
Engineering of Trust Analysis-driven Digital Twins
for a medical device

M.M Bersani1, C. Braghin2, A. Gargantini3,
R. Mirandola1, E. Riccobene2, and , P. Scandurra3

1 Politecnico di Milano,Italy
2 Università degli Studi di Milano, Italy

3 Università degli Studi di Bergamo, Italy

Abstract. The DT paradigm has emerged as a suitable way to cope with the
complexity of analyzing, controlling, and adapting complex systems in diverse
domains. For medical systems, however, the DT paradigm is not fully exploited
mainly due to the complexity of dealing with uncertain human behavior, and of
preventing sensitive information leakage (e.g., patient personal medical profiles).
We present the first results of a long-term recently launched research aiming at
engineering a DT for a medical device endowed with trust analyses techniques
able to deal with human and environmental uncertainty, and security protection.
As a proof of concept, we apply our DT vision to the case study of a mechan-
ical ventilator developed for Covid 19 patient care. The long-term aim is engi-
neering a new generation of lung ventilators where the use of a DT can prevent
unreliability and untrustworthiness of a system where interactions, both physical
(machine-patient) and operational (machine-medical staff), are characterized by
the presence of uncertainty and vulnerabilities.

Keywords: Digital Twin · Medical Cyber-physical Systems · Trust analysis ·
formal methods

1 Introduction

A Digital Twin (DT) is a machine-processable high-fidelity virtual representation of a
physical system, called Physical Twin (PT), to which it is coupled through a continu-
ous, bidirectional flow of data (e.g., monitored data and results of predictive/prescriptive
analysis). The DT paradigm has emerged as a suitable way to cope with the complex-
ity of analyzing, designing, implementing, controlling, and adapting complex systems
belonging to diverse domains such as cyber-physical, business, and societal systems
(e.g., [17, 24, 33]). In particular, one of the field in which the concept of DT has been
largely used is manufacturing, where a categorical literature review [24] has set the
stage for a consolidated definition of DT.

The healthcare sector is also keen to implement these technological solutions to
enhance medical care and patient treatment. DTs can provide informed and relevant
responses in real time, support decisions and assess risks for the patients through sim-
ulation and analysis of up-to-date models that represent physical agents and machinery
pieces, and also be adopted for medical staff training. To this aim, serious steps have

2 M.M. Bersani et al.

been taken in creating DTs of patients as well as DTs of medical devices [4, 22], with
potential multiple benefits for doctors such as discovering undeveloped illnesses, ex-
perimenting with treatments, and improving preparation for surgeries. However, there
are several barriers to the adoption of DTs. Besides technological and methodologi-
cal aspects, hindrances can be the complexity of modeling human behaviors, human
physiology, and operational workflows, of dealing with uncertainty, and of preventing
sensitive information leakage (e.g., patient personal medical profiles). In general, the
DT full exploitation also heavily depends on the trust that stakeholders have in DTs
and the insights they provide. The actual corpus of study mainly focuses on security
and privacy [18] and overlooks many of the aspects that are of particular interest to
the system’s stakeholders. Indeed, a stakeholder will hardly rely on a DT that guaran-
tees acceptable levels of security and privacy but fails to meet required performance,
dependability, or safety levels, or that does not even reflect the mirrored medical cyber-
physical system (hereafter indicated as MPT for medical physical twin), as it will likely
provide out-of-time or wrong feedback.

In this paper, we present the first results of a recently launched long-term research
aiming at engineering a DT for a medical device that makes use of formal methods
and analysis techniques. In particular, we here contribute with a reference architecture
model for DT trust assurance. We concretely show how DT components of this archi-
tecture model are built and connected by embedding formal models and quality analysis
techniques for their use at runtime [5, 34] within DT engineering platforms emerging
on the market. These last are to be intended as runtime implementation platforms and
currently are mainly data-oriented since only offer data analytic services. A very pre-
liminary version of our DT trust assurance vision was presented as a poster at the ICSA
conference 2022 [6]. Here, we make a step ahead and present a reference architecture
model that concretely realizes our vision by complementing current DT engineering
platforms with formal modeling and analysis techniques for behavior-oriented analy-
sis. Specifically, with this architecture we envision a solution aiming at: (i) taming the
complexity in modeling the heterogeneity of the DT components that must be devel-
oped, deployed, and evolve together with their physical counterparts; (ii) increasing the
level of trust in the results and prescriptions coming from a DT, despite uncertainties
due to modeling approximations and incomplete or imprecise data collected in the field.
We also concretely show the potential applicability of the proposed architecture model
through a running example, namely the Mechanical Ventilator Milano (MVM) [3]. Such
a system has been developed during the Covid 19 pandemic to answer the high request
of mechanical lung ventilators. MVM is a low-cost and fast-to-develop medical system
that has been successfully designed, certified, and is currently built and delivered (es-
pecially to emerging countries). Applying our vision of DT to the MVM enables the
design and development of complex medical scenarios that take place in physical envi-
ronments in which human agents (e.g., patients and medical staff) interact with a new
generation of lung ventilators and the interactions, both physical (machine-patient) and
operational (machine-medical staff) are characterized by the presence of uncertainty.

In the proposed architecture model, trust assurance is realized through model-based
quality assessment techniques, allowing both if-what and what-if analyses. The first one
is executed on the DT and allows for detecting violations of the quality and security

Engineering of Trust Analysis-driven Digital Twins for a medical device 3

(a) MVM Ventilator (b) MVM supply for patient ventilation [9]

Fig. 1: Mechanical Ventilator Milano

requirements that may compromise the quality of the patient’s interaction with the sys-
tem. Hence, changes to the digital models are evaluated and possibly reflected into the
MPT (e.g. the analysis over the ventilator model may show that it is not able to detect a
high inspiratory pressure in a particular patient state; hence a modification of the model
and possibly of the MPT is mandated). What-if analysis, on the other hand, applied
on DT detects forthcoming criticalities and might suggest requirements evolution (e.g.
the ventilator waveform analysis detects patient-ventilator asynchronies which require
a change in the ventilator settings - like the trigger sensitivity). The proposed techniques
can be opportunely combined by introducing methods that allow for the composition of
analysis, and the combination of analysis results within a DT [32]. A major benefit in
using composed model-based analysis is the ability to carry experiments that would be
costly on a real system.

This paper is organized as follows. Section 2 describes the running example in the
domain of medical cyber-physical systems. Section 3 presents our view of a Digital
Twin, while Section 4 illustrates fragments of the formal models adopted for the run-
ning example. Section 5 shows an example of compositional reliability analysis trough
a reliability model for the overall DT system, and also examples of analysis from a
security perspective. Finally, Section 6 concludes the work.

2 Running example: MVM Case study

MVM (Mechanical Ventilator Milano) [3] is an electro-mechanical ventilator (see Fig. 1a),
which is intended to provide ventilation support for patients that are in intensive ther-
apy and that require mechanical ventilation. MVM works in pressure-mode, i.e., the
respiratory time cycle of the patient is controlled by the pressure, and, therefore, this
ventilator requires a source of compressed oxygen and medical air that are readily avail-

4 M.M. Bersani et al.

able in intensive care units. More precisely, MVM has two operative modes: Pressure
Controlled Ventilation (PCV) and Pressure Support Ventilation (PSV).

Fig. 1b shows the inspiration and expiration breathing flows of a patient connected
to the ventilator [9]. In the PCV mode, the respiratory cycle is kept constant and the
pressure level changes between the target inspiratory pressure and the positive end-
expiratory pressure. New inspiration is initiated either after a breathing cycle is over, or
when the patient spontaneously initiates a breath. In the former case, the breathing cycle
is controlled by two parameters: the respiratory rate and the ratio between the inspira-
tory and expiratory times. In the latter case, a spontaneous breath is triggered when the
MVM detects a sudden pressure drop within the trigger window during expiration. The
PSV mode is not suitable for patients that are not able to start breathing on their own be-
cause the respiratory cycle is controlled by the patient, while MVM partially takes over
the work of breathing. A new respiratory cycle is initiated with the inspiratory phase,
detected by the ventilator when a sudden drop in pressure occurs. When the patient’s
inspiratory flow drops below a set fraction of the peak flow, MVM stops the pressure
support, thus allowing exhalation. If a new inspiratory phase is not detected within a
certain amount of time (apnea lag), MVM will automatically switch to the PCV mode
because it is assumed that the patient is not able to breathe alone.

To give an idea of the complexity of the entire MVM, its detailed behavior is de-
scribed in the requirements documents which count altogether about 1000 requirements,
each being a brief sentence. One document describes the behavior of the overall sys-
tem, while 15 requirements documents describe the detailed behavior of software com-
ponents. The controller itself has its own requirement document which consists of 31
pages and 157 requirements.

3 Our view of a Digital Twin

We take an ensemble modeling approach in which DT analysis tasks are carried out with
multiple multi-paradigm models. Specifically, we propose a two-layer architecture: the
Physical Twin, and the Digital twin.

The Digital twin layer realizes a twin model graph (see Fig.2) made of digital mod-
els of real-world entities of interest (things, places, devices, processes and people) con-
nected via relationships. This layer is further split into two sub-layers: the DT runtime
models and the DT engineering technology. In the following we describe these two
sub-layers and detail how trust assurance could be realized according to this reference
framework. Some concrete examples of runtime models and types of analysis for the
MVM running example are instead given in Section 4 and 5.

3.1 DT runtime models

This is the highest layer of digital models and trust analysis. Digital models are analy-
sis/analytical models used as living models at runtime [5,34]. The composition of model
formalisms and property formalisms enables a global DT analysis for trust, considering
both the heterogeneity of the evolving models and the uncertainties both at physical and
digital level. DT analysis questions can be managed at the level of the models and data

Engineering of Trust Analysis-driven Digital Twins for a medical device 5

Fig. 2: DT engineering: a twin model graph contextualized for the ventilator case study.
Dashed lines show the correspondences between system elements and digital entities.

involved, by defining and applying appropriate composition/decomposition relational
operators (e.g., merge, union, focus, restriction, etc.). These operators are grounded on
the semantic domains of the composed formalisms and their associated analysis tech-
niques and engines [20].

3.2 DT engineering technology

This is the layer where the development, deployment, and interconnection of the DT-PT
components occurs. It is also responsible for the execution and interconnection among
runtime models to develop the basis of the twin model graph and accomplish the func-
tion of trust analysis. A DT engineering platform may be used as development infras-
tructure for such a scope. Such a technology would allow us to create a comprehensive
digital representation of the individual PT entities/environments and types of relation-
ships, but also to embed conventional model execution and analysis tools for enabling
the use of formal/analytical models at runtime, and connect such models to each other.
The DT engineering platform also facilitates us in exploring the data and the models in
the DT graph (through a visual tool, or via API calls, or CLI commands) to view, query,
and manage the models, their relationships and analysis results.

A central concept of the DT engineering platform is how to connect the runtime
data to the model graph (PT-DT system data), and how to connect the models (and
therefore the model engines) of the graph to each other. The DT engineering plat-
forms currently available range from solutions coming from industry, such as Azure

6 M.M. Bersani et al.

Digital Twins4, to research proposals coming from academia, such as a six-layer archi-
tecture enabling data and information exchange between cyberspace and the physical
twin [29], or [23]. In such platforms, CPSs and DTs are integrated by using a com-
mon domain-specific language on which an appropriate communication interface and
related communication infrastructure are based. In principle, to enable the communica-
tion among the model engines and coupling the simulation of runtime models, universal
asynchronous messaging communication protocols designed for the Internet of Things
(such as MQTT, AMQP, ZeroMQ, etc.) could be exploited in small and specific solu-
tion contexts. For example, for the MVM running example, in [8] and [7] examples of
simple co-simulation infrastructures were realized to connect JVM-based implementa-
tions of model engines and system simulators by exploiting the ZeroMQ asynchronous
messaging library5 for distributed or concurrent applications. In particular, in [7] an
Arduino-based prototype of the MVM controller (obtained by code generation from
a formal model) is pairwise coupled with a custom-made Java breathing simulator so
the MVM could communicate the status of the valves and therefore set the pressure of
the ventilator and read breathing events; first a serial port was exploited, and then in
a second version a communication channel was realized by exploiting ZeroMQ. More
appropriate standards and related runtime infrastructures for distributed co-simulation
in a federated and interoperable simulation environment – such as the IEEE 1516 High
Level Architecture (HLA) and the Functional Mockup Interface (FMI) [2] – are also
being adopted [21].

Another important concept for engineering a DT is the twinning rate [36], namely,
how often the synchronization between the PT and the DT (in both directions), and
therefore the trust analysis, should take place. Usually, in near real-time scenarios, the
twins are always aligned, but there could be phases in which the data within the DT
could be outdated w.r.t. the PT. Regarding the trust analysis, different analysis rates
could be adopted, also depending on the type of analysis conducted. Analysis could be,
for example, triggered on request, or executed periodically from time to time or accord-
ing to a specific plan, or triggered as a consequence of critical or adverse events (such
as death of patients, latency in the medical intervention, etc.), or even continuously in
an underground mode with a certain time granularity.

3.3 Trust assurance

Trust assurance is realized through quality properties techniques allowing both if-what
and what-if analyses. Specifically, if-what analysis exploits runtime QoS analysis tech-
niques (such as analytical and simulation approaches [1], runtime verification [12], se-
curity and safety enforcement [16], and reactive adaptation [35]) to detect violations of
the quality properties that may lead to evaluate changes to the digital models and possi-
bly to the MPT. What-if analysis is mainly conducted from the adoption of forecasting
methods: statistical techniques and machine learning algorithms, combined with proac-
tive adaptation [35] to supply predictions of the evolution of the DT-MPT in the near

4 https://azure.microsoft.com/en-us/services/digital-twins/
5 https://zeromq.org/

https://azure.microsoft.com/en-us/services/digital-twins/
https://zeromq.org/

Engineering of Trust Analysis-driven Digital Twins for a medical device 7

future and the re-alignment of MPT w.r.t. DT (e.g. the runtime monitoring of the venti-
lator can detect critical situations like insufficient tidal inspiratory volume - computed
by integration of the measured air flow - and signal it with an alarm for the medical
staff).

Applying our vision of DT to the MVM enables the design and development of
complex medical scenarios that take place in physical environments in which human
agents of various kinds, such as patients and medical staff, interact with a new gen-
eration of lung ventilators; the interactions, both physical (machine-patient) and oper-
ational (machine-medical staff ruled by medical procedures), are characterized by the
presence of uncertainty. In such scenarios trust, prediction, and adjustment play a cen-
tral role. Based on our framework, a DT for a medical scenario, such as a pneumology
ward using a system like MVM for the therapy of patients, can help clinicians evaluate
and improve the care. Enhanced analysis and monitoring capabilities help the medical
staff identify possible situations that may lead to a decrease in the quality of the service
provided to patients caused, for example, by delays in the provision of treatment, by
unsuitable instrument settings or potential failures of the devices. The outcomes of the
analysis can therefore be useful to initiate a maintenance phase for instruments or pro-
cedures, and also support the design and testing of new medical procedures and more
powerful and safer ventilators before their use with actual patients.

4 DT runtime models

This section presents examples of analysis models used as living models at runtime
within the DT.

Model of the lung. There exist many models for the human lungs, and most of them
exploit the analogy with electrical circuits, where the voltage is the pressure and the
current intensity is the air flow. By means of these models of increasing complexity,
researchers aim to capture different aspects of human breathing cycle, like the capacity
(often called compliance) of the lungs, the capacity and resistance of other parts of the
human body (trachea or other parts), and other patient features (including the capability
of spontaneous breath).

Three models of human lung are shown in Fig. 3. Fig. 3a reports a model, taken
from [13], in which a simple non-sophisticated electric circuit show the input from the
ventilator, several parts of the human lung, and their contributions in terms of com-
pliance and resistance. By short-circuiting at the junction of R1 and R2, the diagram
represents the conditions pertaining when the patient breathes spontaneously.

Simple lung models can be extended as shown in Fig. 3b, that reports a model pre-
sented in [15]. These models con be used for generating synthetic data sets for machine
learning and for educational use.

The simplest possible model of lungs is shown in Fig. 3c and briefly illustrated
in the following. The capacity or compliance (C) describes the elastic property of the
respiratory system, and is usually expressed in ml/cmH2O. In patients with a normal
lung undergoing mechanical ventilation, C is 50–60 ml/cmH2O. Decreased compliance
may occur, for example, in the case of acute respiratory distress syndrome (ARDS).

8 M.M. Bersani et al.

(a) A simple model with
spontaneous breath [13]

(b) A more complex
model [15]

R

A

A

pressure

flow

C

(c) The simplest lung model

Fig. 3: Lung models of different complexity

Monitoring and continuously estimating compliance in patients can provide information
about the volume of the aerated lung.

The resistance (R) describes the opposition to a gas flow entering the respiratory
system during inspiration, and can be calculated as the ratio between the pressure driv-
ing a given flow and the resulting flow rate. The dimension of resistance is usually
cmH2O/(l/s). Estimating R is of extreme importance because it allows the doctors to
choose the right inspiratory pressure and the right time cycle.

Model of the doctor. When designing a complex digital twin that includes human
agents, the designer must take into account different sources of uncertainty caused by
the autonomous action of humans. Human action is subject to numerous influences,
mostly stemming from free will, prior experience and physiological factors (e.g. the fa-
tigue, focus, etc.). These components can cause the expected human behavior to deviate
from a known operational workflow. Moreover, human action can be subject to error.
Even if the intention of a trained operator is to act with respect to a known plan, the
action realized by the operator may not be implemented through the actions prescribed
by the plan or may not fulfill some of the desired qualitative properties. As shown
in [25,26], it is possible to model the workflow of actions, certain physiological factors
and human errors by means of Stochastic Hybrid Automata (SHA). A stochastic hybrid
automaton is defined by a finite number of locations, modeling different operational
states of the operator, and a number of continuous-time real variables, the evolution
of which is described in each location by means of appropriate differential equations
expressed with respect to real time (called flow conditions). Intuitively, when the au-
tomaton remains in a location for a certain time t, each time-dependent variable evolves
as a function of t, and possibly other parameters. Real variables model physical quan-
tities with complex temporal dynamics as a function of the current operational state.
In [25, 26], an individual’s muscle fatigue is modeled by states of fatigue and recover,
each characterized by several exponential-type equations. In a SHA, the transition be-
tween one operational state and another occurs through the execution of an edge that

Engineering of Trust Analysis-driven Digital Twins for a medical device 9

Fig. 4: SHA modeling a doctor collaborating with the ventilator.

connects the two locations. The execution of an edge corresponds to the occurrence of
an event in the system. In SHAs, edges can be stochastic as they are associated with
a probabilistic weight and labeled with conditions expressed by variables in the SHA.
When an edge is executed, the associated condition is true at the time of execution.

Figure 4 shows a simple example of a SHA modeling four operational states of a
doctor working in a ward. The SHA has three locations called standing, walking and
acting representing, respectively, the actions of standing, walking in the ward and opera-
tion through the ventilator. The error location models any potentially harmful situation
that occurs during the activity with the ventilator, e.g., because of a wrong command
issued with the dashboard. In each location, fatigue is the physiological quantity of
interest, which is modeled by a variable F whose derivative is bound to a specific equa-
tion; in standing, acting and error, fatigue decreases (equation fstand) while in walking,
fatigue increases (equation fwalk). Some of the transitions are labeled with the actions
gotopatient, doAction and end which represent the customary events in a workflow of
a doctor. The initial state of the automaton is standing, as it represents the doctor wait-
ing for the start of the medical procedure or the occurrence of an alarm, which occurs
when action gotopatient is taken.

A medical procedure or an alarm implies an initial walking phase of the doctor
leaving the office to join the patient in the ward. To keep the model simple, the walk-
ing phase is devoid of deviations caused by human free will but, in general, uncer-
tainty can also characterize this phase. When the doctor is again standing because the
patient has been reached (transition between walking and standing labeled with pred-
icate atPosition), the diagnostic activity can begin; this fact is modeled by the event
doAction. The action being modeled is a collaborative action that the doctor performs
with the ventilator, and it represents the start event that occurs when the doctor issues a

10 M.M. Bersani et al.

command from the ventilator’s dashboard. Upon the occurrence of this event, the doctor
can start the activity (location acting) if his fatigue is below a limit value Fmax, but even
in this condition, the doctor may decide to delay the activity due to free will. The actual
initiation of the diagnostic activity is modeled by the transition between location stand-
ing and acting labeled with probability pdo; while the postponement of the collaborative
action is modeled by the self-loop on location standing labeled with probability 1−pdo.
However, if the doctor is too fatigued, i.e. when F ≥ Fmax, and the event doAction
occurs, it is possible for the doctor to make an error. This fact is modeled by means of
the location error and the transition from location standing to location error. During the
activity, it is possible for the doctor to make a mistake when fatigue exceeds a thresh-
old limit and free will intervenes. This situation is modeled by means of the transition
between acting and error labeled with the condition fw > Werror ∧ F > Ferror. The
variable fw models free will with a real value that is defined by simulating a coin toss
when the automaton enters the location acting (other constructions are possible).

The doctor’s collaborative activity with the ventilator (location acting), has in this
example a fixed duration of Tact time units. The measurement of the duration of the
activity in the model is by means of a clock x which is reset when the transition between
standing and acting occurs. If the doctor’s activity proceeds to the end, i.e. when the
activity has lasted Tact units of time, the doctor notifies the end of the action. This fact
is modeled by the event end. Even in this situation, due to free will, the interaction
with the dashboard can be wrong. The end of the activity without error is modeled by
the transition between location acting and standing, labeled with probability pend; the
occurrence of an error is modeled by the transition between location acting and error,
labelled with probability 1 − pend. After the occurrence of an error, the free will of
the doctor governs the return to a nominal operating phase and the reestablishment of
a non-emergency working condition. This fact is modeled by the transition between
error and standing, labeled with the condition fw > Wrecover. Again, the value of fw
is calculated while the automaton is in the error state and the return to standing occurs
when the value of the human’s free will is greater than a predetermined threshold value.

Models of the MVM controller. For modeling the behaviour of the MVM compo-
nents, we used the Abstract State Machines (ASMs) formal method [10, 11], which is
an extension of Finite State Machines (FSMs) where unstructured control states are re-
placed by states with arbitrarily complex data. ASM states are mathematical structures,
i.e., domains of objects with functions and predicates defined on them. A run of an
ASM model is a finite or infinite sequence s0, s1, ...si−1,si ... of states of the machine,
where s0 is an initial state and the transition from state si to the next state si+1 is ob-
tained by firing the set of all ASM transition rules invoked by a unique main rule, which
is the starting point of a computation step. The update rule, as assignment of the form
f (t1 , . . . , tn) := v, is the basic unit of rules construction, being f a n-ary function, ti
terms, and v the new value of f (t1 , . . . , tn) in the next state. By a limited but powerful
set of rule constructors, function updates can be combined to express other forms of
machine actions as, for example, guarded actions (if-then) and simultaneous paral-
lel actions (par). ASMs are endowed with a set of tools, ASMETA [1], which provides
the user with modeling notations and different analysis (V&V) techniques. In particular,

Engineering of Trust Analysis-driven Digital Twins for a medical device 11

main rule r_Main =
par
if state = STARTUP then r_startup[] endif
if state = SELFTEST then r_selftest[] endif
if state = VENTILATIONOFF then r_ventilationoff[] endif
if state = PCV_STATE then r_runPCV[] endif
if state = PSV_STATE then r_runPSV[] endif
endpar

Code 1: MVM Controller main rule
Fig. 5: RDT for the MVM controller

Fig. 6: MVM state diagram

a runtime simulation engine, AsmetaS@run.time [30], has been developed within
ASMETA as extension of the offline simulator AsmetaS [19] to handle an ASM as a
living model [5, 34] to run in tandem with a real software system.

MVM model. The Controller is the core component of the MVM device. Its model
has been developed in ASMs through a sequence of model refinements: (1) The first
model describes the transition between the main operation phases: startup, self-test,
ventilation off, PCV, and PSV modes. (2) The second model introduces the modeling
of inspiration and expiration in both PCV and PSV, (3) while the third model adds
further MVM operation features (as the expiratory/inspiratory pauses, the recruitment
manoeuvrer, and the apnea). (4) The last refinement step introduces (in both PCV and
PSV) the transition between expiration and inspiration in case of pressure drop, and the
transition between inspiration and expiration in case the pressure exceeds a threshold.

The ASM model shown in Code 1 refers to the more abstract level and specifies the
controller’s operation phases: the main rule specifies the transitions among the MVM
states by setting the value of the state variable (initialized at the STARTUP value).
Depending on the state value, the corresponding rule (not reported here) is executed.

Fig. 5 provides a tree-based graphical representation of the model structure by using
an equivalent visual representation for ASMs. This will be exploited for developing a
model for reliability evaluation (see Sect. 5).

The semantic visualization of the model, and in particular of the main rule, is shown
in Fig. 6. It represents the MVM operation in terms of a control state machine: the value
of the variable state is used as state mode to determine machine states.

Models interaction. Having multiple models allows applying analysis techniques to
the whole systems, like the simulation of critical scenarios and the proper answer of the
overall system.

12 M.M. Bersani et al.

1. flow < flowMin

5. flow >= flowMin

lung 2. alarm

4. change Pressure 6. stop alarm

MVM controller

3. atPosition and doAction

doctor

start

safe

Fig. 7: Low flow alarm handling Scenario

For example, consider the scenario of alarm handling due to a low value of breath-
ing flow when MVM is ventilating the patient (both in PCV or in PSV mode). The data
flow among the lung, MVM controller and doctor models is captured by the communi-
cation diagram in Fig. 7. The implementation of this scenario, and, therefore, the model
co-simulation and the concrete way in which data are exchanged among the models,
depends on the specific runtime infrastructure adopted, as described in Sect. 3.

1. The model of lung (see Fig. 3c) reveals that the current value of breathing flow is
below a minimum threshold (see condition flow < flowMin in Fig. 7) and alerts the
ventilator.

2. The model of the controller (see Code 1) reveals the unsafe situation and raises
an alarm to alert the doctor (rules r_runPCV and r_runPSV – not shown here
– are responsible, each for the relative ventilation mode, for checking this unsafe
breathing condition and raising the suitable alarm).

3. The doctor (see the model in Fig. 4) is at the position, he/she is not fatigued and free
wills to do the right action; the transition from standing to acting is performed
and the doctor, by the GUI of the MVM, does the action of increasing the
value of the pressure flow delivered the patent.

4. The increased pressure value is used by the controller model to change the pressure
delivered to the patient (rules r_runPCV and r_runPSV are responsible, in their
respective ventilation mode, for performing the pressure change);

5. The model of the lung communicates to the ventilator a flow value above the mini-
mum level (the condition flow ≥ flowMin holds).

6. Finally, the controller stops the alarm (rules r_runPCV and r_runPSV are re-
sponsible, in the respective ventilation modes they manage, to stop the alarms).

5 DT trust analysis

As described in Section 3, the DT runtime analysis models layer includes the definition
of models and related quality-based if-what and what-if analysis techniques, which will
empower this level with the ability to carry experiments that would be costly on a real
system. Here we focus on if-what analysis type and provide some examples on how
conventional formal analysis techniques can be used for the analysis of a safe interaction
between humans and the system. If-what analysis is executed on the DT and allows for
detecting violations of the quality and security requirements that may compromise the

Engineering of Trust Analysis-driven Digital Twins for a medical device 13

Fig. 8: Reliability block diagram for the MVM DT

quality of the patient’s interaction with the system. Hence, changes to the digital models
are evaluated and possibly reflected into the MPT.

From a reliability perspective, for example, we take into account the DT models we
have described so far: (i) lung, (ii) doctor and (iii) MVM. From a reliability point of
view, the DT can be computationally represented as a set of components, each repre-
senting, from an high-level point of view, one of the three models (i)-(iii), connected
as in Figure 8, using a reliability block diagram (RBD) notation [31]. The rationale be-
hind this RBD is that the overall system works when the doctor is working and when at
least one between the lung and the MVM components is working. Adopting standard
analysis techniques [31], the overall reliability can be computed as:

RDT = RD · (1− (1−RL) · (1−RMVM))

where RDT denotes the overall reliability, RD is the reliability of the doctor that is
computed solving the model in Figure 4 with the UPPAAL tool [14] to obtain its failure
probability through stochastic model checking. Specifically, this amounts to determine
the probability of the automaton reaching the error state. RL represents the reliability of
the lung, that it can be evaluated by the estimated values of C and R (see Fig. 3c) using
a table that helps classifing the condition of the patient as obstructive disease, restrictive
conditions, acute situation, or healthy. To each condition, it can be assigned a number
in the interval [0,1], where 0 denotes a non functioning lung and 1 a perfect functioning
one. Finally, RMVM is the reliability of the ASM modeling the MVM controller. This
is computed by exploiting the approach proposed in [28] that considers the internal
structure of an ASM and computes its reliability inductively along the call tree of the
ASM rules and the structure of the rule bodies.

From a security perspective, the analysis on the DT must guarantee that all inter-
actions with the MVM are correct and satisfy the security requirements, even under a
cybersecurity attack. In this case, two different analysis scenarios should be considered:
(i) a wrong (either intended or unintended) behavior by an authorized user of the sys-
tem; (ii) an attack by an external actor. The first scenario can be modeled by extending
the model of the doctor with new locations and new actions, such as the doctor saving a
patient’s medical profile on a USB pen drive or selecting the wrong button in the MVM
GUI. The second scenario exploits the ASM model of the MVM and the possibility
to express distributed multiple agents with Abstract State Machines, who can interact
synchronously or asynchronously with the other agents. The idea is to model both the
doctor and the malicious user as an agent, and to verify by means of model checking
if the security requirements expressed in temporal logic are satisfied. The approach is

14 M.M. Bersani et al.

similar to the one taken for security protocol verification [27], with the attacker trying
to exploit the system vulnerabilities to perform an attack, such as using the USB port to
upload unauthorized firmware, connecting via wireless communication capabilities and
trying to impersonate the doctor, or changing MVM settings using the touchscreen.

6 Conclusion and future directions

We presented the first results in investigating the extent to which it is possible to engi-
neer a DT for a medical device endowed with trust analysis. We envisioned a framework
that makes use of a twin model graph for trust analysis that exploits well-known formal
analysis techniques. We, in particular, focused on if-what trust analysis and illustrated
with the help of the MVM case study a couple of composition analysis examples.

As future work, we plan to explore different research lines. We intend to investi-
gate the DT engineering technology level by experimenting with different existing plat-
forms. Concerning the DT runtime models, we plan to include different model notations
and to devise ad-hoc compositional analysis techniques. For trust analysis, we plan to
investigate on what-if analysis techniques, and on how to concretely integrate such anal-
ysis models and techniques in a systematic way within a DT engineering framework.

Acknowledgment

This work was partially supported by project SERICS (PE00000014) under the NRRP
MUR program funded by the EU - NextGenerationEU.

References

1. ASMETA (ASM mETAmodeling) toolset, https://asmeta.github.io/
2. Functional Mock-up Interface, https://fmi-standard.org/
3. Abba, A., et al.: The novel Mechanical Ventilator Milano for the COVID-19 pandemic.

Physics of Fluids 33(3), 037122 (mar 2021). https://doi.org/10.1063/5.00
44445

4. Ahmed, H., Devoto, L.: The potential of a digital twin in surgery. Surgical Innovation 28,
509–/510 (12 2020). https://doi.org/10.1177/1553350620975896

5. Bencomo, N., Götz, S., Song, H.: Models@run.time: a guided tour of the state of the art and
research challenges. Software and Systems Modeling 18(5), 3049–3082 (2019). https:
//doi.org/10.1007/s10270-018-00712-x

6. Bersani, M.M., Braghin, C., Cortellessa, V., Gargantini, A., Grassi, V., Presti, F.L., Miran-
dola, R., Pierantonio, A., Riccobene, E., Scandurra, P.: Towards trust-preserving continuous
co-evolution of digital twins. In: 2022 IEEE 19th International Conference on Software Ar-
chitecture Companion (ICSA-C). pp. 96–99 (2022). https://doi.org/10.1109/IC
SA-C54293.2022.00024

7. Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E.: Developing a prototype of a me-
chanical ventilator controller from requirements to code with ASMETA. In: Proceedings
First Workshop on Applicable Formal Methods, AppFM@FM 2021, virtual, 23rd Novem-
ber 2021. EPTCS, vol. 349, pp. 13–29 (2021). https://doi.org/10.4204/EPTCS.
349.2

https://asmeta.github.io/
https://fmi-standard.org/
https://doi.org/10.1063/5.0044445
https://doi.org/10.1063/5.0044445
https://doi.org/10.1063/5.0044445
https://doi.org/10.1063/5.0044445
https://doi.org/10.1177/1553350620975896
https://doi.org/10.1177/1553350620975896
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1109/ICSA-C54293.2022.00024
https://doi.org/10.1109/ICSA-C54293.2022.00024
https://doi.org/10.1109/ICSA-C54293.2022.00024
https://doi.org/10.1109/ICSA-C54293.2022.00024
https://doi.org/10.4204/EPTCS.349.2
https://doi.org/10.4204/EPTCS.349.2
https://doi.org/10.4204/EPTCS.349.2
https://doi.org/10.4204/EPTCS.349.2

Engineering of Trust Analysis-driven Digital Twins for a medical device 15

8. Bonfanti, S., Riccobene, E., Scandurra, P.: A component framework for the runtime en-
forcement of safety properties. Journal of Systems and Software 198, 111605 (2023).
https://doi.org/https://doi.org/10.1016/j.jss.2022.111605

9. Bonivento, W., Gargantini, A., Krücken, R., Razeto, A.: The Mechanical Ventilator Milano.
Nuclear Physics News 31(3), 30–33 (2021). https://doi.org/10.1080/106191
27.2021.1915047

10. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer, Berlin,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

11. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer Verlag (2003)

12. Camilli, M., Mirandola, R., Scandurra, P.: Runtime equilibrium verification for resilient
cyber-physical systems. In: IEEE International Conference on Autonomic Computing and
Self-Organizing Systems, ACSOS 2021, Washington, DC, USA, September 27 - Oct. 1,
2021. pp. 71–80. IEEE (2021). https://doi.org/10.1109/ACSOS52086.2021.
00025

13. Campbell, D., Brown, J.: The Electrical Analogue of Lung. British Journal of Anaesthesia
35(11), 684–692 (nov 1963). https://doi.org/10.1093/bja/35.11.684

14. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: UPPAAL SMC tutorial.
International Journal on Software Tools for Technology Transfer 17(4), 397–415 (Aug 2015).
https://doi.org/10.1007/s10009-014-0361-y

15. van Diepen, A., Bakkes, T.H.G.F., De Bie, A.J.R., Turco, S., Bouwman, R.A., Woerlee,
P.H., Mischi, M.: A Model-Based Approach to Synthetic Data Set Generation for Patient-
Ventilator Waveforms for Machine Learning and Educational Use. Journal of Clinical Mon-
itoring and Computing (2022). https://doi.org/10.1007/s10877-022-00822
-4

16. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reaction. In:
Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification - Introductory and Ad-
vanced Topics, LNCS, vol. 10457, pp. 103–134. Springer (2018). https://doi.org/
10.1007/978-3-319-75632-5_4

17. Fitzgerald, J., Larsen, P.G., Margaria, T., Woodcock, J.: Engineering of digital twins for
cyber-physical systems. In: ISoLA 2020. p. 49–53. Springer-Verlag, Berlin, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-83723-5_4

18. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: Enabling technologies, challenges and
open research. IEEE Access 8, 108952–108971 (2020). https://doi.org/10.1109/
ACCESS.2020.2998358

19. Gargantini, A., Riccobene, E., Scandurra, P.: A Metamodel-based Language and a Simula-
tion Engine for Abstract State Machines. J. UCS 14(12) (2008). https://doi.org/10
.3217/jucs-014-12-1949

20. Heinrich, R., Durán, F., Talcott, C.L., Zschaler, S. (eds.): Composing Model-Based Analysis
Tools. Springer (2021). https://doi.org/10.4230/DagRep.9.11.97

21. Huiskamp, W., van den Berg, T.: Federated Simulations, pp. 109–137. Springer International
Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-51043-9_6

22. Jimenez, J.I., Jahankhani, H., Kendzierskyj, S.: Health Care in the Cyberspace: Medical
Cyber-Physical System and Digital Twin Challenges, pp. 79–92. Springer International Pub-
lishing, Cham (2020). https://doi.org/10.1007/978-3-030-18732-3_6

23. Kirchhof, J.C., Michael, J., Rumpe, B., Varga, S., Wortmann, A.: Model-Driven Digital Twin
Construction: Synthesizing the Integration of Cyber-Physical Systems with Their Informa-
tion Systems. In: Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. p. 90–101. MODELS ’20, Association for
Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/33
65438.3410941

https://doi.org/https://doi.org/10.1016/j.jss.2022.111605
https://doi.org/https://doi.org/10.1016/j.jss.2022.111605
https://doi.org/10.1080/10619127.2021.1915047
https://doi.org/10.1080/10619127.2021.1915047
https://doi.org/10.1080/10619127.2021.1915047
https://doi.org/10.1080/10619127.2021.1915047
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1109/ACSOS52086.2021.00025
https://doi.org/10.1109/ACSOS52086.2021.00025
https://doi.org/10.1109/ACSOS52086.2021.00025
https://doi.org/10.1109/ACSOS52086.2021.00025
https://doi.org/10.1093/bja/35.11.684
https://doi.org/10.1093/bja/35.11.684
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10877-022-00822-4
https://doi.org/10.1007/s10877-022-00822-4
https://doi.org/10.1007/s10877-022-00822-4
https://doi.org/10.1007/s10877-022-00822-4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-030-83723-5_4
https://doi.org/10.1007/978-3-030-83723-5_4
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.3217/jucs-014-12-1949
https://doi.org/10.3217/jucs-014-12-1949
https://doi.org/10.3217/jucs-014-12-1949
https://doi.org/10.3217/jucs-014-12-1949
https://doi.org/10.4230/DagRep.9.11.97
https://doi.org/10.4230/DagRep.9.11.97
https://doi.org/10.1007/978-3-319-51043-9_6
https://doi.org/10.1007/978-3-319-51043-9_6
https://doi.org/10.1007/978-3-030-18732-3_6
https://doi.org/10.1007/978-3-030-18732-3_6
https://doi.org/10.1145/3365438.3410941
https://doi.org/10.1145/3365438.3410941
https://doi.org/10.1145/3365438.3410941
https://doi.org/10.1145/3365438.3410941

16 M.M. Bersani et al.

24. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing:
A categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022
(2018). https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08
.474, 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM
2018

25. Lestingi, L., Askarpour, M., Bersani, M.M., Rossi, M.: Formal Verification of Human-Robot
Interaction in Healthcare Scenarios. In: de Boer, F., Cerone, A. (eds.) Software Engineering
and Formal Methods. pp. 303–324. Springer International Publishing, Cham (2020). http
s://doi.org/10.1007/978-3-030-58768-0_17

26. Lestingi, L., Sbrolli, C., Scarmozzino, P., Romeo, G., Bersani, M.M., Rossi, M.: Formal
modeling and verification of multi-robot interactive scenarios in service settings. In: 2022
IEEE/ACM 10th International Conference on Formal Methods in Software Engineering (For-
maliSE). pp. 80–90 (2022). https://doi.org/10.1145/3524482.3527653

27. Lilli, M., Braghin, C., Riccobene, E.: Formal Proof of a Vulnerability in Z-Wave IoT Proto-
col. In: Proc. of Int. Conf. on Security and Cryptography - SECRYPT,. pp. 198–209 (2021).
https://doi.org/10.5220/0010553301980209

28. Mirandola, R., Potena, P., Riccobene, E., Scandurra, P.: A reliability model for service com-
ponent architectures. J. Syst. Softw. 89, 109–127 (2014). https://doi.org/10.101
6/j.jss.2013.11.002

29. Redelinghuys, A.J.H., Basson, A.H., Kruger, K.: A six-layer architecture for the digital twin:
a manufacturing case study implementation. Journal of Intelligent Manufacturing 31(6),
1383–1402 (2020). https://doi.org/10.1007/s10845-019-01516-6

30. Riccobene, E., Scandurra, P.: Model-based simulation at runtime with abstract state ma-
chines. In: Communications in Computer and Information Science, pp. 395–410. Springer
International Publishing (2020). https://doi.org/10.1007/978-3-030-5915
5-7_29

31. Signoret, J.P., Leroy, A.: Reliability Block Diagrams (RBDs), pp. 195–208. Springer Inter-
national Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-64
708-7_15

32. Talcott, C., Ananieva, S., Bae, K., Combemale, B., Heinrich, R., Hills, M., Khakpour, N.,
Reussner, R., Rumpe, B., Scandurra, P., Vangheluwe, H.: Composition of Languages, Mod-
els, and Analyses, pp. 45–70. Springer International Publishing, Cham (2021). https:
//doi.org/10.1007/978-3-030-81915-6_4

33. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: State-of-the-art. IEEE
Transactions on Industrial Informatics 15(4), 2405–2415 (2019). https://doi.org/10
.1109/TII.2018.2873186

34. Tendeloo, Y.V., Mierlo, S.V., Vangheluwe, H.: A multi-paradigm modelling approach to live
modelling. Software and Systems Modeling 18(5) (2019). https://doi.org/10.100
7/s10270-018-0700-7

35. Weyns, D.: Software engineering of self-adaptive systems. In: Cha, S., Taylor, R.N., Kang,
K.C. (eds.) Handbook of Software Engineering, pp. 399–443. Springer (2019). https:
//doi.org/10.1007/978-3-642-02161-9_1

36. Yue, T., Arcaini, P., Ali, S.: Understanding digital twins for cyber-physical systems: A con-
ceptual model. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. Lecture Notes in Computer
Science, vol. 12479, pp. 54–71. Springer (2020). https://doi.org/10.1007/978-
3-030-83723-5_5

https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/10.1007/978-3-030-58768-0_17
https://doi.org/10.1007/978-3-030-58768-0_17
https://doi.org/10.1007/978-3-030-58768-0_17
https://doi.org/10.1007/978-3-030-58768-0_17
https://doi.org/10.1145/3524482.3527653
https://doi.org/10.1145/3524482.3527653
https://doi.org/10.5220/0010553301980209
https://doi.org/10.5220/0010553301980209
https://doi.org/10.1016/j.jss.2013.11.002
https://doi.org/10.1016/j.jss.2013.11.002
https://doi.org/10.1016/j.jss.2013.11.002
https://doi.org/10.1016/j.jss.2013.11.002
https://doi.org/10.1007/s10845-019-01516-6
https://doi.org/10.1007/s10845-019-01516-6
https://doi.org/10.1007/978-3-030-59155-7_29
https://doi.org/10.1007/978-3-030-59155-7_29
https://doi.org/10.1007/978-3-030-59155-7_29
https://doi.org/10.1007/978-3-030-59155-7_29
https://doi.org/10.1007/978-3-030-64708-7_15
https://doi.org/10.1007/978-3-030-64708-7_15
https://doi.org/10.1007/978-3-030-64708-7_15
https://doi.org/10.1007/978-3-030-64708-7_15
https://doi.org/10.1007/978-3-030-81915-6_4
https://doi.org/10.1007/978-3-030-81915-6_4
https://doi.org/10.1007/978-3-030-81915-6_4
https://doi.org/10.1007/978-3-030-81915-6_4
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-030-83723-5_5
https://doi.org/10.1007/978-3-030-83723-5_5
https://doi.org/10.1007/978-3-030-83723-5_5
https://doi.org/10.1007/978-3-030-83723-5_5

	Engineering of Trust Analysis-driven Digital Twins for a medical device

