the search
space to facilitate the EvoSuite test generation and achieve higher coverage.

We evaluate CreaTest by applying it to a set of 133 Statecharts, with dif-
ferent complexity, gathered from GitHub. With such an extensive set of bench-
marks, we are able to assess the effectiveness and the performance of CreaTest
and to identify the limitations of our approach. In addition, we evaluate the im-
pact of the code optimizations aimed at helping EvoSuite in test generation on
the coverage of the abstract tests. Our results confirm that using the proposed
methodology is a viable solution for solving the problem of generating abstract
test cases for Statechart validation. Indeed, for most of the models considered,
we have been able to cover a high percentage of the models’ behavior by sim-
ply relying on automatically generated test cases. Moreover, we have found that
optimizing the code generated by itemis CREATE is effective for significantly in-
creasing the Statecharts coverage and helping EvoSuite to be more effective.

The paper is structured as follows. Sect. 2 discusses the background for
the CreaTest approach, while Sect. 3 describes the CreaTest approach and
tool.The effectiveness of our approach is evaluated in Sect. 4, while possible
threats to validity are discussed in Sect. 5. Finally, Sect. 6 compares our ap-
proach with related works, and Sect. 7 concludes the paper.

2 Background

In this section, we present the formalism supported by itemis CREATE, i.e., the
Statecharts, its code generator, and the language used to write abstract tests.

2

main region@EventDriven
@SuperSteps(no)
interface:
 var numCalls: integer = 0
 operation raiseAudioSignal()
 in event pushButton
interface L: // lights
 out event goR
 out event goY
 out event goG

after 30 sRed
entry/raise L.goR

pushButton / numCalls++

Green
entry/raise L.goG

Yellow
entry/raise L.goY

after 5 s / raiseAudioSignal()

Fig. 1: Example of an itemis CREATE Statechart for a simple traffic light

2.1 itemis CREATE Statecharts

itemis CREATE uses CREATE Statecharts, based on Harel Statecharts and very
similar to UML state machines. An example of a Statechart for a simple traffic
light is shown in Fig. 1. In the following, we analyze the main CREATE State-
charts features necessary to understand the process we implement in CreaTest.

Two execution schemes exist for CREATE Statecharts: event-driven and
cycle-based. In the former, a run-to-completion computation step is executed
each time an event is raised, while in the latter, events are collected and then
processed periodically in a run-to-completion computation step.

Thanks to the graphical editor, users can define states (like Red in Fig. 1)
and regions (like main region in Fig. 1), both of which can also be hierarchical.
Transitions between states can be defined and are fired when an event happens.
The firing of a transition can be limited through guards. In addition, the system
reaction when a transition occurs can be declared. For example, the transition
between Green and Yellow is fired when the incoming event pushButton hap-
pens, and the system reacts by incrementing the numCalls variable.

Regardless of the states and transitions, itemis CREATE allows for defining
the interface of the system, representing the entities that are externally visible
and used by the client code to interact with the Statechart. A single Statechart
can have multiple interfaces, which can be unnamed or named (see the l (lights)
interface in Fig. 1). In each interface, developers may define in events, which are
incoming events raised by the client code and processed by the state machine; out
events, raised by the state machine and delivered to the external environment;
vars, used to store data; and operations, which make an external functionality
implemented by the client code accessible by the state machine. In addition, a
Statechart can import another one to enable collaboration between them.

2.2 Code generator

itemis CREATE supports executable code generation from Statecharts to C++,
C, Java, and Python. In this work, we focus on Java code generation, but the
same considerations we draw, can be applied to other programming languages.
The generation of executable code from the Statechart starts with the definition
of the SGen model, used to configure the code generation process.

Once the translation rules are defined, itemis CREATE generates source code
by exploiting several interfaces, such as: 1. IStatemachine, which contains the

3

1 public class TrafficLight implements ITimed,
IEventDriven {

2 public static class L { ... }
3 protected L l;
4 private long numCalls;
5 ...
6 public TrafficLight() { l = new L(); ... } ...
7 }

Listing 1: Java class generated for the
Statechart TrafficLight

Table 1: Mapping between itemis

CREATE objects and Java

itemis CREATE Java

Named interface Inner class
Statechart vari-
ables

Fields in the state machine
class (with get and set)

Incoming events Methods
Outgoing events Observable objects
Operations Inner interfaces
States Enumerations

declaration of methods to be implemented by the state machine (e.g., enter,
exit, isActive, and isFinal); 2. IEventDriven or ICycleBased, depending
on the type of the state machine; and 3. ITimed and ITimerService, generated
when at least a timed incoming event is present, and containing the declaration
of methods useful when the Statechart contains timers.

Then, itemis CREATE defines a single class for the Statechart, as shown in
Listing 1 for the Statechart in Fig. 1. Each named interface defined by the
Statechart is translated into an inner class (e.g., line 2), while all fields and
methods in an unnamed interface, if any, are defined directly in the state machine
class (e.g., line 4). Further mappings between itemis CREATE objects and Java
constructs are shown in Tab. 1.

2.3 SCTUnit tests

In the Model-Driven Engineering approaches, assuring the correctness of the
model, i.e., it correctly captures the requirements, is of paramount importance.
Having a faulty model jeopardizes all the analysis activities (e.g., simulation)
and defeats the purpose of deriving artifacts from it (e.g., the implementations).

To validate the machine, itemis CREATE offers the possibility to write SCTUnit
tests.3 Each test consists of a well-defined sequence of instructions that are
applied to the state machine under test and possibly change that state machine
in a specific way. The user specifies in a test the expected effects of these changes
as assertions, which are automatically checked by itemis CREATE. SCTUnit tests
are of paramount importance when developing a Statechart. They can be used
to support the Test-Driven Development process, conformance testing to verify
the compliance of the model behavior with that specified in the requirements
document, and regression testing. Furthermore, they can be concretized during
MBT activities to obtain unit tests for the implementation.

Test cases must be defined within a class contained in a .sctunit file. The
typical structure of a test case starts with an enter statement followed by a
sequence of raise, proceed, and assert, as shown in the example in Listing 2
for the Statechart in Fig. 1. The enter statement initializes and starts the state
machine. The raise statements are used to raise incoming events. The proceed

3 https://tinyurl.com/45wsvmm2

4

https://tinyurl.com/45wsvmm2

1 testclass TLTest for Statechart TrafficLight {
2 @Test operation workingStateTest() {
3 enter
4 assert active(main region.Red)
5 proceed 35 s

6 assert active(main region.Green)
7 raise pushButton
8 assert active(main region.Yellow)
9 exit

10 } ... }

Listing 2: An example of SCTUnit test class

statements are used to make the state machine proceed for a given amount
of time or cycles. Finally, the assert statements are used to check a specific
condition of the system, e.g., whether a state is active or not, an operation
has been called or not, an outgoing event has been raised or not. In addition,
SCTUnit provides features such as, but not limited to, conditional statements
(if and if else), loops (while), and operation mocking.

SCTUnit tests can be automatically translated into different languages (C,
C++, Java, and Python), each one with its own testing framework. However, no
backward translation (i.e., from the target language to the SCTUnit format) is
available and, thus, concrete test cases cannot be used to derive SCTUnit tests.

3 CreaTest approach for test generation

In this section, we present CreaTest, our test generator for itemis CREATE

Statecharts, and we explain it based on the example shown in Fig. 1. First, we
describe the basic process we implemented and discuss possible optimizations to
be applied to the generated source code. Then, we present how we automatically
gather the information used for test translation. Finally, we describe the process
we follow for translating the tests automatically generated into SCTUnit tests.
The CreaTest tool is available in our replication package [10].

3.1 The CreaTest basic process

The UML activity diagram shown in Fig. 2 models the CreaTest process.
Initially, CreaTest takes as input an itemis CREATE Statechart, as described

in Sect. 2.1, and automatically builds the SGenmodel, which contains the proper-
ties and settings for code generation. In this step, CreaTest extracts the name
from the Statechart, which is a mandatory input parameter. Having defined the
properties for the code generation process, CreaTest exploits the itemis CREATE
Java code generator to generate a Java file containing the class implementing the
input Statechart. This procedure requires as input the Statechart and the SGen
model. Then, the obtained Java class is transformed into a optimized one to help
the EvoSuite test generator. We describe this step in more detail in Sect. 3.2.

At this point, the real test generation process can start. The Java code of
the Statechart is given as input to EvoSuite [16], which generates JUnit test
cases by exploiting evolutionary algorithms. Finally, JUnit tests are abstracted
and translated into SCTUnit tests.During this process, additional information is

5

C
o

n
c

r
e

te
 W

o
r
ld

J
a

v
a

Optimized

Java class

JUnit test

suite
Run itemis CREATE

Java code generator

Extract Timers

information

Optimize Java code Run EvoSuiteJava class

A
b

s
tr

a
c

t
W

o
r
ld

it
e

m
is

 C
R

E
A

T
E

CREATE

Staetchart
SGen model

Extract Statechart

information

Generate SGen

model

SCTUnit

test class

Translate tests

Statechart name

Statechart namespace

Statechart, states, events, operations

names

Proceed times

Fig. 2: CreaTest process

required. In particular, the translation needs the Statechart namespace and the
Statechart, states, events, operations, and interface names, which are retrieved
directly from the model, and information about the proceed times of timed
events, which is retrieved from the generated Java class.

In the following subsections, we explain in more detail how the optimization
of the Java source code is performed by CreaTest, how additional information
is collected, and how the translation of JUnit into SCTUnit works.

3.2 Helping EvoSuite by hacking the generated code

EvoSuite can leverage different search algorithms and aims to maximize a set
of coverage criteria. In this work, DynaMOSA [24] is used as the search algo-
rithm and the selected coverage criteria are branch, methodnoexception, and
output.4 For the tool to generate a test suite, the greater the search space, the
higher the generation time and, possibly, the lower the coverage reached. For
this reason, in CreaTest we have implemented strategies aimed at optimizing
the Java source code generated by the itemis CREATE Java code generator for test
generation. These optimizations focus on reducing the search space by “hiding”
all details that are not meaningful for the Statechart and should not be used by
EvoSuite. Briefly, the optimizations introduced by CreaTest modify the visi-
bility of members that should not be used in the test cases, e.g., because there is
no corresponding expression or statement in SCTUnit for that member. Consid-
ering that EvoSuite tries to interact with public and protected members, every
member that is not of interest for the Statechart should be forced to be private
in the optimized Java class. The optimizations performed by CreaTest (see
Tab. 2) relate both to fields and methods. As a general rule, since our goal is to
achieve maximum Statechart coverage, we set all fields or methods that would
not contribute to increasing coverage to private. In particular, both protected
and public fields are converted to private ones, as they should not be directly
accessed. All protected methods (associated with internal or outgoing events,
operations, or setting the enabling status for a state) are converted into private
ones, as they have no corresponding statements in SCTUnit.

4 Further details on the EvoSuite configuration within CreaTest can be found in [10].

6

Table 2: Optimizations of Java members
Original Java Optimized Java

protected methods private methods
protected fields private fields
public fields private fields
public methods (interfaces) public methods (interfaces)
set methods private set methods
get methods private get methods

1 @Test(timeout=4000) public void test10() throws Throwable {
2 TrafficLightS TrafficLightS0 = new TrafficLightS();
3 ITimerService iTimerService0 = mock(ITimerService.class, new ViolatedAssumptionAnswer());
4 TrafficLightS0.setTimerService(iTimerService0);
5 TrafficLightS0.enter();
6 TrafficLightS0.raiseTimeEvent(0);
7 TrafficLightS0.State TrafficLightS St0 = TrafficLightS0.State.MAIN REGION GREEN;
8 boolean boolean0 = TrafficLightS0.isStateActive(TrafficLightS St0);
9 assertTrue(boolean0); }

Listing 3: JUnit test case

The methods defined in an interface are kept public to avoid compilation
errors. Set methods are made private to prevent EvoSuite from modifying the
values of variables without executing an action on the Statechart. Finally, get
methods are forced as private. During code optimization, additional methods
may be added to make EvoSuite test generation more effective. This is the case
with cycle-based Statecharts. When itemis CREATE generates the Java code, a
runCycle() method is provided to perform one computation step. However,
EvoSuite tries to keep the generated test cases as short as possible, and this
implies that behaviors shown only after many steps may be untested. For this
reason, during the code optimization phase, we add the proceedCycles(int

nCycles) method, allowing EvoSuite to perform more cycles without having to
call the already existing runCycle() method multiple times.

An example of a JUnit test generated by EvoSuite for the Statechart reported
in Fig. 1 after the optimization of the Java code is shown in Listing 3.

3.3 Collecting Statechart and Timers information

For the JUnit tests to be translated into SCTUnit tests, it is necessary to collect
additional information from the Java source code and the CREATE Statechart.
While a simple parser suffices for extracting information from Java, analyzing
the Statechart requires de-serializing its XML.

Concerning the Java code, CreaTest extracts the mapping between tem-
poral event IDs and the associated proceed time (used by the after and every
statements, as in the example shown in Fig. 1). If a timed event is present in
the Statechart under analysis, a setTimer statement will be present in the Java
code. This is used by the state machine to start a timer for a given eventID

and lasts for a given time. Furthermore, the expiration of a timer identified by

7

1 <sgraph:Statechart [...] specification=”@EventDriven...” name=”TrafficLight”>
2 <regions [...] name=”main region”> [...] <vertices xsi:type=”sgraph:State” [...] name=”Red”>
3 <outgoingTransitions [...] specification=”after 30 s”/>
4 </vertices> [...] </regions> </sgraph:Statechart>

Listing 4: Excerpt of the .ysc of the Statechart in Fig. 1

an eventID is handled by the raiseTimeEvent method (see line 6 in Listing 3).
Thus, for the JUnit code to be translated into the corresponding SCTUnit, the
link between a defined eventID and the corresponding duration must be found.
To do this, the Java code is parsed and all setTimer statements are analyzed to
extract the link between the eventID and the corresponding time.

In terms of the Statechart analysis, we have found that the .ysc file in which
it is saved is in the XMI format, as shown in the excerpt reported in Listing 4,
and can be parsed by a classical XML parser. The useful information for the
CreaTest approach is that referring to states (and regions), events, and inter-
faces, which is located in the only node in the XMI with the sgraph:Statechart
tag. From the attributes of this node it is possible to extract the name of the
Statechart, its namespace, input events, interfaces, and operations. From its
children, and once the structure of the XMI representation of the Statechart is
known, we can extract the hierarchical name of each state.

During code generation, some information, such as the capitalization of names
used in the Statechart, is lost. Thus, it is not possible to obtain an SCTUnit class
that is correct with respect to the Statechart by looking only at the generated
JUnit test cases. For instance, an enum constant MAIN REGION STATEA could
originate from a state in the “main region” named either StateA or STATEA,
with such a distinction being lost during code generation. Similarly, a method
such as raiseMyEvent() could derive from an event named myEvent or MyEvent.
This issue is addressed by CreaTest, which parses the .ysc file to recover the
original names and establishes a unique mapping between the generated Java
code and the CREATE elements within a single Statechart.

3.4 From concrete to abstract test cases

The last step of the CreaTest process is the translation of concrete test cases
into abstract ones, i.e., from JUnit tests generated by EvoSuite to an SCTUnit
test executable by itemis CREATE. After having performed the steps discussed be-
fore, namely the optimization of the Java code and the collection of information
from Java classes and the Statechart, the final translation step is straightfor-
ward. For the translation of test cases, the input test class is parsed and each
method (i.e., test case) is analyzed: an output test case is populated, translating
the method calls into SCTUnit statements in the order in which they appear.

Tab. 3 shows the mapping between method calls and SCTUnit statements.
Note that the object whose method is called is omitted. All methods, except for
doReturn mock methods, must be called from an instance that implements the

8

Table 3: Mapping between JUnit and SCTUnit statements (myInt.x is used to
indicate that the CREATE element x is defined by the interface myInt)
JUnit SCTUnit

enter() enter
exit() exit
triggerWithoutEvent() triggerWithoutEvent
runCycle() proceed 1 cycle
proceedCycles(X) proceed X cycle
raiseTimeEvent(0) proceed Xms
raiseMyEvent() raise myEvent / raise myInt.myEvent
raiseMyTypedEvent(X) raise myTypedEvent: X / raise myInt.myTypedEvent: X
doReturn(X).when().myOp() mock myOp returns (X) / mock myInt.myOp returns (X)
assertTrue(expr) / assertFalse(expr) assert expr / assert !expr

1 @Test operation test10() {
2 enter
3 proceed 30s
4 assert active(TrafficLight.main region.Green) }

Listing 5: SCTUnit test case

Statechart or from an instance of its inner classes, where stated, which are the
interfaces. The possible interface to be used for an operation is obtained from the
argument of the when method call that follows the doReturn call. A particular
translation is that concerning the assertTrue and assertFalse when an expr
is used. This can be a call of the isActive method (translated into the is ac-

tive SCTUnit statement), of the isFinal method (translated into the is final

SCTUnit statement), or of the isStateActive(Statechart.State.REGION -

STATE) method (translated into the active(Statechart.region.state) SC-
TUnit statement). Finally, considering that SCTUnit test cases interact with
the Statechart only by raising events or calling methods, the translation process
only translates method calls and ignores everything else.

By applying such a process, the JUnit test case reported in Listing 3 is
translated into the SCTUnit test shown in Listing 5. Note that during this
translation, the information collected in the process described in Sect. 3.3 has
been used (e.g., the duration of the timer and the name of the states).

4 Experiments

In this section, we describe the experiments we have performed to evaluate
CreaTest, its performance, and its limitations. More specifically, the exper-
iments have been designed to answer the following research questions:

RQ1 How effective is CreaTest at generating correct test classes while achiev-
ing high coverage?

RQ2 Does providing optimized input to the test generator enhance the quality
of the generated SCTUnit test classes?

RQ3 Does the coverage achieved by EvoSuite relates to the coverage provided
by the final SCTUnit test class?

9

In the following, we describe the experimental methodology we have used to
gather and analyze data to answer the presented RQs.

4.1 Experimental methodology

In the following, we delve into the experimental methodology used in our exper-
iments. First, we analyze the models we have selected as benchmarks and how
they have been filtered to keep only the meaningful ones. Then, we describe the
test generation process and how we gathered the data used to address our RQs.

Benchmark collection: In May 2024, we gathered 219 CREATE State-
charts from GitHub, with many of them coming from two key repositories: the
official itemis CREATE repositories [2] and the repository [25] of STL4IoT, a li-
brary of Statechart templates for designing IoT systems composed of atomic
CREATE Statechart components. We retrieved 68 Statecharts from the former,
54 from the latter, and the remaining 97 from other repositories.

Benchmark inspection: Before running CreaTest on all benchmarks,
a manual inspection of each Statechart was performed to remove Statecharts
with errors or those not suitable as input for the tool. In total, we removed
86 Statecharts (48 duplicates, 16 importing C/C++ code, 1 using the SCXML
domain, 9 with errors, 15 too simple or meaningless). In the end, we selected 133
Statecharts for in our experiments. For each of them, we measured the number
of states and their average and maximum depth.5These Statecharts are available
in our replication package [10].

Test generation and execution: For each benchmark, we generated an
abstract test suite with CreaTest both enabling and disabling the Java code
optimization. This process was automated by the batch script available in our
replication package. The resulting test suites were manually checked to deter-
mine whether any of them presented static errors (e.g., syntax errors). Finally, by
executing the SCTUnit test suites on the Statecharts, we gathered all coverage
information for both standard and optimized tests. More specifically, when dis-
cussing the EvoSuite coverage, we considered the average of the coverage criteria
used when executing EvoSuite (i.e. branch, output, methodnoexception), while
in the case of itemis CREATE the considered coverage is the average coverage of
external regions (i.e., the average coverage of the states in them, computed, for
each state, as the ratio of exiting transitions executed by the tests w.r.t. their
total number). The generated SCTUnit test suites and the coverage data are
available in the replication package [10].

4.2 RQ1: Effectiveness of CreaTest

In this RQ, we are interested in investigating whether CreaTest is effective,
i.e., it can generate tests with no static errors (syntactically correct) and that

5 The depth of a state refers to its level within the hierarchical structure of the Stat-
echart.

10

Fig. 3: Two-dimensional views of DBSCAN clustering scatter plot.

pass (semantically correct). Furthermore, we are interested in evaluating the
coverage achieved by the generated test cases considering models of different
complexities. For each of the 133 Statecharts in our test set, the tool was able
to generate one SCTUnit test class. None of the generated test classes contained
compilation errors, and only 1 test class contained at least a failing test. Thus,
out of the 133 Statecharts, for 132 of them it was possible to generate a correct
test suite, leading to a success rate of 99.25%. In 3 cases, the generated tests
allowed us to discover a faulty behavior of the Statechart: the test execution
halted due to the presence of a loop in the Statechart, indicating that certain
executions result in infinite cycles. Except for halting executions, coverage was
collected for the remaining 130 test classes, resulting in an average coverage of
60.05%.

We are also interested in investigating the impact of Statechart complexity on
the coverage of the generated test cases. For this purpose, we grouped the Stat-
echarts into clusters. To define the clusters, we decided to include the following
features: number of states in the Statechart, average state depth, and maximum
state depth. Furthermore, we used DBSCAN as a clustering algorithm, with its
implementation in Python provided by the library scikit-learn. Fig. 3 shows the
graphical 2-D representation of the clusters we found using the three features
mentioned above. As reported in the figure, five clusters and five outliers (cluster
−1) were identified. It is apparent that the main feature used to discriminate
clusters is the maximum depth of the states, which is sufficient to uniquely iden-
tify clusters 0, 1, and 4. Clusters 2 and 3 have the same value of maximum depth
for all their samples and can be discriminated by the number of states. The av-
erage depth was found to be the least useful feature for clustering. In Tab. 4, we
detail the characteristics of each cluster. More specifically, we report the char-
acteristics of each cluster, namely the number of Statecharts in the cluster, the
average number of states across the Statecharts in the cluster, and the common
maximum depth. We also report the results achieved by CreaTest, namely the
average coverage and the number of Statecharts for which the coverage is 0%,
between 1% and 49%, between 50% and 99%, and exactly 100%. Note that the
cluster −1 is the set of outliers; thus, we do not report the maximum depth. By
analyzing the results we obtained in each different cluster we can discuss the
impact of Statechart complexity on the performance of CreaTest. First, even
in cluster 0, the simplest one, we have 4 Statecharts with null coverage (i.e. the

11

Table 4: Characteristics of all clusters
Cluster # Max Depth Avg. States Avg Cov. #0% #1-49% #50-99% #100%

0 48 1 3.60 75.8% 4 5 19 20
1 33 2 5.39 67.1% 4 3 20 6
2 23 3 9.30 54.6% 2 6 15 0
3 9 3 21.11 23.8% 5 1 3 0
4 12 4 19.42 33.1% 3 5 4 0
-1 5 - 34.60 17.4% 1 3 1 0

Table 5: Comparison of SCTUnit classes in standard and optimized Java code.
Metric Standard code Optimized code

of generated classes 133 133
of classes with passing tests 101 129
of classes with failing tests 27 1
of classes with errors 4 0
of classes with blocking tests 1 3

Average coverage 19.45% 60.05%

tests do not contain enter statements). Moreover, in each cluster, we obtained
some empty or meaningless test cases (e.g., with a single statement). This shows
that there are Statecharts with few states for which CreaTest struggle to gen-
erate tests. However, the tool performance seems to be strongly correlated with
the number of states in the Statechart. Indeed, from cluster 0 to −1 (the one
containing the most complex Statecharts considered in our analysis) the average
coverage decreases and, by comparing clusters 3 and 4, CreaTest performs
better on the latter than with the former, as it presents fewer states.

RQ1: CreaTest effectivness

Our experiments show that CreaTest is able to generate correct and pass-
ing SCTUnit test cases for more than 99% of the considered itemis CREATE

Statecharts. As expected, the lower the model complexity, the higher the
coverage level of the generated tests.

4.3 RQ2: Impact of Java code optimization on tests

For this RQ, we analyzed the impact of using code optimization on the Java
code produced by itemis CREATE and used by EvoSuite for generating test cases.
As shown in Tab. 5, our experiments confirm that using the optimized code
reduces the search space of EvoSuite and allows the tool to find better solutions,
reaching higher coverage. Additionally, the experiments show that this reduction
in the search space allows increasing the number of Statecharts for which the
tool is able to generate a passing SCTUnit test class and leads to an overall
improvement in the quality of the generated SCTUnit tests, both in terms of
coverage and static errors. Indeed, by optimizing the source code, we prevent
Evosuite from inserting Java statements not having direct correspondence with
SCTUnit ones, and this allows EvoSuite to focus only on relevant statements.

12

RQ2: Impact of code optimization

Our results show that optimizing Java source codeallows to cover up to
40.6% more of the Statecharts and increases the percentage of passing tests.

4.4 RQ3: Correlation between JUnit and SCTUnit coverage

EvoSuite aims to generate a JUnit test suite for the Java class given as input with
the highest possible coverage. In the context of the CreaTest approach, the
JUnit test suite generated by EvoSuite is only an intermediate result. However,
it would be beneficial if the effort of EvoSuite also relates to the quality of the
final results. In other words, if the coverage of the JUnit test suite generated by
EvoSuite is high, the coverage of the final SCTUnit test case should also be high.
Thus, in our experiments, we measured the Pearson correlation between the two
coverages, i.e., the one obtained by EvoSuite on the Java code and the one of
the SCTUnit test cases on the CREATE Statecharts. The resulting correlation
is 0.840, i.e., the two measures are strongly correlated.

RQ3: Correlation of JUnit with SCTUnit coverage

The correlation between JUnit and SCTUnit test cases is 0.840: this means
that EvoSuite can cover most of the Java code; then, with CreaTest, we
can transfer this good result to the Statecharts as well.

5 Threats to validity

In this section, we discuss potential threats to the validity [26] of our work and
the actions we have taken to mitigate them.

Internal validity refers to the fact that the different outcomes obtained with
the analyzed techniques and tools are actually caused by the different approaches
themselves and by the way the experiments were carried out, and not by method-
ological errors. To mitigate this risk, we have carefully checked the code executed
in our experiments to see if there could be other factors that may have caused
the outcome, such as errors in the tools or in the experimental code we wrote.

A possible threat to the construct validity comes from the assumption that
the measures we considered for evaluating the CreaTest approach (i.e., the
executability of the test cases, the pass/fail ratio, and the coverage) are suitable
to assess our approach correctly. We rely on the literature for this, where similar
measures are often used [4, 21,31].

External validity is concerned with whether we can generalize the results
outside the scope of the presented benchmarks and tool. Concerning the bench-
marks used, we have tried to gather all the itemis CREATE Statecharts we found
on GitHub and we believe they are representative of the domain. One may argue
that the applicability of the approach of generating abstract test cases with test
generators for code is limited only to the CREATE tool. However, we think that
the same approach can be extended to any other formal notation and tool where
the tool allows for generating executable code from the model and the tool has its

13

own validation language. What we presented in this paper is a proof-of-concept
and, as future work, we may investigate its generalizability and applicability
to other formalisms, such as Matlab Simulink or ASMETA [5]. The validity of
the proposed approach depends on the correctness of the source code genera-
tor: our assumption is that the behavior implemented by the Java source code
corresponds to that of the Statechart. We did not find any issue in the code
generation, itemis CREATE is a reliable software, and we can conjecture that the
code generator is well-developed and tested.

Since there are no tools for generating tests from CREATE Statecharts, we
could not compare CreaTest with other approaches. We suspect that an ideal
tool avoiding translation to Java code and operating directly at the model level
would be more efficient. However, writing such a tool would require a great
effort – as also suggested by the fact that such a tool does not exist. We have
carried out some experiments with EvoMBT [15], but they were inconclusive:
the translation from CREATE Statecharts to EvoMBT is complex and hard to
automate, jeopardizing any possible advantage in its usage for this approach.

6 Related Work

In this section, we report a non-exhaustive summary of other approaches and
formalisms used in the literature to perform MBT and generate abstract tests,
and we highlight the differences with the approach we propose in this paper.

State machines (in one of their variants) are the most adopted formalism
when it comes to MBT. In [8], Abstract State Machines, with the ASMETA [9]
framework, are used as a modeling notation and abstract test cases are auto-
matically generated by exploiting the counterexample provided by the NuSMV
model checker [11]. The user must then provide a concretization mechanism to
obtain concrete test cases runnable on the system under test. Despite the com-
pleteness of the ASMETA framework, its use is not intuitive and the models
have to be written in a textual format, whereas with itemis CREATE users can
take advantage of a graphical and intuitive representation. Abstract State Ma-
chines are also exploited as an underlying formalism by Spec Explorer [27]. As for
ASMETA, there is no graphical editor, and the model programs can be defined
using the C# programming language or any other .NET language, introducing
higher complexity in the modeling phase. Other works have proposed the use
of Extended Finite-State Machines (EFSMs) to model the system. For exam-
ple, EvoMBT [15] allows the user to implement an EFSM in Java by using the
provided interfaces. Then, once the user has modeled the SUT (or part of it) as
an EFSM, EvoMBT can generate abstract tests by exploiting the same tool we
propose in this paper, namely EvoSuite. The user must provide a concretization
mechanism for the generation of executable test cases runnable on the SUT.
A different approach for modeling a system and deriving test cases is the one
exploited by GraphWalker [29]. This requires the user to model the system as a
directed graph, where edges represent actions on the SUT and nodes represent

14

verifications (i.e., assertions on the SUT). GraphWalker produces abstract tests
as paths (lists of pairs of edges and vertices) on the graph.

Regarding itemis CREATE, to the best of our knowledge, no ready-to-use tool
exists. The only approach we found is Y2U [18], in which the authors propose
to automatically translate Yakindu Statecharts (thus, the old version of the
tool we analyze in this paper) into UPPAAL [7] timed automata. The test gen-
eration process has not been implemented, but we believe that tests may be
automatically derived thanks to the UPPAAL model checker. Exploiting the
combination of a code generator and a test generator for code is also presented
in [14]. However, in that paper, the emphasis is more on code generation (from
PLC to Python). Our approach’s strength is to leverage code generators already
provided by the modeling tool, such as itemis CREATE.

7 Conclusion

Abstract test generation from formal models is a crucial aspect of modeling for-
malisms. These tests enable users to validate models and conduct regression and
conformance testing once the actual implementation is available. In this paper,
we have introduced CreaTest, marking the first attempt to develop an abstract
test generator for the itemis CREATE Statechart formalism. Our approach lever-
ages the code generation capabilities of itemis CREATE to produce Java code, so
avoiding the otherwise cumbersome task of providing a translation from State-
charts to other tools (such as model checkers or SMT solvers). We then generate
JUnit test cases by using EvoSuite, which we subsequently abstract back into
the language supported by itemis CREATE, SCTUnit. Before using EvoSuite, we
also optimized the code to facilitate generation. With our experiments, we have
evaluated CreaTest. Moreover, we have shown the positive impact of code
optimization and the capability of CreaTest to generate abstract test cases,
achieving high coverage on the Statecharts. This work is a proof of concept and,
as future work, we may investigate the generalization of the same approach to
other modeling formalisms and reducing the code optimizations (e.g., keeping
the get methods as public) to not only achieve the state and transition coverage
but other coverage metrics as well. Finally, we plan to broaden our evaluation
by applying more suitable complexity metrics to assess the impact of complexity
on coverage, including cyclomatic complexity and its variants for hierarchical
Statecharts proposed in [19].

Acknowledgments. This work is supported by PNC - ANTHEM (AdvaNced Tech-

nologies for Human-centrEd Medicine) - Grant PNC0000003 – CUP: B53C22006700001

- Spoke 1 and by SERICS (PE00000014) under the NRRP MUR program funded by the

EU - NGEU and by the European Union - Next Generation EU. We also acknowledge

financial support of the project SAFEST (Trust assurance of Digital Twins for med-

ical cyber-physical systems), funded by the European Union - Next Generation EU,

Mission 4, Component 2, Investment 1.1, CUP F53D23004230006, under the National

Recovery and Resilience Plan (NRRP) – Grant Assignment Decree No. 959 adopted

on 30 June 2023 by the Italian Ministry of University and Research (MUR).

15

References

1. Abba, A., et al.: The novel Mechanical Ventilator Milano for the COVID-19 pan-
demic. Physics of Fluids 33(3) (Mar 2021). https://doi.org/10.1063/5.0044445

2. itemis AG: itemis CREATE. https://github.com/itemisCREATE (2024)
3. Alagar, V.S., et al.: Extended Finite State Machine, pp. 105–128. Springer London,

London (2011). https://doi.org/10.1007/978-0-85729-277-3_7
4. Almaghairbe, R., Roper, M.: Separating passing and failing test executions by

clustering anomalies. Software Quality Journal 25(3), 803–840 (Oct 2016). https:
//doi.org/10.1007/s11219-016-9339-1

5. Arcaini, P., Bombarda, A., et al.: The ASMETA Approach to Safety Assurance of
Software Systems, pp. 215–238. Springer International Publishing, Cham (2021).
https://doi.org/10.1007/978-3-030-76020-5_13

6. von der Beeck, M.: Formalization of uml-statecharts. In: UML 2001 — The Uni-
fied Modeling Language. Modeling Languages, Concepts, and Tools. pp. 406–421.
Springer Berlin Heidelberg (2001). https://doi.org/10.1007/3-540-45441-1_30

7. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems, pp. 232–243. Springer Berlin
Heidelberg, Berlin, Heidelberg (1996). https://doi.org/10.1007/BFb0020949

8. Bombarda, A., Bonfanti, S., Gargantini, A.: Automatic Test Generation with
ASMETA for the Mechanical Ventilator Milano Controller. In: Testing Soft-
ware and Systems. pp. 65–72. Springer (2022). https://doi.org/10.1007/

978-3-031-04673-5_5

9. Bombarda, A., Bonfanti, S., et al.: Asmeta tool set for rigorous system design.
In: Formal Methods. pp. 492–517. Springer Nature Switzerland, Cham (2025).
https://doi.org/10.1007/978-3-031-71177-0_28

10. Bombarda, A., Gargantini, A., Pellegrinelli, N.: Replication package for the paper
”Introducing CreaTest: a framework for test case generation in itemis CREATE”.
https://github.com/foselab/CREATest (Apr 2025)

11. Cimatti, A., Clarke, E., et al.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking, pp. 359–364. Springer Berlin Heidelberg (2002)

12. Devroey, X., Perrouin, G., Schobbens, P.: Abstract test case generation for be-
havioural testing of software product lines. In: Proceedings of the 18th Inter-
national Software Product Line Conference: Companion Volume for Workshops,
Demonstrations and Tools - Volume 2. p. 86–93. New York, NY, USA (2014).
https://doi.org/10.1145/2647908.2655971

13. Dias Neto, A.C., et al.: A survey on model-based testing approaches: a system-
atic review. In: Proceedings of the 1st ACM International Workshop on Empirical
Assessment of Software Engineering Languages and Technologies. p. 31–36. ACM,
New York, NY, USA (2007). https://doi.org/10.1145/1353673.1353681

14. Ebrahimi Salari, M., Enoiu, E.P., Afzal, W., Seceleanu, C.: PyLC: A Framework
for Transforming and Validating PLC Software using Python and Pynguin Test
Generator. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing. p. 1476–1485. SAC ’23, ACM, New York, NY, USA (2023). https:
//doi.org/10.1145/3555776.3577698

15. Ferdous, R., Hung, C., Kifetew, F., Prandi, D., Susi, A.: EvoMBT: Evolution-
ary model based testing. Science of Computer Programming 227, 102942 (2023).
https://doi.org/10.1016/j.scico.2023.102942

16. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

16

https://doi.org/10.1063/5.0044445
https://doi.org/10.1063/5.0044445
https://github.com/itemisCREATE
https://doi.org/10.1007/978-0-85729-277-3_7
https://doi.org/10.1007/978-0-85729-277-3_7
https://doi.org/10.1007/s11219-016-9339-1
https://doi.org/10.1007/s11219-016-9339-1
https://doi.org/10.1007/s11219-016-9339-1
https://doi.org/10.1007/s11219-016-9339-1
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/3-540-45441-1_30
https://doi.org/10.1007/3-540-45441-1_30
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-031-04673-5_5
https://doi.org/10.1007/978-3-031-04673-5_5
https://doi.org/10.1007/978-3-031-04673-5_5
https://doi.org/10.1007/978-3-031-04673-5_5
https://doi.org/10.1007/978-3-031-71177-0_28
https://doi.org/10.1007/978-3-031-71177-0_28
https://github.com/foselab/CREATest
https://doi.org/10.1145/2647908.2655971
https://doi.org/10.1145/2647908.2655971
https://doi.org/10.1145/1353673.1353681
https://doi.org/10.1145/1353673.1353681
https://doi.org/10.1145/3555776.3577698
https://doi.org/10.1145/3555776.3577698
https://doi.org/10.1145/3555776.3577698
https://doi.org/10.1145/3555776.3577698
https://doi.org/10.1016/j.scico.2023.102942
https://doi.org/10.1016/j.scico.2023.102942

European Conference on Foundations of Software Engineering. p. 416–419. ES-
EC/FSE ’11, ACM, New York, NY, USA (2011). https://doi.org/10.1145/

2025113.2025179
17. Gambi, A., Jahangirova, G., Riccio, V., Zampetti, F.: SBST tool competition 2022.

In: Proceedings of the 15th Workshop on Search-Based Software Testing. p. 25–32.
SBST ’22, ACM (2023). https://doi.org/10.1145/3526072.3527538

18. Guo, C., Ren, S., et al.: Transforming Medical Best Practice Guidelines to Ex-
ecutable and Verifiable Statechart Models. In: 2016 ACM/IEEE 7th Interna-
tional Conference on Cyber-Physical Systems (ICCPS). pp. 1–10 (2016). https:
//doi.org/10.1109/ICCPS.2016.7479121

19. Hall, M.: Complexity metrics for hierarchical state machines. In: Search Based
Software Engineering. pp. 76–81. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23716-4_10

20. Harel, D.: Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987). https://doi.org/https://doi.org/
10.1016/0167-6423(87)90035-9

21. Lazic, L., Mastorakis, N.: Cost effective software test metrics. W. Trans. on Comp.
7(6), 599–619 (Jun 2008)

22. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and
verification. IEEE Transactions on Computers 43(3), 306–320 (1994). https://
doi.org/10.1109/12.272431

23. Mohamed, M.A., Kardas, G., Challenger, M.: A Systematic Literature Review on
Model-driven Engineering for Cyber-Physical Systems (2021). https://doi.org/
10.48550/ARXIV.2103.08644

24. Panichella, A., Kifetew, F.M., Tonella, P.: Automated Test Case Generation as
a Many-Objective Optimisation Problem with Dynamic Selection of the Targets.
IEEE Transactions on Software Engineering 44(2), 122–158 (2018). https://doi.
org/10.1109/TSE.2017.2663435

25. Rempillo, C., Mustafiz, S.: STL4IoT: A statechart template library for IoT system
design (2023)

26. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Engg. 14(2), 131–164 (Apr 2009). https:
//doi.org/10.1007/s10664-008-9102-8

27. Sarma, M., Murthy, P.V.R., Jell, S., Ulrich, A.: Model-based testing in industry:
a case study with two MBT tools. In: Proceedings of the 5th Workshop on Au-
tomation of Software Test. p. 87–90. AST ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1808266.1808279

28. Sprenkle, S., Pollock, L., Simko, L.: A Study of Usage-Based Navigation Models
and Generated Abstract Test Cases for Web Applications. In: 4th IEEE Interna-
tional Conference on Software Testing, Verification and Validation. pp. 230–239
(2011). https://doi.org/10.1109/ICST.2011.34

29. Zafar, M.N., Afzal, W., et al.: Model-Based Testing in Practice: An Industrial Case
Study using GraphWalker. In: Proceedings of the 14th Innovations in Software
Engineering Conference. ISEC ’21, ACM, New York, NY, USA (2021). https:
//doi.org/10.1145/3452383.3452388

30. Zelenov, S.V., Silakov, D.V., et al.: Automatic Test Generation for Model-Based
Code Generators. In: Second International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation. pp. 75–81 (2006). https://doi.
org/10.1109/ISoLA.2006.70

31. Zhu, H., et al.: Software unit test coverage and adequacy. ACM Comput. Surv.
29(4), 366–427 (Dec 1997). https://doi.org/10.1145/267580.267590

17

https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/3526072.3527538
https://doi.org/10.1145/3526072.3527538
https://doi.org/10.1109/ICCPS.2016.7479121
https://doi.org/10.1109/ICCPS.2016.7479121
https://doi.org/10.1109/ICCPS.2016.7479121
https://doi.org/10.1109/ICCPS.2016.7479121
https://doi.org/10.1007/978-3-642-23716-4_10
https://doi.org/10.1007/978-3-642-23716-4_10
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1109/12.272431
https://doi.org/10.1109/12.272431
https://doi.org/10.1109/12.272431
https://doi.org/10.1109/12.272431
https://doi.org/10.48550/ARXIV.2103.08644
https://doi.org/10.48550/ARXIV.2103.08644
https://doi.org/10.48550/ARXIV.2103.08644
https://doi.org/10.48550/ARXIV.2103.08644
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/1808266.1808279
https://doi.org/10.1145/1808266.1808279
https://doi.org/10.1109/ICST.2011.34
https://doi.org/10.1109/ICST.2011.34
https://doi.org/10.1145/3452383.3452388
https://doi.org/10.1145/3452383.3452388
https://doi.org/10.1145/3452383.3452388
https://doi.org/10.1145/3452383.3452388
https://doi.org/10.1109/ISoLA.2006.70
https://doi.org/10.1109/ISoLA.2006.70
https://doi.org/10.1109/ISoLA.2006.70
https://doi.org/10.1109/ISoLA.2006.70
https://doi.org/10.1145/267580.267590
https://doi.org/10.1145/267580.267590

	Introducing CreaTest: a Framework for Test Case Generation in itemis CREATE

