
Extending ASMETA with Time Features

Andrea Bombarda1(B) , Silvia Bonfanti1 , Angelo Gargantini1 ,
and Elvinia Riccobene2

1 Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione,
Università degli Studi di Bergamo, Bergamo, Italy

{andrea.bombarda,silvia.bonfanti,angelo.gargantini}@unibg.it
2 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

elvinia.riccobene@unimi.it

Abstract. ASMs and the ASMETA framework can be used to model
and analyze a variety of systems, and many of them rely on time con-
straints. In this paper, we present the ASMETA extension to deal with
model time features.

1 Introduction

Abstract State Machines (ASMs) [8] have been used to model several real case
studies [2,3,5]. The framework ASMETA [4] supports the design and analysis
of ASM models; it offers a wide set of features for model validation, verifica-
tion, and code generation. However, many real systems, especially those in the
safety-critical and cyber-physic domains, rely on time constraints. Modeling and
validating these kinds of systems using ASMETA may be difficult since it does
not offer primitives explicitly designed for dealing with time. According to the
ASM definition of monitored locations, time is a monitored function whose value
is written by the environment and read by the machine. Till now, the user has
been asked to act as the environment and directly set time values when required;
alternately, boolean monitored functions have been used to model passed time
events. This user-based way of time supplying can be an annoying and error-
prone activity and would require suitable constraints to guarantee time cor-
rectness, such as that time is a monotonic increasing function. Moreover, if the
specification uses multiple time units (like seconds and minutes), it is left to the
user to set them in a coherent way.

In this paper, we present the ASMETA library TimeLibrary that intro-
duces time as special monitored functions and the concept of timers. Moreover,
ASMETA is now extended to handle time in different ways (behind the above-
mentioned already existing ways): i) reading the time from the machine hosting
the simulation; ii) allowing the user to set the simulation time unit and enter the
time values as a normal monitored function, in case exact time instants chosen
by the user are needed to simulate critical behavior; iii) automatically increasing
the time values at each machine step according to parameters initially set by the
user.
c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 105–111, 2021.
https://doi.org/10.1007/978-3-030-77543-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_8&domain=pdf
http://orcid.org/0000-0003-4244-9319
http://orcid.org/0000-0001-9679-4551
http://orcid.org/0000-0002-4035-0131
http://orcid.org/0000-0002-1400-1026
https://doi.org/10.1007/978-3-030-77543-8_8

106 A. Bombarda et al.

module TimeLibrary
import StandardLibrary
export ∗
signature:
abstract domain Timer
enum domain TimerUnit={NANOSEC,

MILLISEC, SEC, MIN, HOUR}
monitored mCurrTimeNanosecs: Integer
monitored mCurrTimeMillisecs: Integer
monitored mCurrTimeSecs: Integer
monitored mCurrTimeMins: Integer
monitored mCurrTimeHours: Integer
controlled start: Timer−> Integer
controlled duration: Timer −> Integer
controlled timerUnit: Timer −> TimerUnit
derived currentTime : Timer−> Integer
derived expired: Timer −> Boolean

definitions:

function currentTime($t in Timer) = if (timerUnit($t)=NANOSEC) then
mCurrTimeNanosecs
else if (timerUnit($t)=MILLISEC) then mCurrTimeMillisecs
else if (timerUnit($t)=SEC) then mCurrTimeSecs
else if (timerUnit($t)=MIN) then mCurrTimeMins
else if (timerUnit($t)=HOUR) then mCurrTimeHours
endif endif endif endif endif

function expired($t in Timer) = (currentTime($t) >= start($t) + duration($t))

macro rule r reset timer($t in Timer) = start($t) :=
currentTime($t)

macro rule r set duration($t in Timer, $ms in Integer) =
duration($t) := $ms

macro rule r set timer unit($t in Timer, $unit in TimerUnit) =
timerUnit($t) := $unit

Code 1. ASMETA TimeLibrary

Our approach is inspired by the timing mechanism provided in other formal
notations [9] and in other ASM frameworks. For instance, CoreASM1 introduces
the TimerPattern: it uses the monitored location now to save the current sys-
tem time and has appropriate TimerAssumptions on now evolution and what-
ever unit assumptions [8]. However, CoreASM explicitly only links now to the
machine clock and it manages only times expressed in milliseconds and nanosec-
onds. Other ASM time mechanisms have been proposed starting from the seminal
work in [11]; e.g., a simulator for real-time reactive ASMs was presented in [1],
while the TASM approach specifying duration of rule execution appeared in [12],
and its extension with events and observers in [13]. A general study of timing
for ASMs can be found in [10].

The paper is structured as follows. In Sect. 2 we present the main function-
alities we have introduced to deal with time, namely the TimeLibrary, with its
monitored functions and the Timer. Section 3 reports the different approaches
to simulate the time and shows the results of simulation in different case stud-
ies, such as a simple clock and the well-known Sluice Gate Control case study.
Future works are outlined in Sect. 4.

2 Time in ASMETA

In ASMETA framework, we have introduced the TimeLibrary2 which contains the
basic constructs necessary to introduce time features in ASMETA specifications:
i) monitored functions to manage the time in different time units (nanoseconds,
milliseconds, seconds, minutes, and hours); ii) an abstract domain Timer useful to
introduce user-defined timers; iii) some functions and rules to operate on timers,
like to check if a desired amount of time is passed, to reset and start a timer,
and to set the timer duration and time unit. The proposed solution allows users
to use different time units in the same ASM model and it guarantees consistency

1 https://github.com/CoreASM/coreasm.core/tree/master/org.coreasm.engine/src/
org/coreasm/engine/plugins/time.

2 https://github.com/asmeta/asmeta/blob/master/asm examples/STDL/TimeLibra
ry.asm.

https://github.com/CoreASM/coreasm.core/tree/master/org.coreasm.engine/src/org/coreasm/engine/plugins/time
https://github.com/CoreASM/coreasm.core/tree/master/org.coreasm.engine/src/org/coreasm/engine/plugins/time
https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/TimeLibrary.asm
https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/TimeLibrary.asm

Extending ASMETA with Time Features 107

between them during model simulation. Moreover, our mechanism assures that
in a defined state, all the time functions refer to the same time instant, no matter
what time unit is used.

A simple example using the time monitored functions is shown in Code 2,
representing a clock that displays at each step current hours, minutes, and sec-
onds.

asm simpleClock
import TimeLibrary

signature:
controlled clockHours: Integer
controlled clockMins: Integer
controlled clockSecs: Integer

definitions:
main rule r main =
par
clockHours:=mCurrTimeHours mod 24
clockMins:=mCurrTimeMins mod 60
clockSecs:=mCurrTimeSecs mod 60

endpar

Code 2. Time example: return current time

Measuring the absolute time is useful, but often, systems require that actions
are executed if a desired amount of time is passed. For this purpose, timers are
available in the TimeLibrary (see Code 1)3, and, in the following, we will show
how to use them. In the Sluice Gate Control case study (a well-known case study
proposed in [7]) there are two timers, one to check if 10 min are passed before
closing the gate and one if 3 h are passed before opening the gate. We have
declared one function for each timer (see Code 3). Timers are initialized in the
initial state, in terms of duration and time unit (using duration($t in Timer) and
timerUnit($t in Timer) controlled functions). Moreover, during the initialization
phase, the user can (if it is required by the specification) start the declared timer
(using the currentTime($t in Timer) library function). The user uses the function
expired($t in Timer) from the TimeLibrary (see line 12 in Code 3) to check if the
timer passed as parameter is expired. While, when the timer must be reset in
the specification, it can be done using the rule r reset timer($t in Timer) (see line
15 in Code 3), which takes the timer to reset as parameter. Moreover, in the
specification duration of a timer can be changed (using the rule r set duration($t
in Timer)) as well as its time unit (using the rule r set timer unit($t in Timer)).

1 asm sluiceGateGround
2 import TimeLibrary
3 signature:
4 enum domain PhaseDomain = { FULLYCLOSED, FULLYOPEN }
5 dynamic controlled phase: PhaseDomain
6 static timer10MinPassed: Timer
7 static timer3hPassed: Timer
8
9 definitions:

10 main rule r Main =
11 par
12 if phase=FULLYCLOSED and expired(timer3hPassed) then
13 par
14 phase := FULLYOPEN
15 r reset timer[timer10MinPassed]
16 endpar
17 endif

if phase=FULLYOPEN and expired(timer10MinPassed) then
par
phase := FULLYCLOSED
r reset timer[timer3hPassed]
endpar
endif
endpar

default init s0:
function duration($t in Timer) =
if $t = timer10MinPassed then 10
else if $t = timer3hPassed then 3 endif endif
function timerUnit($t in Timer) =
if $t = timer10MinPassed then MIN
else if $t = timer3hPassed then HOUR endif endif
function start($t in Timer) = currentTime($t)
function phase = FULLYCLOSED

Code 3. Use of Timer in Sluice Gate Control specification

3 Note that $t denotes the variable t in the AsmetaL notation.

108 A. Bombarda et al.

3 Simulating Time

Besides time modeling, ASMETA framework supports three different mecha-
nisms to handle time during simulation: i) the time is read from the machine
hosting the simulation; ii) the user enters the values for time as normal monitored
functions; iii) the time is automatically increased at each step by a predefined
value.

The first mechanism allows the user to run the specification without entering
the value of time monitored functions because the time is obtained from the Java
8 Date/Time API Instant.now() and automatically assigned to the time moni-
tored functions. Sometimes, and especially if the specification would require long
time intervals like hours or very short time intervals like nanoseconds, if the real
time is used during the simulation, it may be unfeasible or impractical for the
user to check what happens at specific instants of time. In this case, the second
mechanism is most suitable: the user specifies the time unit he wants to run
the specification and enters the desired time when required. If the specification
uses more than one time with different time units, the others are automatically
derived. In case the user wants to execute the specification and automatically
increment the time by a predefined value at each step, the third approach can
be used. The user has to define the time step and time unit, then the system
automatically increments the time of the set delta value at each running step. If
times have other time units compared to the one set by the user, they are auto-
matically derived. The desired mechanism is set in the ASMETA → Simulator
preferences from Window menu in Eclipse, as shown in Fig. 1.

Fig. 1. Simulator settings

In the following, some simulation examples using all methods are shown. The
simulation of Code 2 using Java time is shown in Fig. 2. For the entire simulation,
the user had to wait 1 h. To fasten checking what happens at specific instants
of time, the second method is the most suitable because the user specifies at
each step the time and one step is executed with the inserted value (see Fig. 3).

Fig. 2. Clock simulation in “Java Time” mode

Extending ASMETA with Time Features 109

Fig. 3. Clock simulation in “ask user” mode

Fig. 4. Clock simulation in “auto increment” mode with Delta = 30 and Time Unit =
SECONDS

Fig. 5. Sluice Gate simulation in “Java Time” mode

The advantage is that the required simulation time is lower. Moreover, this is
useful in case the user wants to check the behavior of the modeled system when
the clock returns erroneous values (such as decreasing time between two con-
secutive steps). The last simulation method automatically increments the time
at each step by a given value, and an example is shown in Fig. 4. The simu-
lation is performed using a delta time equals to 30 s. As expected the change
of clockHours function occurs at State 120. To show the use of timers, we have
simulated the Sluice Gate specification using the three methods available. The
first method requires the user to wait three hours before changing from FUL-
LYCLOSED to FULLYOPENED. After ten minutes the gate moves back to
FULLYCLOSED state in which it remains again for three hours (see Fig. 5).
Note that controlled functions at state i are updated due to monitored values
(including time) observed at state i − 1. Since the instants of time when state
changes occur are well known, we have simulated the specification using the sec-
ond method (see Fig. 6) where the time is set at each state by the user. In this
case, the simulation is faster because we do not have to wait the specification

110 A. Bombarda et al.

Fig. 6. Sluice Gate simulation in “ask user” mode

time. In Fig. 7 the specification is simulated with the auto increment method,
the delta is set to 10 and the time unit to minutes. Using this approach, the
simulation is run and at each step the minutes are incremented by 10.

4 Future Work

Those presented in this paper are the first results of our effort toward endowing
ASMETA with primitives to model and analyze systems with time constraints.
In the future, we plan to provide two major improvements: i) extending the
ASMETA scenario-based validation with new time features; ii) automatically
mapping ASMETA time primitives into code time primitive, e.g., extending
the automatic mapping of ASMETA models into C++ code for the Arduino
platform [6].

Fig. 7. Sluice Gate simulation in “auto increment” mode with Delta = 10 and Time
Unit = MINUTES

References

1. Slissenko, A., Vasilyev, P.: Simulation of timed abstract state machines with pred-
icate logic model-checking. J. Univ. Comput. Sci. 14(12), 1984–2006 (2008)

2. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.: Integrat-
ing formal methods into medical software development: the ASM approach. Sci.
Comput. Program. 158, 148–167 (2018)

Extending ASMETA with Time Features 111

3. Arcaini, P., Gargantini, A., Riccobene, E.: Rigorous development process of a
safety-critical system: from ASM models to Java code. Int. J. Softw. Tools Technol.
Transf. 19(2), 247–269 (2015). https://doi.org/10.1007/s10009-015-0394-x

4. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw.: Pract. Exp. 41, 155–166
(2011)

5. Bombarda, A., Bonfanti, S., Gargantini, A.: Developing medical devices from
abstract state machines to embedded systems: a smart pill box case study. In:
Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019. LNCS,
vol. 11771, pp. 89–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29852-4 7

6. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code
generator from abstract state machines specifications. J. Softw.: Evol. Process
32(2), e2205 (2019)

7. Börger, E.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-18216-7

8. Böger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

9. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing.
Springer, Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-32332-4

10. Graf, S., Prinz, A.: Time in state machines. Fundam. Informaticae 77(1–2), 143–
174 (2007)

11. Gurevich, Y., Huggins, J.K.: The railroad crossing problem: an experiment with
instantaneous actions and immediate reactions. In: Kleine Büning, H. (ed.) CSL
1995. LNCS, vol. 1092, pp. 266–290. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-61377-3 43

12. Lundqvist, K., Ouimet, M.: The timed abstract state machine language: abstract
state machines for real-time system engineering. J. Univ. Comput. Sci. 14(12),
2007–2033 (2008)

13. Zhou, J., Lu, Y., Lundqvist, K.: A TASM-based requirements validation approach
for safety-critical embedded systems. In: George, L., Vardanega, T. (eds.) Ada-
Europe 2014. LNCS, vol. 8454, pp. 43–57. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08311-7 5

https://doi.org/10.1007/s10009-015-0394-x
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-32332-4
https://doi.org/10.1007/3-540-61377-3_43
https://doi.org/10.1007/3-540-61377-3_43
https://doi.org/10.1007/978-3-319-08311-7_5
https://doi.org/10.1007/978-3-319-08311-7_5

	Extending ASMETA with Time Features
	1 Introduction
	2 Time in ASMETA
	3 Simulating Time
	4 Future Work
	References

