
Visual notation and patterns for
Abstract State Machines

Paolo Arcaini1, Silvia Bonfanti2, Angelo Gargantini2, and Elvinia Riccobene3

1 Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic
arcaini@d3s.mff.cuni.cz

2 Department of Economics and Technology Management, Information Technology
and Production, Università degli Studi di Bergamo, Italy

{silvia.bonfanti,angelo.gargantini}@unibg.it
3 Dipartimento di Informatica, Università degli Studi di Milano, Italy

elvinia.riccobene@unimi.it

Abstract. Formal models are a rigorous way to specify informal sys-
tem requirements. However, they are not widely used in practice, since
they are considered difficult to develop and understand. Visualization is
often considered a good means for people to communicate and to get a
common understanding. We here make a proposal of a visual notation
for Abstract State Machines (ASMs), and we introduce visual trees that
visualize ASM transition rules. In addition to these graphical compo-
nents that are based only on the syntactical structure of the model, we
also present visual patterns that permit to visualize part of the behavior
of the machine. A tool is also available to graphically represent ASM
models using the proposed notation.

1 Introduction

Formal models are in principle accepted as the only way to specify in a precise
and rigorous way the informal system requirements: they help to understand
what has to be developed and to prove properties already at the early stages of
the system development. However, formal specification languages are not widely
used in industry, and practitioners largely consider formal methods “too hard
to understand and use in practice”. Limiting factors are the lack of simplic-
ity, learnability, readability, easiness of use of formal notations [23]. All these
nonfunctional properties are fundamentals to achieve easiness of development
and comprehension of models, particularly for large, complex software systems.
Requirement models should act as a communication medium among customers,
users, designers, developers, and this common understanding is fundamental for
the success of the system realization. However, since the mathematical notation
is not always intuitive, and the size of the specification often consists of several
pages of rules and formulas, model comprehension is threatened.

Visualization is considered as a good means for people to communicate and to
get a common understanding. Indeed, the use of diagrams and graphical blocks
is at the base of the mostly used notations in industry, as FSMs (and their
extensions) or UML, the latter nowadays accepted as the industrial standard for



system design. However, their shortcomings, as limited expressiveness for FSM
w.r.t. other formal notations [6] or semantics lack for UML [7], are well-known.

Ever since UML appeared, many modeling approaches have been developed
which try to use UML (or one of its profiles or domain-specific UML-like no-
tations) as front-end of the requirements specification and formal notations as
back-end of the process, to provide rigor and preciseness to lightweight models
and make model validation and verification possible [22,20,21,18,12].

Abstract State Machines (ASMs) are an extension of FSMs, obtained by
replacing unstructured control states by states comprising arbitrarily complex
data [6]. ASMs have been widely used as requirement specification formalism.
Despite of their mathematical foundation, a practitioner needs no special training
to use the method since ASMs can be correctly understood as pseudo-code (or
virtual machines) working over abstract data structures. Furthermore, to ease
its use by non-experts, a series of integrated tools (for editing, validation, and
verification) have been developed around ASMs [4].

Although the ASM textual notation [11] has been designed with readability
in mind, our experience in trying to build and read very large system speci-
fications [3,1] has shown that the complexity of the behavior being described
overwhelms the reader, and most users (even the authors of the specification)
need help in navigating and understanding it. This also happened while we were
developing the ABZ 2016 case study [2], that motivated the current work. We
tried, at first, to directly specify the ASM models from the textual description
of the requirements. Although the refinement process helped us in managing the
complexity of the case study, we still had some problems in discussing among us
about the solution. So, we started making some drawings, whose notation was
inspired by different sources: control flow graphs, UML state machines, sequence
diagrams, etc. The lack of a way to graphically represent ASM models was clear.

A further observation we have made is that most of the new ASM users start
developing ASM models as control state ASMs, a particular frequent class of
ASMs – proposed by Börger in [6] – useful to model system modes (or control
states). Control state ASMs have an intuitive graphical representation by means
of FSM-like state diagrams. However, when the system to model is very complex,
the resulting control state is too complicated and fails in achieving its main aim,
i.e., easily communicating the behavior of the system. Moreover, a systematic
use of control state ASMs is missing, and there is no algorithmic support to
build or reconstruct such machines from models written in textual notations.

Starting from the motivations that (a) formality is important but also un-
derstanding and communicating among stakeholders is fundamental, (b) visu-
alization of formal models can surely aid the understanding of model structure
and behaviors, (c) visual editing is often used to help designers and developers
to graphically build complex models [9], we here propose a graphical notation
for ASMs. The overall visualization of a model is given in terms of a graph.
In addition, we define structural patterns, useful to visualize the structure of a
model in a more compact way, and semantic patterns to be used when additional
information on the machine workflow can be inferred from the model.

2



The paper is organized as follows. Sect. 2 gives a brief background on ASMs.
In Sect. 3, we introduce our proposal of a visual notation for ASMs, whose basic
constituents (i.e., visual trees) are defined in Sect. 4. Sect. 5 shows that ASM
models usually contain particular recurring patterns of ASM rules that can be
visualized in a proper way: some patterns are simply structural, whereas others
permit to infer some of the behavioral semantics of the ASM. Sect. 6 presents the
prototypical implementation of a tool supporting the proposed visual notation.
Sect. 7 describes a preliminary evaluation of the tool. Sect. 8 discusses some
related work, and Sect. 9 concludes the paper.

2 Abstract State Machines

Abstract State Machines (ASMs) [6] are an extension of FSMs, where unstruc-
tured control states are replaced by states with arbitrary complex data. Although
the method has a rigorous mathematical foundation, a practitioner can simply
understand ASMs as pseudo-code working over abstract data structures.

ASM states are algebraic structures, i.e., domains of objects with functions
and predicates defined on them. An ASM location, defined as the pair (function-
name, list-of-parameter-values), represents the abstract ASM concept of basic
object container. The couple (location, value) represents a machine memory unit.
Therefore, ASM states can be viewed as abstract memories.

Values of locations can be changed by firing transition rules. They express the
modification of functions interpretation from one state to the next one. Location
updates are the basic units of rules construction and are given as assignments of
the form loc := v, where loc is a location and v its new value. The description
of all basic ASM transition rules is given in Table 1.

An ASM computation is a finite or infinite sequence S0, S1, . . . , Sn, . . . of
states of the machine, where S0 is an initial state and each Sn+1 is obtained
from Sn by firing the unique main rule which can fire other transitions rules.

There exists a classification of ASM functions that, however, is not relevant
for understanding the current work and, therefore, is here skipped.

A set of tools exists to support the ASM modeling process. Tools are part
of the ASMETA (ASM mETAmodeling) framework4 [4], and are strongly in-
tegrated in order to permit reusing information about models during different
development phases. ASMETA provides basic functionalities for ASM models
creation and manipulation (as editing using the AsmetaL textual syntax [11],
storage, interchange, access, etc.), and supports advanced model analysis tech-
niques (as validation, verification, testing, model review, requirements analysis,
runtime verification, etc.).

3 A visual notation for ASMs

In this section, we introduce the meaning, the goals, and the possible usage
scenarios for the proposed visual notation for ASM models.

The proposed visual notation is defined in terms of a set of construction
rules and schemas that give a graphical representation of an ASM and its rules.

4 http://asmeta.sourceforge.net/

3

http://asmeta.sourceforge.net/


(a) Textual representation (b) Graphical representation

Fig. 1: Visual notation

We assume that the graphical information is represented by a visual graph in
which nodes represent syntactic elements (like rules, conditions, rule invocations)
or states, while edges represent bindings between syntactic elements or state
transitions. We do not introduce a graphical representation for the signature
(functions and domains) and properties, since we believe that they can be already
easily understood from the textual model.

In the following sections, we propose a set of procedures that allow to auto-
matically derive a visual graph from an ASM model. Sect. 4 introduces proce-
dures that recursively visit the ASM rules and build a visual tree representing
the syntactical structure of the model. In Sect. 5, we introduce some visual pat-
terns that permit to identify recurring graphical schemas, and to obtain a more
compact and meaningful representation, possibly capturing some behavioral in-
formation. Such representation may be no longer a tree, but a general graph.

The final goal is to have a textual representation together with a graphical
visualization as shown in Fig. 1. To be more precise, we have devised two possible
usage scenarios of the proposed visual notation.

Visualization – From textual to graphical representation The first usage
scenario consists in writing an ASM model in a concrete syntax (AsmetaL) and
then derive a graph from it. Such approach can be used when the modeler is
familiar with the ASM syntax, but (s)he wants to have a graphical representa-
tion of the model for its better understanding and communication. If the ASM
model is correct, also the produced graph is correct. In the visualizer, the user
can activate some optimizations (presented in the following sections), in order
to have different views of the same model: structural (with different levels of
optimization), or semantic (behavioral).

Visual editing – From graphical to textual representation The second
usage scenario consists in graphically specifying the ASM by drawing the graph.
In this way, the modeler can focus on the high level structure of the model,
similarly to what is done in code with control flow graphs. Note that the usage
of semantic patterns allows the user to also graphically model some evolutions

4



of the system, which are usually difficult to get by writing textual ASM models
(at least without simulating it). Of course, the graph produced by the developer
is not complete, as it does not specify the signature; moreover, it could also be
not correct. Some trivial syntactical violations can be discovered directly on the
graph by checking some consistency rules, but other faults may be more difficult
to find. Once the modeler has produced the graph, a translator can translate
the graph in an AsmetaL textual model. The produced model contains (most of)
the transition rules, and the modeler is only required to add the signature (and
the initialization). Then, the AsmetaL parser may find some faults that passed
undetected during graph validation.

4 Visual Trees

We here introduce the relevant concepts which bring to a graphical representa-
tion of an ASM model in terms of a navigable forest of tree structures, i.e., a
forest of trees connected among them by navigation links.

Definition 1. The visual notation for ASMs is given by the bijective function
visT between an ASM rule and a visual tree.

Definition 2. The function visT is given by Table 1.

1. For basic rules (update, skip and macro call) the function simply returns a
tree with only one node (the root).

2. For compound rules (conditional, block, forall, choose, let), one must ap-
ply the schema given in Table 1 and recursively call the function visT on
component rules.

Table 1 describes the semantics of ASM transition rules, and shows the pro-
posed graphical representation and the AsmetaL textual notation. The function
visT is only based on the syntactical structure of the ASM and it can be always
applied. Tree leaves are always skip, update, or call rules, and they are shown
in boxes. Note that a call rule invokes a macro rule that has its own tree that,
however, is not part of the main tree. At the end, one can obtain a tree for every
rule declaration by applying visT to its definition. The visualization of an ASM
is given by the forest compound of all the trees of the declared rules. To navigate
this visual view, the entry point is the tree for the main rule and, from every call
rule, one can navigate to the tree of the invoked macro rule by a virtual naviga-
tion link, which is not visualized in the graphical representation. By considering
the navigation links in the visualization, the resulting structure is a graph, as a
macro rule can be called by different call rules.

Example 1. For explanation purposes, we use the Hemodialysis Machine Case
Study [2]. It describes a hemodialysis device which goes through three phases:
the preparation in which the device is prepared and the patient is connected,
the initiation in which the hemodialysis is performed (i.e., the patient’s blood
is cleaned), and the ending in which the therapy terminates and the patient is
disconnected. We can abstractly describe the device using the ASM model shown

5



Rule Visual tree AsmetaL notation

Skip rule

do nothing
skip skip

Update rule

update f to v
f := v f := v

Macro call rule r rule[] r rule[]

invoke rule r rule with
arguments v (if any)

r rule[v] r rule[v]

Conditional rule guard visT (rule1)

if guard then
rule1

endif

execute rule1 if guard
holds, otherwise exe-
cute rule2 (if given)

guard visT (rule1)

visT (rule2)

true

false

if guard then
rule1

else
rule2

endif

Block rule

execute rule1 . . . rulen
in parallel

visT (rule1)

visT (rule2)
...

visT (rulen)

par

par
rule1
rule2
...
rulen

endpar

Forall rule

execute rule1 with all
values v ∈ V for which
d(v) holds

forall d(v)
v ∈ V

visT (rule1[v])

forall v ∈ V with d(v) do
rule1[v]

Choose rule choose d(v)
v ∈ V

visT (rule1[v])
choose v ∈ V with d(v) do

rule1[v]

execute rule1 with a
v ∈ V for which d(v)
holds. If no such v ex-
ists, execute rule2 (if
given)

choose d(v)
v ∈ V

visT (rule1[v])

visT (rule2)
ifnone

choose v ∈ V with d(v) do
rule1[v]

ifnone
rule2

Let rule

execute rule1 substi-
tuting t for x

let visT (rule1[x])
x = t

let(x = t) in
rule1[x]

endlet

Table 1: visT: Mapping from ASM transition rules to visual trees

in Code 15. Using the visT function, the model can be represented as shown in
Fig. 2. Note that the three macro rules r preparation, r initiation, and r ending
have their own tree representations that are not part of the tree generated from
the main rule, but are connected to their corresponding call rules by navigation
links (here rendered as dashed arrows only for presentation purposes).

5 Note that the complete formalization of the case study consists of a sequence of
refined models, each one specifying more details of the therapy.

6



asm Hemodialysis GM

signature:
enum domain PhasesTherapy = {PREPARATION |

INITIATION | ENDING}
controlled phaseTherapy: PhasesTherapy

definitions:
macro rule r preparation =

phaseTherapy := INITIATION

macro rule r initiation =
phaseTherapy := ENDING

macro rule r ending =
skip

main rule r Main =
par

if phaseTherapy = PREPARATION then
r preparation[]

endif
if phaseTherapy = INITIATION then

r initiation[]
endif
if phaseTherapy = ENDING then

r ending[]
endif

endpar

default init s0:
function phaseTherapy = PREPARATION

’

Code 1: Hemodialysis case study – AsmetaL model

phaseTherapy =
PREPARATION

r preparation[]

phaseTherapy =
INITIATION

r initiation[]

phaseTherapy =
ENDING

r ending[]

par

phaseTherapy :=
INITIATION

phaseTherapy
:= ENDING

skip

r Main[]

r preparation[]

r initiation[]

r ending[]

navigation link

navigation link

navigation link

Fig. 2: Hemodialysis case study – Visual trees

5 Visual Patterns

We here introduce the notion of visual pattern for ASM visual trees. A pattern
is a schema of connected tree nodes that is recurring and conveys a structural
or semantic (i.e., behavioral) information. Therefore, identifying a pattern and
substituting the entities belonging to it with a simplified structure is of interest.

5.1 Structural patterns

We identify the following structural pattern that permits to obtain a more com-
pact representation of the model structure.

Nested Guards Pattern The pattern regards the use of nested conditional
rules. Suppose that you have a conditional rule as shown in Fig. 3a. By applying
the visual trees in Table 1, one would obtain the tree shown in Fig. 3b. However,
one can visualize the rule in a more compact way as shown in Fig. 3c.

The pattern is applicable to any depth of nested conditional rules. One just
has to collect all the guards g1, . . . , gn, and create only one decision node compris-
ing all the guards separated by commas. The decision node has as many exiting
arcs as the number of conditional branches not containing another nested con-
ditional rule, but a different rule rulei; each arc is labeled with the evaluations
of the guards that permit to take that particular arc and fire rule rulei. Evalu-
ations of guards that are not relevant for the firing of a rule rulei are depicted

7



if a then
rule1

else
if b then

rule2
else

rule3
endif

endif

(a) Nested
conditional rules

a visT (rule1)

b visT (rule2)

visT (rule3)

true

false
true

false

(b) Visual tree

a,b visT (rule1)

visT (rule2)visT (rule3)

true,-

false,truefalse,false

(c) Pattern

Fig. 3: Structural pattern – Nested guards pattern

macro rule r priming =
if bp status der = STOP then

bp status := START
else

if bp fill fluid and bp rate rinsing 150 then
par

bp status := STOP
tubingPhase := CONNECT AV ENDS

endpar
endif

endif

(a) Nested conditional rules

bp status der = STOP,
bp fill fluid and
bp rate rinsing 150

bp status
:= START

par

bp status
:= STOP

tubingPhase :=
CONNECT AV ENDS

true,-

false,true

(b) Pattern

Fig. 4: Hemodialysis case study – Nested guards pattern

with symbol “–”. The decision node has up to n + 1 exiting arcs. Note that the
pattern does not necessarily produce a tree that is more clear to understand,
but it always provides a more compact representation of the nested conditional
rules. For this reason, we let the modeler decide if (s)he wants to apply it.

Example 2. Fig. 4b shows the application of the pattern to macro rule r priming

(shown in Fig. 4a) of the hemodialysis machine case study.

5.2 Semantic Patterns

Any ASM model can be always represented using visual trees and possibly opti-
mized by applying structural patterns. The resulting tree visualizes the structure
of the ASM. However, sometimes it is possible to infer from the model also some
hints on the behavior of the machine. For this reason, we introduce semantic
patterns that can be applied when it is possible to infer from the model some
information on the workflow of the machine.

We identify here three semantic patterns: mutual exclusive guards, state, and
state flow patterns.

Mutual exclusive guards pattern In case of parallel conditional rules having
mutual exclusive guards, it could be useful to represent that the workflow of the
machine follows only one of the possible parallel execution paths.

8



par
if x = 1 then

rule1
endif
if x = 2 then

rule2
endif
if x = 3 then

rule3
endif

endpar

(a) Parallel
conditional rules

x = 1 visT (rule1)

x = 2 visT (rule2)par

x = 3 visT (rule3)

(b) Visual tree

x visT (rule1)

visT (rule2)visT (rule3)

1

2
3

(c) Pattern

Fig. 5: Semantic pattern – Mutual exclusive guards pattern

phaseTherapy r preparation[]

r initiation[]r ending[]

PREPARATION

INITIATION
ENDING

Fig. 6: Hemodialysis case study – Mutual exclusive guards pattern

The mutual exclusive guards pattern has been defined for this purpose. It is
applicable when the rule guards check the current value of a given location that
can assume disjoint values. This guarantees mutual exclusion among the guards
of the conditional rules.

Consider, for example, the ASM rule in Fig. 5a. It fires the parallel execution
of three conditional rules guarded by the current value of the location x. Applying
the visual tree in Table 1 to this rule, we obtain the representation given in
Fig. 5b. However, one can understand that the three conditions on x are mutually
exclusive and, therefore, visualize the rule in a more compact way as in Fig. 5c,
showing that the machine workflow follows only one of the three possible paths6.

Example 3. The application of the mutual exclusive guards pattern to the main
rule of Code 1 is shown in Fig. 6.

State pattern Often, it could be desirable to represent the machine behavior
as a flow of activities along a sequence of states of control, i.e., configurations (or
modes) in which the machine can be. Therefore, we enrich our visual notation
with a special node (an ellipse) representing information about the (control)
state in which a given rule can be executed.

Suppose the model is as shown in Fig. 7a, where rulei is a macro call rule
that might call (directly or indirectly) the update rule state := sj. Using only
the visual trees defined in Table 1, the rule would be represented by the schema

6 Note that the pattern can be detected by a simple static analysis of the model
because of the particular guard structure we consider. If we would like to handle any
type of guard, detecting the pattern would require to use a logical solver.

9



if state = si then
rulei[]

endif

(a) Conditional rule

state = si

rulei[]

(b) Visual tree

state = si

rulei[]

state = sj

(c) Pattern with state change

state = si

rulei[]

state = sj state = sk

(d) Pattern with multiple state change

state = si

rulei[]

(e) Pattern without state change

Fig. 7: Semantic pattern – State pattern

phaseTherapy =
PREPARATION

r preparation[] phaseTherapy = INITIATION

phaseTherapy =
INITIATION

r initiation[] phaseTherapy = ENDING

phaseTherapy =
ENDING

r ending[]

par

Fig. 8: Hemodialysis case study – State pattern

shown in Fig. 7b. However, supposing the modeler wants to use the function
state to identify states of control, if rulei changes the state from si to sj, one can
build the graph as shown in Fig. 7c to explicitly represent the state change. In
case rulei can bring to different states (e.g., states sj and sk), the pattern is as
shown in Fig. 7d. Instead, if rule rulei leaves the mode unchanged, the pattern
is as shown in Fig. 7e. Note that rule rulei will be represented as a macro call
rule, if this is not already the case.

Example 4. The application of the state pattern to the hemodialysis machine
case study (see Code 1) is shown in Fig. 8.

State flow pattern The definition of the state pattern can be extended to
graphically represent a flow of activities along a sequence of control states. Sup-
pose to have the code reported in Fig. 9a and that rulei contains the update rule
state := sj and rulej contains the update rule state := sk. By applying the state
pattern explained above, one would obtain the visual graph in Fig. 9b. However,
the evolution of the system from state si to sj and then to sk can be made ex-
plicit, and the graph can be rewritten as in Fig. 9c. Note that if rule rulej does
not update state, the flow ends with rulej. Instead, if rule rulej updates state to
si, the resulting structure is a graph as shown in Fig. 9d.

10



par
if state = si then

rulei[]
endif
if state = sj then

rulej[]
endif

endpar

(a) Parallel
conditional
rules

par

state = si rulei[] state = sj

state = sj rulej[] state = sk

(b) State pattern

state = si

rulei[]

state = sj

rulej[]

state = sk

(c) Pattern
as tree

state = si

rulei[]

state = sj

rulej[]

(d) Pattern
as graph

Fig. 9: Semantic pattern – State flow pattern

phaseTherapy
=

PREPARATION

r preparation[]
phaseTherapy

=
INITIATION

r initiation[]
phaseTherapy

=
ENDING

r ending[]

Fig. 10: Hemodialysis case study – State flow pattern

Example 5. The application of the state flow pattern to the hemodialysis ma-
chine case study (see Code 1) is shown in Fig. 10.

6 Tool

We have developed a prototypical tool, called AsmetaVis, that permits to rep-
resent the visual trees and some of the visual patterns we have presented. At
the current stage of development, the tool supports the first usage we devised in
Sect. 3 for our visual notation, i.e., model visualization, that permits to obtain
the graphical representation of a specification written in AsmetaL. The tool is
currently able to visualize the ASM in two modes:
– basic visualization in which the ASM is visualized using only the visual trees

presented in Sect. 4;
– semantic visualization in which information on the workflow of the model is

visualized using two of the semantic patterns introduced in Sect. 5.2.

At the beginning, the tool loads the AsmetaL model and shows the graph of
the main rule. A double-click on a macro call rule node causes the visualization
of the corresponding macro rule graph; in this way, we provide the navigation
links described in Sect. 3.

The tool is integrated in the ASMETA framework as eclipse plugin7 and it
uses Zest for implementing the visualization features8.

Example 6. Fig. 11 shows the basic and the semantic visualizations of the model
of the hemodialysis machine case study in AsmetaVis (see Code 1). In both cases,

7 http://asmeta.sourceforge.net/download/asmetavis.html
8 https://www.eclipse.org/gef/zest/

11

http://asmeta.sourceforge.net/download/asmetavis.html
https://www.eclipse.org/gef/zest/


(a) Basic visualization (b) Semantic visualization

Fig. 11: AsmetaVis tool – Hemodialysis case study

Group UQ (% correct answers) Avg. time (sec) SQ (% affirmative answers)

Graphical 92.3 135 100
Textual 73.0 226 7.6

Table 2: Experimental results

the main window represents the main rule and the other smaller windows depict
the called macro rules.

7 Preliminary evaluation

We conducted a preliminary experiment to evaluate whether the proposed visual
notation can help in understanding a model. We interviewed 15 students who
attended a course on formal system modeling and verification at the University
of Milan (ten lectures on ASMs), and 11 who attended a course on principles of
programming languages at the University of Bergamo (six lectures on ASMs).
We took the (last refined) textual model of the hemodialysis case study [2], that
consists of 163 macro rules and 1880 lines of code. We gave the textual model
to half of the students and its graphical representation to the other half. Then
we asked them a question in order to evaluate their understanding of the model
(UQ: Which are the phases of the hemodialysis treatment and in which order are
they executed?). We measured the time taken for answering the question. After
this experiment, we gave them also the other representation (the textual one for
those having the graphical one, and vice versa) and we asked them to identify the
same elements in both representations. Then we asked them a question regarding
their satisfaction about the notation they used at the beginning (SQ: Are you
satisfied with the notation you used at the beginning?).

Table 2 shows the results of the experiment. By UQ, we observe that the
graphical notation permits to understand the model semantics better in less
time than the textual notation. Regarding the level of satisfaction (SQ), all the
students who used the graphical notation were satisfied and they would not have
preferred using the textual one. Instead, only 7.6% of those using the textual
notation were satisfied and 92.4% of them said that they would have preferred
using the graphical one.

12



8 Related work

The need of having visualization techniques for easing the work of the modeler is
felt in the formal methods community [16,24,9]. Different experiences show that
the adoption of such visualization techniques makes the use of formal methods
feasible also for non-experts [16], and also helps in teaching formal methods [15].

Different visualization techniques have been proposed.

Some approaches focus on the visualization of the model. In [12], graphical
notations are used as an alternative representation of Z specifications. They also
support a mechanical translation process from Z models to diagrams. They share
with us the idea of using visualization in two ways.

A similar approach is proposed for VDM in [8] where the authors propose
two kinds of diagrams: Entry-Structure Diagrams (ESD) modeling the system
state, and Operation-State Diagrams (OSD) modeling the behavior. OSDs are
similar to visual patterns and require the VDM to be in a particular style.

Other approaches, instead, try to provide a visual representation of the model
execution (or model animation), as in [13,14,17] for the B-method. ProB [13] al-
lows fully automatic animation of B specifications, and can be used, by means
of its integrated constraint solver and model checker, to systematically check a
specification for a wide range of errors, for deadlock checking, and test-case gen-
eration. In [14], B-Motion Studio, a tool that allows to create visualizations for
Event-B and B models, is introduced. B-Motion Studio uses two important con-
cepts: Controls and Observers. A control is a graphical representation of some
aspects of the model, and labels, images, or buttons are used to represent infor-
mations. Observers link controls to the B-model’s state and invoke the animator
ProB. In [17], Event-B specifications are validated by animation with the Brama
tool. The authors propose some heuristics to produce an animatable specification
which exhibits the same behavior as the original specification.

We have worked in the past on the visualization of ASM behaviors [10].
In that paper, the animator was built by the user by adding, from a palette,
labels (for controlled variables) and input widgets like buttons (for monitored
variables). Although very powerful, that approach required a great effort in order
to build the animator panel and to connect it to the model. We plan in the future
to integrate the animation of behavior in AsmetaVis, but we would like to make
the process of building animators as automatic as possible.

Our state flow pattern is a conservative generalization of the visualization for
control state machines, which are an ASMs class with an intuitive (informally
defined by examples in [5]) graphical representation in FSM-like diagrams. Our
tool automatically provides a correct and precise visualization of those machines.

Other directions of model visualization concern the use of UML notation as
modeling front-end, due also to the wide use of the UML in industry. This is,
for example, the case for UML-B [22], which uses the B notation as an action
and constraint language for the UML, and defines the semantics of UML entities
via a translation into B. Similarly, in [18], transforming rules are given from
UML models to Object-Z constructs; therefore, the semantics of UML models
is directly expressed in the formal language Object-Z. The tool OZRose has

13



been developed to automate the transforming process. Furthermore, in [20], Ar-
chiTRIO is defined as a formal language which complements UML 2.0 concepts
with a logic-based notation that allows users to state system properties, both
static and dynamic, including real-time constraints.

Combined approaches have also been studied. In [19], for example, an integra-
tion of UML-B and Object-Z has been proposed to define a software development
process where UML-B is used as visual modeling notation at early conceptual
modeling stage, and Object-Z later when requirements are better understood.

Along this trend of combining lightweight graphical notations with formal
methods, in [21], a framework has been developed for modeling and executing
service-oriented applications. The framework uses the SCA (Service Component
Architecture) notation to express the assembly and the architecture of service-
oriented components, and the ASMs to rigorously model services behavior, in-
teractions, orchestration, compensation, and context-awareness.

9 Conclusions

With this work we have tried to satisfy a request, felt from long time, to have
a way, and a supporting tool, to graphically represent ASM models, from a
structural and from a behavioral point of view. We have proposed a graphical
notation for ASMs, and we have defined visual patterns that capture, in a concise
way, different recurring ASM rule patterns. The representation concerns only the
transition rules and not the signature of the model.

As future work, we plan to define visual trees for all the turbo rules, and iden-
tify new visual patterns. Regarding the tool, we plan to implement the second
usage we devised in Sect. 3 for our visual notation, i.e., the visual editing that
should allow a modeler to graphically specify the ASM using the visual compo-
nents (visual trees and visual patterns) we have proposed. Finally, we plan to
better evaluate the possible advantages of using the proposed visual notation by
means of a controlled experiment.

References

1. P. Arcaini, S. Bonfanti, A. Gargantini, A. Mashkoor, and E. Riccobene. Formal
validation and verification of a medical software critical component. In Proceedings
of MEMOCODE 2015, pages 80–89. IEEE, Sept 2015.

2. P. Arcaini, S. Bonfanti, A. Gargantini, and E. Riccobene. How to assure correctness
and safety of medical software: the hemodialysis machine case study. In Proceed-
ings of ABZ 2016, volume 9675 of Lecture Notes in Computer Science. Springer
International Publishing, 2016.

3. P. Arcaini, A. Gargantini, and E. Riccobene. Rigorous development process of a
safety-critical system: from ASM models to Java code. International Journal on
Software Tools for Technology Transfer, pages 1–23, 2015.

4. P. Arcaini, A. Gargantini, E. Riccobene, and P. Scandurra. A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience,
41:155–166, 2011.

5. E. Börger. The abstract state machines method for high-level system design and
analysis. In Formal Methods: State of the Art and New Directions, pages 79–116.
Springer London, 2010.

14



6. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

7. B. R. Bryant, J. Gray, M. Mernik, P. J. Clarke, R. B. France, and G. Karsai. Chal-
lenges and directions in formalizing the semantics of modeling languages. Computer
Science and Information Systems, 8(2):225–253, 2011.

8. J. Dick and J. Loubersac. Integrating structured and formal methods: A visual
approach to VDM. In Proceedings of the 3rd European Software Engineering Con-
ference, ESEC ’91, pages 37–59, London, UK, UK, 1991. Springer-Verlag.

9. N. Dulac, T. Viguier, N. Leveson, and M.-A. Storey. On the use of visualization in
formal requirements specification. In Requirements Engineering, 2002. Proceedings.
IEEE Joint International Conference on, pages 71–80. IEEE, 2002.

10. A. Gargantini and E. Riccobene. ViBBA: A toolbox for automatic model driven
animation. In Proc. of SIMVIS 2005, pages 101–114. SCS Publishing House, 2005.

11. A. Gargantini, E. Riccobene, and P. Scandurra. A metamodel-based language and
a simulation engine for Abstract State Machines. J. UCS, 14(12):1949–1983, 2008.

12. S.-K. Kim and D. Carrington. Visualization of formal specifications. In Proceedings
of APSEC’99, pages 102–109. IEEE, 1999.

13. L. Ladenberger, J. Bendisposto, and M. Leuschel. Visualising Event-B Models
with B-Motion Studio. In Formal Methods for Industrial Critical Systems, volume
5825 of LNCS, pages 202–204. Springer Berlin Heidelberg, 2009.

14. M. Leuschel, J. Bendisposto, I. Dobrikov, S. Krings, and D. Plagge. From Anima-
tion to Data Validation: The ProB Constraint Solver 10 Years On, pages 427–446.
John Wiley & Sons, Inc., 2014.

15. M. Leuschel, M. Samia, and J. Bendisposto. Easy graphical animation and formula
visualisation for teaching B. In The B Method: From Research to Teaching, 2008.

16. T. Margaria and V. Braun. Formal methods and customized visualization: A
fruitful symbiosis. In Services and Visualization Towards User-Friendly Design,
volume 1385 of LNCS, pages 190–207. Springer Berlin Heidelberg, 1998.

17. A. Mashkoor, J.-P. Jacquot, J. Souquières, et al. Transformation heuristics for for-
mal requirements validation by animation. In 2nd International Workshop on the
Certification of Safety-Critical Software Controlled Systems-SafeCert 2009, 2009.

18. H. Miao, L. Liu, and L. Li. Formalizing UML models with Object-Z. In Formal
Methods and Software Engineering, volume 2495 of Lecture Notes in Computer
Science, pages 523–534. Springer Berlin Heidelberg, 2002.

19. M. Najafi and H. Haghighi. An integration of UML-B and Object-Z in software
development process. In Innovations and Advances in Computer, Information,
Systems Sciences, and Engineering, volume 152 of Lecture Notes in Electrical En-
gineering, pages 633–648. Springer New York, 2013.

20. M. Pradella, M. Rossi, and D. Mandrioli. ArchiTRIO: A UML-compatible language
for architectural description and its formal semantics. In Proceedings of FORTE
2005, pages 381–395. Springer Berlin Heidelberg, 2005.

21. E. Riccobene and P. Scandurra. A formal framework for service modeling and
prototyping. Formal Asp. Comput., 26(6):1077–1113, 2014.

22. C. Snook and M. Butler. UML-B: Formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol., 15(1):92–122, Jan. 2006.

23. M. Spichkova. Design of formal languages and interfaces: “formal” does not mean
“unreadable”. Emerging Research and Trends in Interactivity and the Human-
Computer Interface, pages 301–314, 2014.

24. M. Spichkova. Human factors of formal methods. CoRR, abs/1404.7247, 2014.

15


	Visual notation and patterns forAbstract State Machines

