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Abstract—Validation of CNNs is extremely important, espe-
cially when they are used in safety-critical domains. In particular,
in the latest years, the focus of validation has been put on
assessing the robustness of CNNs, i.e., their ability to correctly
classify perturbed input data. A way to measure robustness is
to check the network accuracy over many datasets obtained by
altering the input data in different ways, but this is time and
resource-consuming. In this paper, we present ASAP, a method
to efficiently compute the robustness of a CNN, exploiting a
parabola-based approximation which allows to adaptively select
only relevant alteration levels. The method is tested on two
different benchmarks (MNIST and breast cancer classification).
Moreover, we compare ASAP with other techniques based on
uniform sampling, numerical integration, and random sampling.

Index Terms—Convolutional Neural Networks, robustness, ef-
ficient robustness computation, image classification, alteration

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are increasingly

used to perform different activities [3], among which many

of them are safety-critical [14] as, e.g., in autonomous driv-

ing [10], or in the medical practice [8]. Thus, especially in

these cases, validation activities must be performed [20]. The

most recent developments in the validation of CNNs are based

on the evaluation of the robustness, i.e., the ability of the

network to correctly evaluate slightly altered inputs. However,

the majority of research works are focused on adversarial

examples, which are often created by exploiting the internal

structure of the network [16], and may not reflect plausible

inputs that could occur during real network usage [12], [13],

[18]. Instead, the robustness should be defined by considering

real alterations that may occur to input data as well. In [4], we

proposed a robustness definition for CNNs that considers the

alterations that are typical of the domain in which the CNN

is used. Moreover, in [5], we presented ROBY, a Python tool

for automatic robustness analysis, implementing the robustness

definition and supporting different types of input data.

Computing robustness can be really expensive in terms of

time and resource consumption, since every input of the test

dataset has to be repeatedly altered with different alteration
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Design Project (No. JPMJER1603), JST, and Engineerable AI Techniques
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levels. One way to obtain a correct estimation of the network

robustness is by increasing the number of alteration levels

analyzed. However, this has the drawback of increasing the

time required for the analysis. Thus, in this paper, we propose

ASAP (Adaptive SAmpling by Parabolic estimation), a novel

method to estimate the robustness of a CNN, aiming at com-

puting robustness more efficiently. It is based on a parabolic

approximation of the accuracy curve and allows, by means of

specific parameters, to trade off the precision of the computed

robustness against the time required to compute it.

We assess ASAP on two different benchmarks, namely the

MNIST dataset recognition and the breast cancer classification.

Furthermore, we compare the approach with other possible

techniques for robustness computation based on uniform sam-

pling, numerical integration, and random sampling.

Paper structure. Sect. II introduces the definition of robust-

ness and highlights the limits of existing approaches for

its calculation. Sect. III presents ASAP. Sect. IV introduces

the experiments design, with the two benchmarks used for

the evaluation. Sect. V evaluates ASAP w.r.t. other available

techniques. Finally, Sect. VI reviews some related work, and

Sect. VII concludes the paper.

II. BACKGROUND AND BASIC DEFINITIONS

A convolutional neural network (CNN) is a type of deep

neural network, mainly used to analyze images, which uses

the linear mathematical operation convolution (instead of the

regular matrix multiplication) in at least one of its layers.

Digital images taken as input of the CNN can be susceptible

to modifications during their acquisition. In [4], we proposed

a robustness definition that assesses how much input modifi-

cations influence the classification accuracy; the definition is

built on the concept of alteration defined as follows.

Definition 1 (Alteration). An alteration of type A of an input

t is a transformation of t that mimics the possible effect on

t when a problem during its acquisition, or in its elaboration,

occurs in reality. In the following, we identify with PAl the

set of data obtained by altering all the input data in P with

an alteration of type A of level l ∈ [LA,UA], where [LA,UA]
is the range of plausible alteration levels of type A.

The robustness of a CNN is then defined as its ability to

correctly classify altered data. Intuitively, given an alteration
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Fig. 1. Robustness

interval [LA,UA], the robustness is the portion of that interval

in which, if we classify the altered data with the same CNN,

the accuracy is still acceptable, i.e., it is above a given

threshold Θ. In Fig. 1, the accuracy is the black curve, and

the robustness is the total length of the intervals in which

the accuracy is above the threshold (gray line), divided by

the total length of the alteration interval. The robustness is

formally defined as follows.

Definition 2 (Robustness). Let Θ be a threshold representing

the minimum accepted accuracy. The robustness of a CNN C
w.r.t. alteration of type A in the range [LA,UA] (using a set

of inputs P ) is defined as the percentage of alteration values

for which the accuracy acc(C,PA) is above Θ. Formally:

robA(C,P ) =

∫ UA

LA
H(acc(C,PAl)−Θ)dl

UA − LA

where H(x) =

{
1, x ≥ 0

0, x < 0

Computing precisely the robustness using this formula

(where H is the Heaviside function) is very difficult. Indeed,

the accuracy function is not known a priori and, therefore, it

should be computed for all the alteration levels l in [LA,UA]
which could be many, if not infinite. Moreover, computing the

accuracy of the network C when a single alteration level Al

is applied to the set P , requires a considerable effort, so a

method to select suitable alterations is necessary in order to

reduce the computation time.

A naive solution is to uniformly sample in [LA, UA] and

compute the accuracy for the sampled points. We followed this

approach in [4], where we proposed a robustness definition

exploiting equidistributed discrete points. In that case, we

count for how many points (nacc) the accuracy is acceptable,

relatively to the total number of sampled points n. Formally:

Definition 3 (Uniform robustness). Given n equidistributed

points SP = {l1, . . . , ln} sampled in the interval [LA,UA],
the uniform robustness is defined as:

robA(C,P ) =
nacc

n
=
|{l ∈ SP | acc(C,PAl) ≥ Θ}|

|SP | (1)

Note that also numerical integration methods for integral

calculation rely on sampling of points and, so, they could be

used to compute robustness. However, in their application, the

0.0 0.2 0.4 0.6 0.8 1.0
Alteration level

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Ac
cu

ra
cy

real accuracy threshold sampled points

Fig. 2. Error in robustness computation with uniform sampling

user has little or no control over the points to be used to com-

pute the accuracy function, and this may result in oversampling

not relevant areas and/or undersampling relevant ones. We will

also compare with this approach in our experiments.

A. The limits of the uniform sampling approach

The robustness, as defined in Def. 3, may still require a lot

of computational power and time to be evaluated, especially

when the alteration levels are many. In fact, given n the

number of alteration levels to be applied for an alteration A,

k the number of inputs, and tA the time required for applying

the alteration A to a single image, the total time required to

perform robustness analysis is ttotA = n·k ·tA. For instance, if

n = 1000, k = 1000 and tA = 0.1sec, the total time required

to compute the robustness is approximately 28 hours.

One way to reduce the effort is to reduce n, i.e., the number

of sampled levels for the alteration A. This is a viable solution,

but has some drawbacks, especially when analyzing networks

whose accuracy varies a lot. For example, Fig. 2 shows

the evaluated points when uniform sampling of an accuracy

function is performed with n = 10. Using Def. 3, we would

compute a robustness of robA(C,P ) = 100%. Nonetheless,

the real value of the robustness for the analyzed network is

significantly lower (� 50%).

Thus, a way to solve these problems is to adaptively select

the points to be sampled (possibly not uniformly), as usually

done for input values in software testing. In fact, choosing the

correct input parameters and the correct values to be tested in

a program is challenging because different inputs may lead to

different bug discoveries; however, sampling some inputs is

required since exhaustive testing can not be performed.

III. ADAPTIVE SAMPLING BY PARABOLIC ESTIMATION

In order to tackle the limitations of the uniform sampling

approach, we propose the ASAP algorithm to automatically

select the points where to evaluate the accuracy. The best

points to select would be those in which the accuracy curve

intersects the threshold Θ. However, since we do not know

the analytical form of the curve and we can not compute these

intersections, we try to select points as close as possible to Θ.

ASAP is based on the assumption that, once we have

computed the accuracy for two alteration levels A and B, the

real accuracy curve between A and B will be included in the
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Fig. 3. Area in which the real accuracy curve between A and B will be
likely included, identified by two parabolas with concavity depth ±â
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Fig. 4. Different positions of points during recursive accuracy evaluation

area between two parabolas passing through the points A and

B, and having concavity depth respectively +â and −â (see

Fig. 3), i.e., with equation y = ax2 + bx+ c with a = ±â. If

there is an intersection between that area and the threshold Θ,

and the distance between A and B is sufficiently large, then we

compute the accuracy in the middle point M between A and

B, we add it to the sample set, and we recursively apply the

same procedure to the two intervals [A,M ] and [M,B]. In this

way, the number of evaluated points is adaptively determined

and depends on the value of the parameter â. Intuitively, the

higher is the value of â, the higher is the number of alteration

levels evaluated by the algorithm. Thus, users must choose the

â value based on the robustness estimation accuracy needed,

and on the time available for robustness analysis.

Algorithm 1 describes how the approximation method

works. It recursively considers two alteration levels xA and

xB in [LA,UA], and evaluates the accuracy of the model in

the two points, using the getAccuracy function which applies

the selected level of alteration (lines 2-3) to the test set TS .

Then, the algorithm checks, using the function parabIntsct
(line 4), whether at least one of the two parabolas passing for

the two points intersects the threshold. A sufficient condition

is that the two accuracy values are opposite w.r.t. the threshold

Θ (see an example in Fig. 4(a)): this is checked at line 11.

If this is not the case, i.e., both accuracy values are above

or under the threshold Θ (see examples in Figs. 4(b)-4(c)),

the algorithm computes the parabolas passing for A and B
and having concavity depth ±â, using the parabola function

(line 14). Parabola coefficients b and c are obtained with this

Algorithm 1 ASAP: Adaptive SAmpling by Parabolic estima-

tion
Require: xA the first alteration level
Require: xB the second alteration level
Require: TS the test set including all the input data (e.g. images)
Require: Θ the threshold to be used for robustness analysis
Require: â the concavity depth parameter to be used by ASAP
Require: minStep the minimum step between two alteration levels
Require: C the CNN to be analyzed
Ensure: RES the list of sampled points with their accuracy values

1: procedure EVAL(xA, xB , TS , Θ, â, minStep, RES , C)
2: accA ← getAccuracy(TS , xA, C,RES) � Get the accuracy in A
3: accB ← getAccuracy(TS , xB , C,RES) � Get the accuracy in B

� Check whether the parabolas with concavity depth ±â intersect Θ
4: intersected ←parabIntsct(xA, accA, xB , accB , â, Θ) ∨

parabIntsct(xA, accA, xB , accB , -â, Θ)
� Estimate accuracy in the two sub-intervals if they are not too close

5: if intersected ∧ xB − xA ≥ minStep then
6: EVAL(xA,

xA+xB
2

, TS , Θ, â, minStep, RES , C)

7: EVAL(
xA+xB

2
, xB , TS , Θ, â, minStep, RES , C)

8: end if
9: end procedure

10: function parabIntsct(xA, accA, xB , accB , a, Θ)
� Check whether A and B are opposite w.r.t. Θ

11: if (accA −Θ) · (accB −Θ) < 0 then
12: return true
13: end if

� Compute the parabola and its vertex
14: b, c ← parabola(xA, accA, xB , accB , a)

15: (xv , yv) = (− b
2·a ,− b2−4·a·c

4·a )
16: return (xA ≤ xv ≤ xB) ∧ ((accA −Θ) · (yv −Θ) < 0)
17: end function

18: function getAccuracy(TS , x, C, RES )
19: if ¬RES .contains(x) then
20: accx ← ComputeAccuracy(TS , x, C)
21: RES .append(〈x, accx〉) � Save the obtained results
22: else
23: accx ← RES .get(x)
24: end if
25: return accx
26: end function

system of equations (where a is passed as argument):{
a · xA

2 + b · xA + c = accA

a · xB
2 + b · xB + c = accB

Then, the parabola vertex V (xv, yv) is computed (line 15).

The method verifies that the parabola is in the area of interest

(line 16), by checking that : (i) xv ∈ [xA, xB ] (first operand of

the conjunction), and (ii) the parabola intersects the threshold

Θ, i.e., yv is opposite to accA w.r.t. Θ (second operand).

Finally, if one of the parabolas intersects the threshold and

the sampled points are not too close (line 5), the computation

is recursively repeated in the intervals [xA, xM ] and [xM , xB ]
(lines 6-7), where xM is the average alteration level between

xA and xB .

Starting from the set of computed points with their accuracy

values RES = {〈l1, acc1〉, . . . , 〈ln, accn〉}, the robustness is

computed by generalizing the formula in Def. 3 as follows:

robA(C,P ) =

∑n
j=2 H(accj −Θ) · (lj − lj−1)

UA − LA
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(a) Uniform sampling – Linear func (b) ASAP – Linear func

(c) Uniform sampling – Irregular func
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Fig. 5. Examples of robustness computation using synthetic functions

Example 1. Fig. 5 shows the effect of ASAP on two different

synthetic functions. In Fig. 5(a), the robustness is computed by

using uniform sampling with 50 equidistributed alteration lev-

els, obtaining a robustness of 38.8%, while in Fig. 5(b) only 15
levels are used by ASAP (while â equal 256) and a robustness

of 39.06% is obtained. Note that the two results are very close

and that the real robustness associated with the accuracy plot

shown in Fig. 5(a) and Fig. 5(b) is 40.00%. The same behavior

can be observed between Fig. 5(c), where robustness 77.9%
is obtained by uniform sampling with n = 50, and Fig. 5(d),

where ASAP uses only 34 alteration levels (focused in the area

near the threshold value instead of uniformly distributed ones),

obtaining a robustness of 81.2%. Note that, also in this case,

the two results are close, and that the real robustness associated

with the accuracy plot shown in Fig. 5(c) and Fig. 5(d) is

80.4%. This shows that ASAP uses fewer alteration levels, so

it saves time, but it still provides an accurate approximation

of the robustness.

A. Maximum error estimation of the computed robustness

Our method provides theoretical guarantees regarding the

maximum error that it can do in computing the robustness. To

define this, we first need to select from RES (which contains

every i-th sampled point pi = 〈li, acci〉) the pairs of two

consecutive points pj and pj+1 such that the parabolas passing

from them with concavity depth ±â intersect the threshold Θ,

i.e.,

IP =⎧⎨
⎩(lj , lj+1)

∣∣∣∣∣
〈lj , accj〉, 〈lj+1, accj+1〉 ∈ RES∧(
parabIntsct(lj , accj , lj+1, accj+1, â,Θ)∨
parabIntsct(lj , accj , lj+1, accj+1,−â,Θ)

)⎫⎬⎭
Intuitively, a pair of points pj and pj+1 in IP identifies

the points between which at least one of the two parabolas

intersects the threshold, and, therefore, also the real curve may

intersect, but ASAP has quit sampling because the two points

have alteration levels sufficiently close (lj+1− lj < minStep).

Assuming that we used an appropriate value â for ASAP,

the error we can do in computing the robustness only comes

from the intervals identified by the points in IP . This intuition

is formalized in the following theorem.

Theorem 1. Let C be a CNN and A a given alteration type

defined in the range [LA,UA]. Let robA be the robustness

computed for C and A by ASAP using a given â. Let robOA
be the real robustness value. Under the assumption that â is

a suitable parameter, i.e., the real accuracy curve is included

in the areas of two parabolas with concavity depth â (see

Fig. 3), the maximum error of the computed robustness has a

guaranteed upper bound defined as follows:

|robA − robOA | ≤ εA with εA =

∑

(lj ,lj+1)∈IP
(lj+1 − lj)

|UA − LA|
(2)

Proof. The error in robustness computation is due to the cases

in which the real curve crosses the threshold line but ASAP

fails to find the exact intersection point. Let’s consider where

this can happen by considering all the sub-intervals [lj , lj+1]
of the points in RES :

• if (lj , lj+1) 	∈ IP , then the parabolas with concavity depth

±â do not intersect the threshold. Since, by theorem

assumption, â is a suitable parameter, the real curve is

included in the computed parabolas, and so it also does

not intersect the threshold. So, no contribution of error in

robustness computation comes from these points.

• if (lj , lj+1) ∈ IP , then we can distinguish two cases:

– the two points are opposite w.r.t. the threshold line. So,

the real curve does intersect the threshold line, but in

an unknown point which does not belong to RES .

– the two points are both below or above the threshold:

ASAP ignores the possible intersection of the real

curve with the threshold line, since for ASAP the

sampled points are close enough.

In both cases, the maximum absolute error is lj+1 − lj .

So, the total error in robustness is given by the sum of the

errors for all the pairs of points in IP . Hence, the upper bound

of the error is as defined in Eq. 2.

IV. EXPERIMENTS DESIGN

Benchmarks

We have chosen the following two different benchmarks to

evaluate the efficiency of ASAP.

MNIST Dataset: The MNIST (Modified National In-

stitute of Standards and Technology database) dataset is a

well-known dataset containing a lot of images of hand-written

number digits [2]. It is shipped with Keras, and we have tested

the approaches presented in this paper using the first 1000
images in the test set over a publicly available model [1].
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TABLE I
TIME (MINUTES) AND ROBUSTNESS COMPARISON AMONG ORACLE, ASAP, NUMERICAL INTEGRATION, AND UNIFORM SAMPLING WITH THE SAME

NUMBER OF POINTS USED BY ASAP (ΔRob [%] AND ΔTIME [%]: DIFFERENCES W.R.T. THE ORACLE VALUES. #P: THE NUMBER OF USED POINTS)

Oracle ASAP Numerical Integration Uniform sampling
Alteration [UA, LA] Time Rob #p Time ΔTime Rob ΔRobA #p Time ΔTime Rob ΔRobN #p Time ΔTime Rob ΔRobU

[min] [%] [min] [%] [%] [%] [min] [%] [%] [%] [min] [%] [%] [%]

MNIST

Gaussian Noise [0, 1] 1,638 100.00 34 54 -96.68 100.00 0.00 21 33 -96.91 100.00 0.00 35 55 -94.87 100.00 0.00
Compression [0, 1] 2,365 4.59 17 39 -98.33 4.49 -0.10 441 1021 -37.63 4.59 0.00 18 41 -97.46 5.56 0.97
Vertical Trans. [−1, 1] 1,782 100.00 68 118 -93.35 100.00 0.00 21 36 -98.46 100.00 0.00 69 119 -94.93 100.00 0.00
Horizontal Trans. [−1, 1] 1,546 100.00 65 98 -93.65 100.00 0.00 21 31 -98.22 100.00 0.00 69 104 -94.15 100.00 0.00
Blur [0, 1] 1,086 0.10 16 17 -98.42 0.00 -0.10 21 22 -98.65 0.00 -0.10 16 17 -98.89 6.25 6.15
Brightness [−0.5, 0.5] 1,671 0.10 23 27 -98.42 0.10 0.00 21 34 -98.05 0.00 -0.10 24 39 -97.77 0.04 -0.06
Zoom [0, 1] 1,772 65.85 40 42 -97.64 67.57 1.72 903 945 -46.62 65.92 0.07 41 42 -97.58 65.85 0.00

Breast cancer classification

Gaussian Noise [0, 1] 716 43.80 56 39 -94.54 43.26 -0.54 - timeout - - - 57 39 -94.31 43.86 0.06
Compression [0, 1] 692 100.00 33 22 -97.42 100.00 0.00 21 13 -98.08 100.00 0.00 34 23 -96.78 100.00 0.00
Vertical Trans. [−1, 1] 692 100.00 127 86 -87.56 100.00 0.00 21 14 -97.95 100.00 0.00 128 86 -87.51 100.00 0.00
Horizontal Trans. [−1, 1] 693 100.00 127 86 -87.56 100.00 0.00 21 14 -97.95 100.00 0.00 128 86 -87.50 100.00 0.00
Blur [0, 1] 700 73.66 225 154 -78.01 73.05 -0.61 - timeout - - - 256 174 -74.77 72.66 -1.00
Brightness [−0.5, 0.5] 693 57.27 49 33 -95.21 57.23 -0.04 861 581 -16.06 56.74 -0.54 52 35 -94.93 57.69 0.42
Zoom [0, 1] 862 100.00 118 92 -88.49 100.00 0.00 21 21 -97.45 100.00 0.00 128 134 -84.34 100.00 0.00

Breast cancer classification: Breast cancer diagnoses, in

particular for Invasive Ductal Carcinoma (IDC), are based on

the analysis of images of histological features of tissue or cells

removed with surgery or biopsy. These images are captured by

a microscope and examined by pathologists to make a decision

about the benignity or the malignity of the suspected cancer.

We have performed a robustness analysis using input images

coming from a publicly available dataset curated by [11], and

the same model we presented in [4].

Oracle definition by uniform sampling
In order to assess the performance of ASAP, we need to

check how close the computed robustness values are to the

“correct” values. So, in order to define a suitable oracle to

perform the necessary comparisons, we have computed the

robustness for the case studies using the uniform sampling

technique with a very large number of points n = 1024 (using

the tool ROBY [5]). Tab. I reports the alterations applied to

both benchmarks, together with the robustness results and the

required time of the oracle, when using accuracy threshold

Θ = 0.8. Note that the results obtained in this way can be

reasonably considered as oracle: indeed, we have observed

that, with n = 1024, the accuracy function is very stable and

the alteration step becomes between 10−3 and 2·10−3, which

is small enough for the defined alterations.

V. EXPERIMENTAL EVALUATION

To evaluate ASAP, we have performed several experiments

on the benchmarks presented in Sect. IV. We have applied

it with n=1024 and â =128 using the proposed alterations.

Moreover, we have also applied, as comparison approaches,

numerical integration, and uniform sampling with the same

number of points actually used by ASAP.
For each experiment, we have recorded the assessed robust-

ness, the number of points required for the estimation, and

the required time (see Tab. I). ΔTime is the relative change

in percentage of the time taken to compute the robustness by

using each analyzed technique w.r.t. the oracle, while ΔRob is

the difference between the robustness values. Negative values

of ΔTime indicate a saving of time while a negative value of

ΔRob means an underestimation of the robustness.

In particular, using the gathered values, we are interested in

answering the following research questions:

RQ1 Is ASAP efficient and effective?

RQ2 Is ASAP more effective than:

RQ2.1 numerical integration techniques?

RQ2.2 uniform sampling with the same number of

points?

RQ2.3 randomly selecting the alteration levels?

RQ3 Is the number of alteration levels actually used by ASAP

correlated with the maximum number of points allowed

(n)?

RQ4 How do the values of parameters n and â influence the

accuracy of the robustness estimation?

RQ5 Is the estimation error provided by Theorem 1 reliable?

RQ1: Is ASAP efficient and effective?

Each alteration entails different accuracy curve shapes for

which ASAP may lead to different results in terms of time

saving and error in the robustness estimation w.r.t. the oracle.

From Tab. I, it can be seen that a significant reduction of the

number of points is obtained with both benchmarks and all the

alterations. Moreover, the flatter the accuracy alteration curve

is, the higher is the decrease in time using ASAP, since it

uses fewer points than the oracle and it is more probable that

the computed parabolas with the chosen â do not intersect the

threshold. In terms of accuracy of the robustness estimation,

compared to the oracle, the error is always under 2%. In con-

clusion, ASAP always allows estimating the robustness with
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Fig. 6. RQ2.1 – Points automatically sampled by a numerical integration
method for robustness computation (for the breast cancer classification bench-
mark and the blur alteration)

a consistent saving in time and with a really low estimation

error.

RQ2.1: Is ASAP more effective than numerical integration
techniques?

In Def. 2, we have presented the general formula for

computing robustness using an integral computation of the

Heaviside function. One could apply numerical integration

techniques that are able to automatically sample the points

where to compute the accuracy for computing the integral.

For instance, Fig. 6 shows an example of the sampling

performed by a numerical integration technique. However,

these techniques may not find the right alteration levels and so

correctly compute the integral, since the Heaviside function is

discontinuous and it hides the accuracy curve as its argument.

For this reason, we wanted to assess the feasibility and

efficiency of numerical integration techniques to compute the

robustness, and compare their performance with ASAP.

We have applied the scipy.integrate.quad function

which uses adaptive quadrature and allows to set the maximum

number of points in which function to be integrated can be

evaluated. We have set this number to 1024, in order to allow

a fair comparison with ASAP and the oracle.

Tab. I reports the results obtained with the experiments.

The cases in which the numerical algorithm cannot compute

the integral with the given maximum number of points are

considered timeout. For the breast cancer benchmark, two

alterations gave timeout as result. When comparing the

results of numerical integration with the ones obtained by

ASAP, we can see that, for the breast cancer classification,

ASAP always gives an equal or more precise robustness

estimation. On the other hand, for the MNIST benchmark,

two values of robustness are better predicted by numerical

integration, i.e., those for compression and zoom alterations;

however, ASAP uses 96% fewer values for the estimation (17

vs 441 and 40 vs 903) and, so, has better performance in terms

of the required time.

RQ2.2: Is ASAP more effective than uniform sampling with
the same number of points?

One of the main advantages of ASAP is that the method

is able to select itself few points, those that are judged

(a) Vertical Translation (b) Brightness

Fig. 7. RQ2.3 – Random sampling for the breast cancer classification
benchmark

relevant, depending on the parameters n and â. However,

users may choose to use the uniform sampling and the same

number of points actually used by ASAP (if they knew that

number). In order to discover the actual advantage of the

proposed approach (in terms of robustness estimation error),

we have tried to use the same number of points (or an upper

bound, when it is not possible to distribute them uniformly

because, for example, the alteration levels are integers) with

the uniform sampling approach. Tab. I reports the results we

have obtained. In particular, ΔRobA and ΔRobU represent

the difference between the estimation obtained using the

analyzed method (respectively, ASAP and uniform sampling)

and the one provided by the oracle. The obtained results

highlight that using ASAP always leads to better results, i.e.,

|ΔRobA| < |ΔRobU |, except for the Zoom alteration in the

MNIST benchmark, and for the Gaussian Noise in the Breast

Cancer classification.

RQ2.3: Is ASAP more effective than randomly selecting the
alteration levels?

Evaluating the robustness using as few alteration levels

as possible is of key importance to speed up the estimation

process. A possible solution to reduce the number of evaluated

alteration levels could be using random sampling and fixing

the number of points to be evaluated. We have applied it

to the breast cancer benchmark, using different values of n,

and repeating each experiment for 100 times. Fig. 7 reports

the results for vertical translation and brightness alterations

over the analyzed benchmark. The robustness reached applying

the vertical translation (see Fig. 7(a)) is 100%. In fact, the

variance of the estimation is 0, even when using fewer points.

Instead, for the brightness alteration shown in Fig. 7(b),

the use of fewer random sampled points leads to a great

variance. A similar trend can be observed for all the other

alterations. We can conclude that the performance of the

random sampling approach depends directly on the robustness

w.r.t. the considered alteration. If the robustness is � 100%
or � 0%, randomly choosing the points in which to compute

the accuracy leads to accurate results with low variance. In all

other cases, random sampling can imply a high variance and

less accurate results.
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Fig. 8. RQ3 – Relation between n and the actually used points with different
alterations, for the breast cancer benchmark with a fixed â = 2

Fig. 9. RQ3 – Relation between n and actually used points for the Gaussian
noise alteration in breast cancer benchmark (for different values of â)

RQ3: Is the number of alteration levels actually used by ASAP
correlated with the maximum number of points allowed (n)?

Using ASAP, the user can set the value of n, i.e., the

maximum number of points to be used. Increasing its value

means that a lower interval minStep (see Alg. 1 for refer-

ence) allowed between two adjacent points is used. However,

depending on the value of n, and on the â fixed, the algorithm

may use fewer points than the maximum allowed, since it stops

adding points if no intersection between the parabolas and the

threshold is found. Thus, we are interested in defining how

ASAP reacts to a variation of n in terms of used points. We

have analyzed the presented benchmarks and all the alterations

using different values of n. We have found that the number

of actually used points depends on the alteration and on how

the network accuracy curve changes when a defined alteration

level is applied: the flatter the curve of accuracy is, the lower

the number of points used by ASAP is (Fig. 8). As a rule

of thumb, the higher â and n are, the higher the number

of considered alteration levels is, as shown by Fig. 9, since

minStep is lower. Moreover, Fig. 9 shows that the lower â
is, the lower the advantage of increasing the value of n is

since the number of used points for analysis does not increase

significantly.

Fig. 10. RQ4 – Relation between n and the robustness estimation for the
Gaussian noise alteration in breast cancer benchmark

TABLE II
RQ5 – COMPARISON BETWEEN ASAP ERROR AND UPPER BOUND (εA)

MNIST Breast Cancer

Alteration ΔRobA [%] εA ΔRobA [%] εA

Gaussian Noise 0.00 0.00 -0.54 0.78
Compression -0.10 0.10 0.00 0.00
Vertical Trans. 0.00 0.00 0.00 0.00
Horizontal Trans. 0.00 0.00 0.00 0.00
Blur -0.10 0.10 -0.61 7.71
Brightness 0.00 0.00 -0.04 0.10
Zoom 1.72 0.29 0.00 0.00

RQ4: How do the values of n and â influence the accuracy of
the robustness estimation?

The ASAP method is based on two parameters that are

configurable by the user in order to adapt to different networks:

n and â. The former is used to evaluate the distance between

two points on the x-axis, i.e., to compute the minStep value.

The latter allows to include the evaluation of the distance

between points and the threshold Θ. Thus, choosing different

values for the two parameters may lead to a different accuracy

in the robustness estimation. We have performed several tests

on the two benchmarks varying the values of â and n,

to evaluate their effect on the robustness estimation. The

results are shown in Fig. 10. The analysis indicates that the

robustness estimation is more accurate with high n and â. Both

the parameters, in fact, contribute to increasing the number

of alteration levels evaluated for robustness estimation and,

consequently, the accuracy of ASAP.

RQ5: Is the estimation error provided by Theorem 1 reliable?

Theorem 1 gives an upper bound of the possible error

done using ASAP, under the assumption that the value of

â has been chosen correctly. Since for the two benchmarks

presented in this paper, we already have the oracle values,

we can assess if the error estimations given by the theorem

are near to the actual errors. Tab. II shows the error done by

ASAP (ΔRobA) and the upper bound of the error computed

by the theorem (εA). For almost all of these results, εA is

very close to |ΔRobA| and |ΔRobA| < εA, except for the

Zoom alteration on the MNIST benchmark. Since Theorem 1

assures that εA is an upper bound for the error under the
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assumption of the correct choice of â, having |ΔRobA| > εA
means that â has not been chosen correctly for that particular

case. In fact, increasing â and using â = 256, we have

obtained ΔRobA = 0.03 which is below the new upper bound

εA = 0.30.

VI. RELATED WORK

Efficient analysis is an important topic when it comes

to neural networks. In fact, training, validation, and testing

activities require a lot of time, especially when the models

need to be trained and tested over a great number of inputs.

A well-known solution adopted for decreasing the test time is

the one presented in [7], where the authors have proposed

a method to reduce data to train, test, and validate neural

networks, which is based on a stratified sampling of input

data. Other approaches are based on data pre-processing, in

order to reduce the dimensionality of input data, such as

in [9], where RBF networks are analyzed and a separability-
correlation measure is introduced to define which inputs are

irrelevant for the classification. These approaches are different

from the one proposed in this paper, since with ASAP we

reduce the sampled points but not the input. Indeed, this is one

of the advantages of ASAP, since by not reducing the input

data, the user can be sure about testing every possible input

feature. Efficient computation of robustness, even if referred

to adversarial examples, is performed by several tools such as

CNN-Cert [6], using state-of-the-art algorithms (Fast-Lin and

CROWN [19]), or PROVEN [17] which exploits CNN-Cert

and a probabilistic approach to reduce the time of computing

adversarial robustness.

CNNs are often part of more complex Machine Learning

based Systems (MLSs) [15] (e.g., autonomous driving); hence,

when testing an MLS, also its embedded CNN must be tested.

Since MLSs are complex systems, they must be thoroughly

tested; however, literature [15] reports that also the cost of

testing MLSs is usually high. As future work, we plan to

investigate whether ASAP can improve the efficiency of MLS

testing, without degrading its effectiveness.

VII. CONCLUSIONS

In this paper, we have introduced ASAP, an efficient way

to compute the robustness of a CNN w.r.t. unforeseen (but

plausible) input modifications. It exploits the reduction of

the number of alteration levels, based on the assumption

that the accuracy of the model between two points will

likely be included in a parabola-delimited region. Users can

adapt the approximation method to their networks using two

different parameters: the maximum points n to be computed,

and the concavity depth â of the evaluated parabolas. We

have shown that the proposed solution allows estimating the

robustness of a CNN in a more efficient way than the standard

(based on uniform sampling or numerical integration) and the

random sampling approaches, guaranteeing a small error. As

future work, we are investigating solutions for the automatic

computation of a suitable value for the parameter â, in order

to avoid errors due to a wrong parameterization of ASAP.
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