
Compositional Simulation of Abstract State
Machines for Safety Critical Systems

Silvia Bonfanti1[0000−0001−9679−4551], Angelo Gargantini1[0000−0002−4035−0131],
Elvinia Riccobene2[0000−0002−1400−1026], and Patrizia

Scandurra1[0000−0002−9209−3624]

1 University of Bergamo, Bergamo, Italy
{silvia.bonfanti,angelo.gargantini,patrizia.scandurra}@unibg.it

2 Università degli Studi di Milano, Milano, Italy
elvinia.riccobene@unimi.it

Abstract. Model-based simulation is nowadays an accepted practice for
reliable prototyping of system behavior. To keep requirements complex-
ity under control, system components are specified by separate models,
validated and verified in isolation from the rest, but models have to be
subsequently integrated and validated as a whole. For this reason, engines
for orchestrated simulation of separate models are extremely useful.

In this paper, we present a compositional simulation technique for man-
aging the co-execution of Abstract State Machines (ASMs) communicat-
ing through I/O events. The proposed method allows the co-simulation
of ASM models of separate subsystems of a Discrete Event System in a
straight-through processing manner according to a predefined orchestra-
tion schema.

We also present our experience in applying and validating the proposed
technique in the context of the MVM (Mechanical Ventilator Milano)
system, a mechanical lung ventilator that has been designed, successfully
certified, and deployed during the COVID-19 pandemic.

Keywords: Models composition, Models co-simulation, Abstract State Ma-
chines, Mechanical Ventilator Milano

1 Introduction

Model-based simulation is a widely accepted technique for prototyping the be-
havior of Discrete Event Systems (DESs), and the only practical alternative for
understanding the behavior of complex and large systems [9, 27]. However, due
to requirements complexity and system size, models are becoming unmanageable
in the engineering process and are achieving unprecedented levels of scale and
complexity in many fields [9]. Thus, it is becoming increasingly important to
efficiently and effectively manage a system model as a composition of different
sub-models to analyze separately and then integrate [12,25].

2 S. Bonfanti et al.

Towards this direction, this paper presents a compositional model-based sim-
ulation technique to combine the simulation of formal models representing in-
dependent and interacting subsystems of a discrete-event system under proto-
typing. To illustrate the proposed approach, we adopt Abstract State Machines
(ASMs) [8,15] as executable state-based formal modeling language for DESs. The
approach allows the co-simulation of ASM models of separate subsystems in a
straight-through processing manner [5] according to a predefined orchestration
schema. Coordination/orchestration operators allow the definition of composi-
tion patterns for simulating models. The proposed approach is supported by a
simulation composer engine, called AsmetaComp, which exploits the simulation
tool AsmetaS@run.time [23] to execute ASMs as living models at runtime [10,26].

The paper also presents our experience in validating the proposed method
on the Mechanical Ventilator Milano (MVM), a mechanical lung ventilator de-
veloped for COVID-19 patients. The MVM is an adequate case study since it
is a safety-critical system and it is made of different interacting hardware/soft-
ware subsystems with human-in-the-loop, which have been developed by different
teams. Modeling the entire system in a single ASM model would be impractical
and produce a complex model to manage, analyze and share with all groups.
Our compositional modeling process started from a formal specification of the
MVM subsystems as separate ASM models, which are validated and verified in-
dependently. The compositional simulation technique was then used to compose
by orchestration the subsystems models according to established communica-
tion flows and I/O events exchanged among the MVM components. Therefore,
we validated by scenarios simulation the composed model of the MVM system
by checking if it performs in accordance with the expected outcomes from the
requirements. The results of such modeling and validation approach helped us
to clarify and improve the MVM component interfaces and the communication
protocol, while taming the system model complexity.

The contributions of this paper can be summarized as follows: (i) we promote
a practical and rigorous compositional modeling and simulation method for DESs
through formal state-based models (like ASMs) supported by V&V (validation
and verification) tools (like the ASMETA toolset for ASMs [1,8]); (ii) we provide
the concept of I/O ASM and define a compositional execution semantics of
orchestrated I/O ASMs; (iii) we report our experience in applying the proposed
method, through the supporting simulation composer engine AsmetaComp, to a
safety-critical case study in the health-care domain (the MVM).

This paper is organized as follows. Section 2 presents the MVM case study
used to show the proposed approach. Section 3 provides basic concepts about
ASMs and the ASMETA toolset. Section 4 presents the proposed compositional
model-based simulation technique. Section 5 presents the application of the pro-
posed technique to the MVM case study and describes the features of the com-
position engine supporting the proposed technique. Section 6 reports our lesson
learned from such a modeling and validation experience with the MVM system.
Finally, Section 7 shows related work and Section 8 concludes the paper with
future directions for its extensions.

Compositional Simulation of ASM for Safety Critical Systems 3

2 The Mechanical Ventilator Milano (MVM) case study

During the COVID-19 pandemic, our research team was involved in the design,
development, and certification of a mechanical lung ventilator called MVM (Me-
chanical Ventilator Milano)3 [7]. This section introduces the MVM case study
by briefly outlining its purpose, the problem of the case that we address, and an
informal description of the behavior of the main MVM components.

2.1 Problem context

Due to time constraints and lack of skills, no formal method was applied to
the MVM project. However, later we had planned to assess the feasibility of
developing (part of) the ventilator by using a component-based formal specifica-
tion development. In this project, instead of creating one single system model,
we split the system into several subsystems and loosely coupled their formal
specifications and analysis. Right from the very beginning, the sub-models were
developed by different groups and for different engineering domains and target
platforms, in order to speed up the overall formal development process from
requirements to code.

Then for the purpose of integrating all sub-models and simulating the whole
system, we have adopted the compositional model simulation technique pre-
sented here, and used the supporting tool AsmetaComp to put it in practice. This
technique provided us a high degree of flexibility, since it allowed us to effectively
develop the sub-models separately, then to couple them via well-defined input
and output interfaces, and examine the behavior of the overall integrated system
according to a specific orchestrated co-simulation schema.

Fig. 1 shows a high-level overview of the main architecture components of
the MVM system using a UML-like notation.

The core components of the MVM system are the software MVMController
that manages the lung ventilation based on user inputs (acquired through the
GUI component) and patient parameters, and the Supervisor software that mon-
itors the overall system behavior and ensures that the machine HW operates
safely. The wires between components (the solid lines with arrows) in Fig. 1
represent the information flow between components: an arrow incoming is the
input for the component, an arrow outgoing is the output for the component.
The wires are labeled with the name of the UML interface representing the sig-
nals exchanged between components, e.g., ISC shows the signals sent from the
supervisor to the controller: the watchdog status and the status of self-test mode.
In [11], we already reported our practical experience in using ASMs/ASMETA
for modeling, analyzing, and encoding only the MVM software controller. For
the purpose of this paper, the model of the supervisor and the hardware subsys-
tems have also been developed. In addition, this paper describes the integration
of all sub-system models via I/O interfaces and their orchestrated co-simulation.

3 https://mvm.care/

https://mvm.care/

4 S. Bonfanti et al.

Fig. 1: Main components of the MVM system and signals exchanged

2.2 System behavioral description

MVM provides ventilation support in pressure-mode (i.e. the ventilator uses the
pressure as a variable to control the respiratory cycle), for patients that are in
intensive therapy and that require mechanical ventilation.

MVM supports two ventilation modes: Pressure Controlled Ventilation (PCV)
and Pressure Support Ventilation (PSV). PCV mode is used for patients that
are not able to start breathing on their own. The duration of the respiratory
cycle is kept constant and set by the doctor; and the pressure changes between
the target inspiratory pressure and the positive end-expiratory pressure. In PSV
mode, the respiratory cycle is controlled by the patient. A new inspiration is
initiated when a sudden pressure drop occurs, while expiration starts when the
patient’s inspiratory flow drops below a set fraction of the peak flow. If a new
inspiratory phase is not detected within a certain amount of time (apnea lag),
MVM will automatically switch to the PCV mode because it is assumed that
the patient is not able to breathe alone. The air enters/exits through two valves:
an input valve (opened during inspiration) and an output valve (opened during
expiration). If the ventilator is not running, the input valve is closed and the
output valve is opened to allow the patient to breath thanks to two relief valves;
this configuration is called safe-mode.

Before starting the ventilation, the MVM controller passes through three
phases. The start-up in which the controller is initialized with default parameters,
self-test which ensures that the hardware is fully functional, and ventilation off
in which the controller is ready for ventilation when requested.

The supervisor monitors the whole system behavior. After initialization and
startup phases, the self-test procedure that checks all the hardware components
is performed. When the ventilator is running, it is in ventilation on phase, in
which it monitors all the ventilation parameters to avoid harm to the patient.
If the supervisor detects a dangerous situation, the ventilator and the valves are
moved to safe-mode. When the ventilator is not running, it is in ventilation off
phase and the valves are in safe-mode.

Compositional Simulation of ASM for Safety Critical Systems 5

3 Preliminary concepts on ASMs and ASMETA

ASMs [14] are an extension of Finite State Machines. Unstructured control states
are replaced by states comprising arbitrarily complex data (i.e., domains of ob-
jects with functions defined on them); state transitions are expressed by tran-
sition rules describing how the data (state function values saved into locations)
change from one state to the next.
An ASM model is structured in terms of:
– The signature section where domains and functions are declared. The

model interface with its environment is specified by monitored functions
that are written by the environment and read by the machine, and by out
functions that are written by the machine and read by the environment;
controlled functions are the internal functions used by the machine (read in
the current state and updated in the next state).

– The definitions section where all transition rules and possible invariants
are specified. Transition rules have different constructors depending on the
update structure they express, e.g, guarded updates (if-then, switch-case),
simultaneous parallel updates (par), etc. The update rule f (t1 , . . . , tn) := v,
being f an n-ary function, ti terms, and v the new value of f (t1 , . . . , tn) in
the next state, is the basic unit of rules construction. State invariants are
first order formulas that must be true in each computational state.

– The main rule that is, at each state, the starting point of the computation;
it, in turns, calls all the other transitions rules.

– The default init section where initial values for the controlled functions
are defined.

An ASM run is defined as a finite or infinite sequence S0, S1, . . . , Sn, . . . of states:
starting from an initial state S0, a run step from Sn to Sn+1 consists in firing, in
parallel, all transition rules and leading to simultaneous updates of a number of
locations. In case of an inconsistent update (i.e., the same location is updated to
two different values by firing transition rules) or invariant violations, the model
execution fails, but the model is kept alive by restoring the state in which it was
before the failing step (model roll-back). In the sequel, we shortly write model
succeeds or fails to mean a model performing either a successful run step or a
failing one.

The development process from formal requirement specification to code gen-
eration is supported by ASMETA [1, 8], a set of tools around the ASM formal
method. ASMs can be understood as executable pseudo-code or virtual machines
working over abstract data structures at any desired level of abstraction.

3.1 Modeling example

As an example of ASMmodel, Code 1 reports excerpts of the ASM MVMcontroller

modeling the controller using the AsmetaL textual modeling language.
In the section signature (see lines 2–11), respirationMode is a monitored func-

tion specifying the input command received by the controller from the GUI, as
part of the user inputs, to change its mode of operation (PCV or PSV), while

6 S. Bonfanti et al.

1 asm MVMcontroller
2 signature:
3 enum domain States = {STARTUP | SELFTEST
4 | VENTILATIONOFF | PCV STATE | PSV STATE}
5 enum domain Modes = {PCV | PSV}
6 ...
7 dynamic controlled state: States
8 dynamic monitored respirationMode: Modes
9 dynamic monitored stopRequested: Boolean

10 dynamic out iValve: ValveStatus
11 dynamic out oValve: ValveStatus ...
12 definitions:
13 ...
14 main rule r Main =
15 par
16 if state = STARTUP then r startup[] endif
17 if state = SELFTEST then r selftest[] endif
18 if state = VENTILATIONOFF then
19 r ventilationoff[] endif
20 if state = PCV STATE then r runPCV[] endif
21 if state = PSV STATE then r runPSV[] endif
22 endpar

rule r runPCV =
par
if phase = INSPIRATION then r runPCVInsp[] endif
if phase = EXPIRATION then r runPCVExp[] endif
endpar
rule r runPCVInsp =
par
if not stopVentilation then
if stopRequested then stopVentilation := true endif
endif
if expired(timerInspirationDurPCV) then
par
if respirationMode = PCV then
r PCVStartExp[] endif
if respirationMode = PSV then
par
state := PSV STATE
r PSVStartExp[]
endpar

endif endpar endif endpar
default init s0:
function state = STARTUP

Code 1: MVMController ASMETA model

the controlled function state represents the controller status. The out functions
iValve and oValve specify the interface IH between MVMController and HW com-
ponents, and are the input for HW to set the valves status during ventilation.

Initially, the function state is initialized at the value STARTUP. At each step,
depending on the current state value, a corresponding rule fires through by the
r Main execution. These call rules are specified in the definitions section.

In Code 1, on the right, we show, for example, the rule r runPCV regulating
the PCV mode. It in turn calls rules for the inspiration, r runPCVInsp (line 6), and
the expiration, r runPCVExp (here missed). In PCV mode, the transition between
inspiration and expiration is determined by the duration of each phase decided
by the physician (when timers timerInspirationDurPCV, in case of inspiration, and
timerExpirationDurPCV, in case of expiration, expire). When the inspiration time
is passed (line 11), the controller goes to the PCV expiration phase (line 14).
If the physician has required (by setting the value of the monitored function
respirationMode) to move to PSV mode (line 15), the machine changes the state
from PCV to PSV and executes the rule r PSVStartExp (line 18). If a stop request
(by the monitored function stopRequested, still part of the user input interface
between the GUI and the MVMController) is received during the inspiration
phase (line 8), it is stored (in stopVentilation) and will be executed in the expira-
tion phase.

3.2 The ASMETA (ASM mETAmodeling) toolset

ASMETA [1] provides the user with modeling notations, different analysis (V&V)
techniques and automatic source code and test generators for ASMs to be ap-
plied at design-, development-, and operation- time [8]. In particular, a runtime

Compositional Simulation of ASM for Safety Critical Systems 7

simulation engine, AsmetaS@run.time [24], has been developed within ASMETA
as extension of the offline simulator AsmetaS [17] to handle an ASM as a living
model [10,26] to run in tandem with a real software system. AsmetaS@run.time
supports simulation as-a-service features of AsmetaS and additional features
such as model execution with timeout and model roll-back to the previous state
after a failure step during model execution. All these features are accessible by
UI dashboards (both in a graphical and in a command-line way). This runtime
model simulation mechanism has been already used within an enforcer software
tool [13] to sanitize input/output events for a running system or to prevent the
execution of unsafe commands by the system.

4 Compositional simulation of ASM models

Consider the partitioning of a software system into distinct subsystems/compo-
nents interacting for sharing resources in terms of input/output events. Since
ASMs are a state-based formalism, i.e., outputs of the machine depend only on
its current state and inputs, formal behavioral models of these subsystem/com-
ponents may be specified in terms of a set of ASMs, each having its own input
I (the monitored locations of the ASM), current state (the controlled locations
of the ASM), and output O (the out locations of the ASM). We denote by I/O
ASM each of these component models that are defined as follows:

Definition 1 (I/O ASM). An I/O ASM is an ASM model m with a non-
empty set Im of input (or monitored) functions and a non-empty set Om of
out functions in its signature. We denote by (Im,m,Om) an I/O ASM, and by
curr state(m) the set of its locations values.

We assume that I/O ASMs can interact in a black-box manner by binding input
and out functions with the same symbol name and interpretation. Consider, for
example, the typical cascade or sequence of two machines A and B, where the
output of the machine A is the input of the machine B. We may view the cascade
of these two machines as a single compound machine that reacts to an external
input x by propagating instantaneously the effect of x through the cascade of
A and B at each step (A reacts to x, then B reacts to the output of A). So
we focus on ASMs having a well-defined I/O interface represented by (possibly
parameterized) input and out ASM functions, which are, in fact, the interaction
ports (or points) with the environment or other ASMs. We formally define the
binding between I/O ASMs as follows:

Definition 2 (I/O ASM binding). Given two I/O ASMs, mi and mj, an

I/O binding exists from mi to mj iff Omi
∩ Imj

̸= ∅. We denote by mi
Bi,j
===⇒ mj

the I/O binding from mi to mj, where Bi,j = Omi
∩ Imj

is the set of binding
functions.

We assume that if an I/O ASM binding exists between two models mi and
mj , then at least one function symbol f must occur in both the two models’

8 S. Bonfanti et al.

signatures and is used as out function for mi and as input function for mj , with
the same domain and codomain and same interpretation.

The model MVMcontroller shown in Code 1 is an example of I/O ASM,
having input functions I = {respirationMode, stopRequest} and out functions O =
{iValve, oValve}. The set O represents also the bindings of this model with the
model of the hardware (not reported here), while the set I is the binding with
the GUI component. Fig.1 provides a graphical view of the bindings among all
the component models as wires labeled with the name of the UML interface
representing the binding functions (the exchanged signals values).

Several I/O ASMs can execute and communicate over I/O bindings to form
a whole ASM assembly.

Definition 3 (I/O ASM assembly). An I/O ASM assembly is a set of I/O
ASMs bound together by I/O ASM bindings.

Fig.1 illustrates an I/O ASM assembly consisting of the I/O ASM models of
the MVM system and the I/O ASM bindings among all the component models.

The execution of an assembly of I/O ASMs can be orchestrated (or coor-
dinated) in accordance with a workflow expressible through different types of
coordination constructs, defined below, with a specific semantics. Intuitively, a
pipe connection m1 | m2 means that the output of m1 is used as input to m2,
assuming a directional I/O binding exists between the two models, namely some
input functions of m2 are a subset of the out functions of m1. Similarly, a bidi-
rectional pipe m1 <|> m2 is like having two pipes where one is used for the
reverse direction, i.e. the output (or a subset) from m2 becomes the input of
m1 in addition to external input from the environment or other machines bound
to m1. In both these two series compositions, we assume a cascade synchrony
in reacting to external input from the environment. In a parallel connection
m1 ∥ m2, both the two models react to external input from the environment
or from other machines separately. Such coordination constructs allow for the
following (recursive) definition of a composition formula of I/O ASMs.

Definition 4 (I/O ASM composition formula). A composition formula c
over an ASM assembly A is a single I/O ASM m belonging to A or c1 | c2 or
c1 <|> c2 or c1 <∥> c2 or c1 ∥ c2, where c1 and c2 are composition formulas
and {|, <|>, <∥>, ∥} are composition operators.

The composition formula c = (m1 <|> (m2 ∥ m3)) | m4 denotes, for example,
the execution schema of four ASM models, where the output of the bidirectional
pipe between m1 and the parallel of m2 and m3, is given as input to m4 con-
nected through a pipe. As another example, the I/O ASM assembly shown in
Fig.1 is executed using a composition formula made by two bidirectional pipes:
Hardware.asm <|> (MVMController .asm <|> Supervisor.asm).

Note that in case of a composition formula of the form ciop cj , we assume
that there is no one model in common between ci and cj .

Before providing the operational semantics of the composition operators, we
extend the definition of I/O ASM binding at the level of a composition formula,
as follows:

Compositional Simulation of ASM for Safety Critical Systems 9

Definition 5 (I/O ASM composition binding). Given two I/O ASM com-
position formulas, c1 and c2, for a given I/O ASM assembly, an I/O composition

binding c1
B1,2
===⇒ c2 exists from c1 to c2 iff there exists at least an I/O ASM m1i

occurring in c1 and an I/O ASM m2j occurring in c2 such that an I/O binding

m1i
B1i,2j
====⇒ m2j exists from m1i to m2j. B1,2 is the union of all existing binding

functions between models m1i in c1 and models m2j in c2:

B1,2 =
⋃

m1i∈c1,m2j∈c2

B1i,2j

As an example, consider the two composition formulas c1 = Hardware.asm
and c2 = MVMController.asm <|> Supervisor.asm for the assembly shown
in Fig.1. c1 and c2 are bound by the binding B1,2 = BHW,MVMController ∪
BHW,Supervisor where BHW,MVMController = {IH functions} and BHW,Supervisor

= {IHS functions}.

Definition 6 (I/O ASM composition operators). Let c be an I/O ASM
composition formula. The operational semantics of c is defined as follows:

Single model: c = (Im,m,Om). A step of c is an execution step of the ASM
m on the inputs Im provided by the I/O bindings and by the environment.

(Simplex) pipe or sequence: c = c1 | c2. We assume c1
B
=⇒ c2. First execute

c1 on inputs Ic1 provided by the I/O bindings and by the environment, and
if c1 succeeds, subsequently execute c2 on the inputs Ic2 provided by the I/O
binding B with c1, and by the environment, and return the results as outputs.

Half-duplex bidirectional pipe: c = c1 <|> c2. We assume c1
B1,2
===⇒ c2 and

c2
B2,1
===⇒ c1. First execute c1 on the inputs Ic1 provided by its I/O bindings

and by the environment, and if c1 succeeds, subsequently execute c2 on the
inputs Ic2 provided by the I/O binding B1,2 with c1 and by the environment;
then, return the outputs for the I/O binding B2,1 with c1.

Full-duplex bidirectional pipe: c = c1 <∥> c2. We assume c1
B1,2
===⇒ c2 and

c2
B2,1
===⇒ c1. First execute both c1 and c2 simultaneously on their inputs

Ic1 and Ic2 provided by their I/O bindings and by the environment; if both
succeed, then return their outputs for their I/O bindings.

Synchronous parallel split (or fork-join): c = c1 ∥ c2 Execute both c1 and
c2 separately on their inputs Ic1 and Ic2 , respectively, provided by their I/O
bindings and by the environment, then return their outputs.

In case an I/O ASM model fails, the composition expression fails and the faulty
ASM model and all models already executed in the composition are rolled-back.

The simulation of an I/O ASM assembly is the result of the compositional
simulation of its I/O ASM components according to the execution semantics of
a precise composition formula. Concretely, it can be represented and managed
in memory in terms of an expression tree as given by the following definition.

10 S. Bonfanti et al.

m1

m2

m3

I

<I>

II

m4

1
2

3

5

4

6

7

8

4

6

Fig. 2: Visit of a Compositional Simulation Tree for (m1 <|> (m2 ∥ m3)) | m4

Definition 7 (Compositional Simulation Tree of I/O ASMs). Given a
composition formula c of I/O ASMs mi, i = 1, ..., n, a Compositional Simulation
Tree (CST) of c is a binary tree Tc = (Vc, Ec), where a leaf node in Vc is labelled
by an ASM mi together with its curr state(mi), and an internal node in Vc is
labeled by a composition operator chosen from the set {|, <|>, <∥>, ∥}.

Intuitively, a step of an I/O ASM composition (i.e., a single compositional
simulation step) is a recursive pre-order traversal of the corresponding CST to
visit nodes (from the root to leaves) and evaluates them according to their type.
The execCST in Algorithm 1 is the pseudocode of a simplified version of a CST
traversal without considering the roll-back of models in case a failure occurs
during model execution. Given a CST Tc for a composition c, the output of
the algorithm is the set Oc of ASM out functions values in the (final) current
state of the I/O ASM models (executed at each leaf node of Tc). The recursive
traversal exec in Algorithm 2 is initially invoked (see line 2 of Algorithm 1)
on the root node of a non-empty CST with an empty set Ic

4 of ASM input
functions values for the I/O ASM models occurring in c. Ic will be populated
during the tree traversal (when a model at a leaf node is executed) with function
values provided externally by the environment or computed by other previously
executed models in the tree. Algorithm 2 uses the subroutine put(c1, c2, B1,2)

to copy the values of the binding functions in c1
B1,2
===⇒ c2 from B1,2 ⊆ Oc1 to

B1,2 ⊆ Ic2 . An intuitive graphical representation of the execution steps of the
various composition operators is depicted on the left side of Algorithm 2.

Definition 8 (Runstep of an I/O ASM composition). Given a composi-
tion formula c for an assembly A of I/O ASMs mi, i = 1, ..., n, a runstep of the
composition c is the depth (pre-order) traversal, given by Algorithm 1: execCST,
of the compositional simulation tree Tc, which updates the current states of the
component models mi at the leaves of Tc.

4 We assume Ic is concretely realized as a map (or dictionary) that associates ASM
function symbols (the keys) with their values.

Compositional Simulation of ASM for Safety Critical Systems 11

Algorithm 1: execCST
Input : T: a CST

1 Function execCST(T):
2 if T.root ̸= NULL then
3 exec(T.root,∅);

execci

put

execcj

execci

put

execcj

put

execci
execcj

put put

execci
execcj

Algorithm 2: exec
Input : node: a CST node
Input : I: object that maps ASM monitored

functions to their values.
Output: O: an object that maps ASM out

functions to their values.
1 Function exec(node, I):
2 if node.isLeaf() then
3 run a step of node.model on input I ;
4 return node.model.getOutLocations();

5 else
6 c1 = node.left;
7 c2 = node.right;
8 switch node.operator do
9 case | do

10 O1 = exec(c1,I);
11 put(c1,c2,B1,2);
12 O2 = exec(c2,I);
13 return O1 ∪ O2;

14 case < | > do
15 O1 = exec(c1,I);
16 put(c1,c2,B1,2);
17 O2 = exec(c2,I);
18 put(c2,c1,B2,1);
19 return O1 ∪ O2 ;

20 case < || > do
21 O1 = exec(c1,I);
22 O2 = exec(c2,I);
23 put(c1,c2,B1,2);
24 put(c2,c1,B2,1);
25 return O1 ∪ O2;

26 case || do
27 O1 = exec(c1,I);
28 O2 = exec(c2,I);
29 return O1 ∪ O2 ;

As an example, Fig. 2 depicts the depth visit of the CST of the composition
c = (m1 < | > (m2 ∥ m3)) | m4: an execution step of the ASM models at
leaf nodes of the tree updates the model’s current state on the inputs provided
by the I/O bindings (plus those provided by the environment but not shown
in the picture). Labels 1, 4, and 7 denote the steps of the models to update
their location values, while labels 2, 3, 5, 6, and 8 denote copying of the binding
function values according to the composition operators.

5 Compositional modeling and simulation at work

In order to support compositional I/O ASM simulation in practice, the tool
AsmetaComp has been developed as part of the ASMETA tool-set, and it is based
on the AsmetaS@run.time. We here show the compositional simulation tool on
the MVM case study.

AsmetaComp can be used through a basic graphical user interface (AsmetaComp
GUI) or a command line (AsmetaComp shell). AsmetaComp GUI, after having
specified the number of models involved in the composition, allows the user to

12 S. Bonfanti et al.

1 init −n 3
2 setup comp as Hardware.asm <|> (Controller.asm <|> Supervisor.asm)
3 run(comp, {adc reply m=RESPONSE;fan working m=true;pi 6 m=25;pi 6 reply m=RESPONSE;

temperature m=25;state=STARTUP;insp valve=CLOSED;exp valve=OPEN;mCurrTimeSecs
=1})

4 run(comp, {adc reply m=RESPONSE;fan working m=true;pi 6 m=25;pi 6 reply m=RESPONSE;
temperature m=25;startupEnded=true;mCurrTimeSecs=2})

5 run(comp, {adc reply m=RESPONSE;fan working m=true;pi 6 m=25;pi 6 reply m=RESPONSE;
temperature m=25;selfTestPassed=true;mCurrTimeSecs=3})

6 run(comp, {adc reply m=RESPONSE;fan working m=true;pi 6 m=25;pi 6 reply m=RESPONSE;
temperature m=25;startVentilation=true;mCurrTimeSecs=4;run command=false})

7 run(comp, {adc reply m=ERROR;fan working m=true;pi 6 m=25;pi 6 reply m=RESPONSE;
temperature m=25;startVentilation=false;mCurrTimeSecs=5;run command=false})...

8 run(comp, {adc reply m=ERROR;fan working m=true;pi 6 m=25;pi 6 reply m=RESPONSE;
temperature m=25;startVentilation=false;mCurrTimeSecs=9;run command=true})

Code 2: Composition script

define the composition formula and to execute the model composition. Using
the AsmetaComp shell, instead, the user can set and run a composition of models
interactively or via a script of commands. Such a script can be written using
a textual composer language for the basic composition operators introduced in
Sect. 4.

Applying AsmetaComp to MVM. Recall from Fig. 1 the four components of the
MVM design. We have abstracted the GUI since the user interface is represented
by the concept of ASM environment. Each of the other three components has
been modeled as an I/O ASM5, and validated individually by using the ASMETA
tools. Then, we have composed the three models and executed their composition.

According to the MVM operation, the hardware sends values to both con-
troller and supervisor and both of them return the configuration of hardware
components based on the ventilation status (bidirectional pipe between hard-
ware and controller/supervisor). Moreover, the controller sends information (i.e.,
its status and alarms raised) to the supervisor, which in turn returns its sta-
tus to it (bidirectional pipe between controller and supervisor). Therefore, the
MVM components interaction is captured by two nested bidirectional pipes:
Hardware.asm <|> (MVMController.asm <|> Supervisor.asm).

Through the script reported in Code 2 for the AsmetaComp shell, we set this
composition formula (by command setup at line 2) and express some compo-
sitional steps of the interacting MVM models, including inputs from the envi-
ronment for the unbounded ASM monitored functions of models (by commands
run). Specifically, we plan to simulate the startup (lines 3–4), selftest (line 5),
start ventilation (line 6) and the intervention of the supervisor by setting the
valves in safe mode (line 8) because there is an error in the power supply (line 7).

Code 3 reports the script execution trace. The components (hardware, con-
troller and supervisor) perform the first compositional step where all the func-
tions are initialized. In the second step the controller performs self test. In com-
positional step three the controller is in ventilation off waiting for starting venti-
lation, and the supervisor has concluded self-test and is waiting for the command

5 The models are available at https://github.com/asmeta/asmeta/tree/master/

code/experimental/asmeta.simulator%40run.time/examples/MVM/ConfModels

https://github.com/asmeta/asmeta/tree/master/code/experimental/asmeta.simulator%40run.time/examples/MVM/ConfModels
https://github.com/asmeta/asmeta/tree/master/code/experimental/asmeta.simulator%40run.time/examples/MVM/ConfModels

Compositional Simulation of ASM for Safety Critical Systems 13

1 ========= Compositional step 1 =========
2 Running MVMHardware
3 I={adc reply m=RESPONSE; fan working m=true;

pi 6 m=25; pi 6 reply m=RESPONSE;
temperature m=25; state=STARTUP; insp valve
=CLOSED; exp valve=OPEN}

4 US={iValveMerged=CLOSED; oValveMerged=OPEN}
5 Running MVMController
6 US={state=STARTUP; all cont=NONE; watchdog=

true}
7 Running MVMSupervisor
8 US={status selftest=NOTSTART; state=INIT;

watchdog st=INACTIVE; max attempts adc=0}

9 ========= Compositional step 2 =========

10 MVMController performs self test

11 ========= Compositional step 3 =========

12
MVMController is in VENTILATIONOFF,
MVMSupervisor ends SELFTEST

13 ========= Compositional step 4 =========

14 MVM is in INSPIRATION phase

15 ========= Compositional step 5 =========
16 Running MVMHardware

17 ADC reports an error

18 I={adc reply m=ERROR; fan working m=true; pi 6 m
=25; pi 6 reply m=RESPONSE; temperature m
=25}

19 US={iValveMerged=OPEN; oValveMerged=CLOSED}
20 Running MVMController
21 I={stopRequested=false; pawGTMaxPinsp=true}
22 US={oValve=OPEN; phase=EXPIRATION;

breath sync=EXP; iValve=CLOSED}
23 Running MVMSupervisor
24 US={insp valve=CLOSED; max attempts adc=1;

exp valve=OPEN; previous breath=EXP}
25 ========= Compositional step 6 =========
26 Running MVMHardware

27 ADC reports an error

28 I={adc reply m=ERROR; fan working m=true; pi 6 m
=25; pi 6 reply m=RESPONSE; temperature m
=25}

29 US={iValveMerged=CLOSED; oValveMerged=OPEN}

30Running MVMController
31I={stopRequested=false; dropPAW ITS=false}
32Running MVMSupervisor
33US={max attempts adc=2}
34========= Compositional step 7 =========
35Running MVMHardware

36ADC reports an error

37I={adc reply m=ERROR; fan working m=true; pi 6 m
=25; pi 6 reply m=RESPONSE; temperature m
=25}

38US={iValveMerged=CLOSED; oValveMerged=OPEN}
39Running MVMController
40I={stopRequested=false;dropPAW ITS: true}
41Running MVMSupervisor

42The supervisor moves in FAILSAFE

43US={max attempts adc=3; state=FAILSAFE}
44========= Compositional step 8 =========
45Running MVMHardware
46I={adc reply m=ERROR; fan working m=true; pi 6 m

=25; pi 6 reply m=RESPONSE; temperature m
=25}

47Ventilator is in INSPIRATION

48US={iValveMerged=OPEN; oValveMerged=CLOSED}
49Running MVMController
50US={oValve=CLOSED; state=PCV STATE;

phase=INSPIRATION; run command=true;
breath sync=INSP; stop command=false; iValve
=OPEN}

51Running MVMSupervisor

52Supervisor set valves in safe mode

53US={max attempts adc=4; iValve=CLOSED;
oValve=OPEN}

54========= Compositional step 9 =========
55Running MVMHardware
56I={adc reply m=ERROR; fan working m=true; pi 6 m

=25; pi 6 reply m=RESPONSE; temperature m
=25}

57
Nevertheless the controller is in INSPIRATION, since
the supervisor is in FAILSAFE the valves are in safe
mode

58US={iValveMerged=CLOSED; oValveMerged=OPEN}
59...

Code 3: Simulation trace supervisor in FAILSAFE, the valves change state

from the controller when ventilation has begun. In the next compositional step,
the ventilator is ventilating and the supervisor detects it. In compositional step
five, six and seven the power supply reports an error (adc reply m=ERROR) and in
compositional step seven the supervisor is in FAILSAFE state. In the next compo-
sitional step, since the controller is in inspiration phase, the input valve is open
and the output valve is closed. But in the last compositional step reported in
Code 3, nevertheless the controller is in inspiration, the valves are in safe mode
(input valve is closed and output valve is opened) because the supervisor has
detected an error.

6 Discussion and lesson learned

Based on our modeling experience with the MVM system, we can conclude that
splitting the system model into two or more sub-models and loosely coupling
their simulation (co-simulation) provided us several advantages w.r.t. creating
an entire system model. Since right from the very beginning, the sub-models
were developed by different groups and for different target platforms (e.g., the
MVM controller prototype on the Arduino board), this compositional model-

14 S. Bonfanti et al.

ing technique allowed us a high degree of flexibility in managing the separation
of the modeling/analysis tasks in different modeling/development groups, each
working in parallel at their own speed. As a result, subsystem models could be
analyzed and validated/verified in isolation to prove their correctness according
to the established I/O interfaces with the other subsystem models, so allowing
us to speed up the overall formal development process from requirements to
code. Moreover, this compositional modeling helped to clarify and make pre-
cise w.r.t. the documented system requirements, the communication protocol
among MVM components. Defining the I/O bindings between the sub-models
and capturing the computational causality between sub-models in terms of a
compositional simulation formula is, however, not a trivial task and requires a
clear understanding of how the involved subsystems react to I/O stimuli and of
their communication and computation protocol.

In a wider context, with the proposed technique we intend to contribute
in providing virtual models (e.g., an ASM model that is a virtual copy of a
system controller) and leveraging model simulation at runtime. Models@run.time
together with formal analysis and data analytics are the main enablers of the
Digital Twin technology, which is a growing interest in any field. By model
simulation, it is possible to interact with the digital twin of a real system (or a
part of it) by simulating different what-if analysis scenarios [16] to identify the
best actions to be then applied on the physical twin.

7 Related work

Existing frameworks that inspired our approach to compositional model-based
simulation are those related to workflow modeling and service orchestration (such
as tools for the Business Process Model and Notation (BPMN) [4], and the Jolie
language [3]), and to multi-state machine modeling (like Yakindu statecharts
[6]). However, the proposed technique is oriented to a distributed model-based
system simulation, to be used for example in practical contexts where model
simulation is required at runtime and models have to be co-simulated along
with real systems, such as runtime models that are part of the knowledge base
of a self-adaptive and autonomous system [10] or of a digital twin plant [18].

In [21], a choreography automaton for the choreographic modeling of com-
municating systems is introduced as a system of communicating finite state ma-
chines whose transitions are labelled by synchronous/asynchronous interactions.
Choreographies are suitable approaches to describe modern software architec-
tures such as micro-services, but in this first compositional simulation mechanism
we preferred to rely on a centralized synchronous communication semantics that
is typical of IT service orchestration and automation platforms. We postpone
as future work the definition and implementation of choreography constructs to
deploy and enact a choreography-based execution of asynchronous I/O ASMs.

Within the context of component- and service- based architectures, ASMs
have been used for service modeling and prototyping in the OASIS/OSOA stan-
dard Service Component Architecture (SCA) for heterogeneous service assembly.

Compositional Simulation of ASM for Safety Critical Systems 15

In such a framework, abstract implementation (or prototype) of SCA compo-
nents in ASM (SCA-ASM components) are co-executed in place with other com-
ponent implementations [22]. In [20], a method for predicting service assembly
reliability both at system-level and component-level is presented by combining
a reliability model for an SCA assembly involving SCA-ASM components.

8 Conclusion and future directions

In this paper, we have formulated the concept of I/O ASM and introduced
the compositional simulation technique of I/O ASMs. We have also presented,
through the MVM case study, the scope and use of the compositional simulation
of I/O ASMs as supported by the ASMETA tool AsmetaComp. AsmetaComp is
intended to support distributed simulation of ASMs by allowing separate ASM
system models to be connected and co-simulated together to form simulations of
integrated systems, or a big ASM model to be divided into smaller sub-models
that co-execute, possibly on separate local or remote processes/computers.

As future work, we want to conduct some experiments for evaluating the real
benefits of a compositional simulation w.r.t. a conventional non-compositional
simulation of one single monolithic model. These include the evaluation of the
usability of the technique and, in particular, the understandability of the ex-
ecution traces. We plan to investigate on the fault-detection capability of the
proposed approach to guarantee that using composition does not reduce the
ability to discover unacceptable behaviors.

We also want to support additional composition operators and patterns (such
as I/O wrapping, conditional execution, iterated execution, alternate execution,
attempt choice, non-deterministic choice, etc.), and alternative model roll-back
semantics to allow more expressiveness in specifying how models interact in a
compositional simulation. We also want to support choreography constructs for
decentralized co-simulation of asynchronous ASMs as provided in the standard
Business Process modeling Notation 2.0 (BPMN2) Choreography Diagram [4].
Moreover, we want to support the co-simulation of ASM models with other
DES simulated/real subsystems into a federated, interoperable simulation en-
vironment, possibly in accordance with standards such as the IEEE 1516 High
Level Architecture (HLA) and the Functional Mockup Interface (FMI) [2] for
distributed co-simulation [19].

Acknowledgement: We thank the students Davide Santandrea and Michele
Zenoni for their contribution in tool implementation and case study composition.

References

1. ASMETA (ASM mETAmodeling) toolset, https://asmeta.github.io/
2. Functional Mock-up Interface, https://fmi-standard.org/
3. Jolie, https://jolie-lang.org

https://asmeta.github.io/
https://fmi-standard.org/
https://jolie-lang.org

16 S. Bonfanti et al.

4. Object Management Group Business Process Model and Notation, https://bpmn.
org/

5. Straight Through Processing - STP, Investopedia, October 18, 2020, https://www.
investopedia.com/terms/s/straightthroughprocessing.asp

6. YAKINDU Statechart Tools, https://itemis.com/en/yakindu/state-machine

7. Abba, A., et al.: The novel mechanical ventilator milano for the COVID-19 pan-
demic. Physics of Fluids 33(3), 037122 (mar 2021)

8. Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra,
P.: The ASMETA Approach to Safety Assurance of Software Systems, pp. 215–238.
Springer International Publishing, Cham (2021)

9. Bañares, J.Á., Colom, J.M.: Model and simulation engines for distributed sim-
ulation of discrete event systems. In: Coppola, M., Carlini, E., D’Agostino, D.,
Altmann, J., Bañares, J.Á. (eds.) Economics of Grids, Clouds, Systems, and Ser-
vices. pp. 77–91. Springer International Publishing, Cham (2019)

10. Bencomo, N., Götz, S., Song, H.: Models@run.time: a guided tour of the state of
the art and research challenges. Software and Systems Modeling 18(5) (2019)

11. Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E.: Developing a prototype
of a mechanical ventilator controller from requirements to code with ASMETA.
Electronic Proceedings in Theoretical Computer Science 349, 13–29 (Nov 2021)

12. Bombino, M., Scandurra, P.: A model-driven co-simulation environment for het-
erogeneous systems. Int. J. Softw. Tools Technol. Transf. 15(4), 363–374 (2013)

13. Bonfanti, S., Riccobene, E., Scandurra, P.: A runtime safety enforcement approach
by monitoring and adaptation. In: Biffl, S., Navarro, E., Löwe, W., Sirjani, M.,
Mirandola, R., Weyns, D. (eds.) Software Architecture - 15th European Conference
ECSA 2021. pp. 20–36. No. 12857 in Lecture Notes in Computer Science, Springer
International Publishing, Cham (2021)

14. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Berlin, Heidelberg (2018)

15. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag (2003)

16. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: Enabling technologies, chal-
lenges and open research. IEEE Access 8, 108952–108971 (2020)

17. Gargantini, A., Riccobene, E., Scandurra, P.: A Metamodel-based Language and
a Simulation Engine for Abstract State Machines. J. UCS 14(12) (2008)

18. Grieves, M.: Origins of the Digital Twin Concept (08 2016)

19. Huiskamp, W., van den Berg, T.: Federated Simulations, pp. 109–137. Springer
International Publishing, Cham (2016)

20. Mirandola, R., Potena, P., Riccobene, E., Scandurra, P.: A reliability model for
service component architectures. J. Syst. Softw. 89, 109–127 (2014)

21. Orlando, S., Pasquale, V.D., Barbanera, F., Lanese, I., Tuosto, E.: Corinne, a
tool for choreography automata. In: Salaün, G., Wijs, A. (eds.) Formal Aspects of
Component Software - 17th International Conference, FACS 2021, Virtual Event,
October 28-29, 2021, Proceedings. LNCS, vol. 13077, pp. 82–92. Springer (2021)

22. Riccobene, E., Scandurra, P.: A formal framework for service modeling and proto-
typing. Formal Aspects Comput. 26(6) (2014)

23. Riccobene, E., Scandurra, P.: Model-based simulation at runtime with abstract
state machines. In: Muccini, H., Avgeriou, P., Buhnova, B., Camara, J., Caporus-
cio, M., Franzago, M., Koziolek, A., Scandurra, P., Trubiani, C., Weyns, D., Zdun,
U. (eds.) Software Architecture. Springer International Publishing, Cham (2020)

https://bpmn.org/
https://bpmn.org/
https://www.investopedia.com/terms/s/straightthroughprocessing.asp
https://www.investopedia.com/terms/s/straightthroughprocessing.asp
https://itemis.com/en/yakindu/state-machine

Compositional Simulation of ASM for Safety Critical Systems 17

24. Riccobene, E., Scandurra, P.: Model-Based Simulation at Runtime with Abstract
State Machines. In: Software Architecture - 14th European Conference, ECSA 2020
Tracks and Workshops, Proceedings. Communications in Computer and Informa-
tion Science, vol. 1269. Springer (2020)

25. Talcott, C., Ananieva, S., Bae, K., Combemale, B., Heinrich, R., Hills, M.,
Khakpour, N., Reussner, R., Rumpe, B., Scandurra, P., Vangheluwe, H.: Com-
position of Languages, Models, and Analyses, pp. 45–70. Springer International
Publishing, Cham (2021)

26. Tendeloo, Y.V., Mierlo, S.V., Vangheluwe, H.: A multi-paradigm modelling ap-
proach to live modelling. Software and Systems Modeling 18(5) (2019)

27. Weyns, D., Iftikhar, M.U.: Model-Based Simulation at Runtime for Self-Adaptive
Systems. In: Kounev, S., Giese, H., Liu, J. (eds.) 2016 IEEE International Confer-
ence on Autonomic Computing, ICAC 2016. IEEE Computer Society (2016)

	Compositional Simulation of Abstract State Machines for Safety Critical Systems

