
Safety enforcement for autonomous driving on a
simulated highway using Asmeta models@run.time

Andrea Bombarda1[0000−0003−4244−9319], Silvia Bonfanti1[0000−0001−9679−4551],
Angelo Gargantini1[0000−0002−4035−0131], Nico Pellegrinelli1[0009−0000−4944−6845],

and Patrizia Scandurra1[0000−0002−9209−3624]

University of Bergamo, Bergamo, Italy {andrea.bombarda, silvia.bonfanti,
angelo.gargantini, nico.pellegrinelli, patrizia.scandurra}@unibg.it

Abstract. Mission-critical systems, such as autonomous vehicles, oper-
ate in dynamic environments where unexpected events should be man-
aged while guaranteeing safe behavior. Ensuring the safety of these com-
plex systems is a major open challenge and requires robust mechanisms
to enforce correct behavior during runtime. This paper illustrates a run-
time safety enforcement framework for the output sanitization of an au-
tonomous driving agent on a highway. The enforcement mechanism is
based on a (formally validated and verified) Asmeta model representing
the enforcement rules and used at run-time to eventually steer the driving
agent to behave safely and avoid collisions. We demonstrate both effi-
cacy and efficiency of the proposed enforcement approach by conducting
an experimental evaluation. We connected our safety enforcer with the
highway simulation environment and co-executed it with the pre-trained
(unsafe) AI agents as provided by the ABZ 2025 case study. We consider
the single-lane case with the safety requirement and one scenario of the
multi-lane case about preferring the right-most lane.

Keywords: ASMs · Asmeta· Runtime Safety Enforcement · Safety shield

1 Introduction

Mission-critical self-adaptive systems, like autonomous vehicles (AVs), are capa-
ble of adapting their behavior at runtime in complex environments with little
to no human intervention. Given the critical roles these systems play, they are
expected to safely adapt to changes in their execution environment. Runtime
adaptation mechanisms of these systems can leverage formal models, referred to
as formal models@run.time [10]. The applicability of formal analysis techniques
can be extended to runtime environment to support adaptation decision-making
and applying safety assurance approaches in adaptive systems [2, 24].

Leveraging our previous approach in [7], in this paper, we present a safety
enforcement framework for the sanitization of the output control action of an
AI-based driving agent in a simulated highway [17]. The proposed enforcement
mechanism works as a safety controller (or safety shield): it observes the envi-
ronmental changes and the action decided by the controlled AV (referred to as



2 A. Bombarda et al.

the ego vehicle or the controlled vehicle throughout the text) that might lead to
potential safety violation (i.e., a collision), and then proactively elaborates and
actuates a proper answer to replace the AV control action (output sanitization).
The enforcement strategies are formally specified and served at runtime by an
Abstract State Machine (ASM) [8,9], developed using the Asmeta tool set [6].

Precisely, we validate and verify the correctness of the enforcement strategies,
as specified in the Asmeta enforcement model, against the safety requirement (see
Section 3). We keep this pre-analysis separated as an offline phase, where we can
execute demanding analysis activities (including model checking for the verifica-
tion of behavioral properties) without interfering with the system operation. For
the runtime execution of this Asmeta model within the enforcement framework
and its connection with the simulated highway environment and driving agents
(online phase), we use the simulation engine AsmetaS@run.time. The latter was
recently adapted for its use at run-time and for providing simulation-as-a-service
exposed via a REST API [2] of Asmeta models. We connect our safety enforcer
software with the pre-trained (unsafe) AI agents to work as a safety shield. We
consider the single-lane case, where agents can accelerate and brake and the
enforcement strategy is to maintain a safe distance without slowing down too
much, and one scenario of the multi-lane case where the enforcement goal is to
promote virtuous driving behavior by preferring the rightmost lane as required
in many countries. To demonstrate the efficacy and efficiency of our approach, we
conducted an experimental campaign using the highway simulation environment
as provided by the ABZ 2025 case study [18].
The main contributions of this paper are the following:
– The application of the Runtime Safety Enforcement (RSE) approach [7] to

the ABZ 2025 case study Safety Controller for Autonomous Driving [18];
– A RSE framework implemented using the Python programming language,

and causally connected and co-executing with the simulated highway and
driving AI-based agents;

– The evaluation of the RSE framework and of the Asmeta enforcement model
in terms of soundness and computational overhead.
This paper is organized as follows. Section 2 provides some preliminary con-

cepts. Section 3 illustrates the safety enforcement approach for AVs (including
addressed requirements and assumptions, details of the RSE framework and of
the Asmeta enforcement models). Section 4 reports the results of our evalua-
tion experiments, conducted both offline and online. Section 5 highlights related
work, and Section 6 concludes the paper.

2 Background

This section briefly introduces a mathematical model for AV safety, the Asmeta
tool set, and the runtime safety enforcement approach.



Safety enforcement for autonomous vehicles using Asmeta 3

2.1 Responsibility-Sensitive Safety for autonomous driving

Responsibility-Sensitive Safety (RSS) by Shalev-Shwartz et al. [21] is a mathe-
matical model suggested by the specification document of the ABZ 2025 case
study [18]. The RSS formula for calculating the (longitudinal) safety distance is:

dRSS =

[
vr · ρ+

1

2
· amax · ρ2 + (vr + ρ · amax)

2

2 · βmin
−

v2f
2 · βmax

]
+

where ρ is the response time, vr is the speed of the rear (the ego) vehicle, amax

is the maximum acceleration of the rear vehicle before braking, βmax is the max-
imum braking acceleration of the front vehicle, βmin is the braking acceleration
of the rear vehicle (reaction to braking of front vehicle), and the notation [x]+
denotes max{x, 0}. Collisions can be avoided by maintaining this safety distance.

2.2 ASMs and the Asmeta tool set

In this work, we adopt Abstract State Machines (ASMs) to devise the system.
They are an extension of Finite State Machines (FSMs) that replaces unstruc-
tured control states with states capable of handling arbitrarily complex data
represented with dynamic functions. The basic transition rules of ASMs con-
sist of guarded parallel function updates. Specifically, we leverage the features
provided by the Asmeta framework [2,6], which supports a comprehensive speci-
fication and analysis process encompassing the system life-cycle with three main
stages: design, development, and operation. Each stage is supported by a variety
of tools.

This work combines the design and operation phases, by exemplifying the
applicability of Asmeta models produced at design time to the runtime envi-
ronment [2]. In particular, we use the simulator AsmetaS@run.time to deploy
the Asmeta enforcement model as runtime model of the enforcement framework,
executing in tandem with the simulated highway environment.

2.3 Runtime Safety Enforcement (RSE)

A promising approach to managing complexity in runtime environments is to
develop adaptation mechanisms that leverage software models, known as mod-
els@run.time [4]. A model@run.time is a causally connected self-representation
of the associated system (its structure and behavior) or goals of the system from
a problem-space perspective. In this work, we use an ASM as enforcement model
to specify the strategies/policies to apply at runtime to assure safety. Essentially,
we implemented an enforcement mechanism from the framework presented in [7]
for the output sanitization of the ego vehicle’s control action before it is actuated.
The ego vehicle is simulated by a trained AI-based driving agent as provided by
the ABZ 2025 case study [18] for the driving simulation environment [17].

Borrowing the terminology used in [7], we apply a black-box enforcement
mechanism E, which treats the target system S as a black-box (indeed, the AI
agent is a black box) by observing only the input (I) and output (O). Formally:



4 A. Bombarda et al.

we denote by δ(I,O) an operational change made by S producing output O
in response to the input I. We denote by Σ the system state space and by
Σ \A(Σ) the subset of unsafe states where safety assertions A may be violated1.
If (σ, δ(I,O), σ′) is a state change of S from σ to σ′ with σ′ ∈ Σ \ A(Σ), then
E try to sanitize O in O′ = E(I,O) such that (σ, δ(I,O′), σ′′) is an operational
change with σ′′ ∈ A(Σ).

Note that in practice E may take more than one corrective step to effectively
bring back the system S to the safe region A(Σ). Moreover, at runtime there is
no guarantee that a safe state is always reached in all situations; the enforceable
properties are impacted by uncertain environmental factors or uncontrolled vari-
ables that may make not timely and ineffective the enforcer adjustment. These
factors include, for example, the monitoring frequency that may not be high
enough for having fresh observations of the surrounding environment (see exper-
iments in Section 4), and the abruptness with which the target entities in the
system environment change their behavior or appear/disappear.

To apply the RSE approach [7] to a target system, the following key steps
are to be carried out throughout the phases of the system life cycle:
1. Enforcement Strategies Definition. This involves defining safety asser-

tions, I/O interfaces, and enforcement goals and strategies (@design.time).
2. Formal Specification and Analysis. The enforcement model is formally

specified, validated and verified to ensure the safety assertions are correctly
enforced over the global state of the runtime model (@design.time).

3. RSE Framework Development and Binding. An enforcer framework is
developed, instantiated and connected to the target system, with the runtime
model for safety enforcement (@development.time).

4. Deployment and Running. The enforced system is deployed, set up, and
put into operation in its runtime environment (@run.time).

5. Runtime Model Evolution. Adaptation of safety assertions and enforce-
ment rules to accommodate new requirements (@design.time or @run.time).

The next sections illustrate these steps, except step 5, for the ABZ case study.

3 Safety modeling and enforcement approach

In this section, we describe the requirements we have chosen to model in our
Asmeta specification, our assumptions, and the RSE framework.

3.1 Considered requirements and assumptions

We consider the following goals (step 1 of the RSE process) in order to guarantee
the safety requirement SAF of the specification document (i.e., no collisions) [18],
good performance, and a virtuous driving behavior:
- G1: Maintain a safety distance;
- G2: Achieve a high total distance traveled safely ;
1 E.g., driving without maintaining the RSS safety distance may lead to a collision.



Safety enforcement for autonomous vehicles using Asmeta 5

Table 1: Enforcement goals, strategies and rules
Goal Strategy name Enforcement rule

G1 Go super safe Brake if the worst case safety distance is violated

G1 Go safe Brake if the safety distance is violated

G2 Go fast safely
Increase speed if far away, i.e. the distance to the
front vehicle is x% (e.g., 70%) greater than the
required safety distance

G3 Take the rightmost free lane Change lane to right if the lane directly right is free

- G3: Keep to the right-most free lane.
The enforcement strategies adopted by the enforcer to achieve such goals are

reported in Table 1. These strategies are examples of compensation actions that
the enforcer can put in place to achieve the prefixed goals. In order to achieve all
goals, more than one strategy must be used and combined. Note that for the same
goal G1 two alternative strategies can be adopted. Strategy Go super safe is the
most prudent; it aims to maintain an upper bound of the distance as calculated
by the RSS formula in the worst case scenario. Such an upper bound is calculated
using both the maximum speed and the maximum acceleration, and assuming
that the front vehicle speed is zero. Strategy Go safe, instead, maintains the
safety distance as calculated by the RSS formula (see Section 2.1).

To concretely implement these enforcement strategies in the simulated high-
way, we had to make some assumptions. Specifically, we considered all assump-
tions contained in the specification document: VEH1-ENV–VEH7-ENV for the con-
crete values of the vehicle parameters (length, width, maximum speed, etc.),
CON1 (all controlled vehicles observe the environment every t seconds), ENV1
(there is at least one vehicle on the highway), ENV2 (all vehicles drive in the
same direction), and ENV3 (the number of lanes does not change over time). We
also adhere to the cycle-based execution semantics of the specification document:
every time interval t (also called response time) a controlled vehicle observes its
environment, and decides to perform an action until reaching the next cycle; the
other vehicles may actuate actions at different times instead.2

In addition, we considered also the following assumptions, due in part to
constraints of the provided simulation environment [17] and its configuration
for agent training [18], as obtained by code inspection and direct and extensive
experimentation:

1. Within the simulation environment, the response time t of the controlled
vehicle depends on the policy frequency (expressed in Hz). Whereas, the time
interval between decisions made by other vehicles is determined by the simulation
frequency (expressed in Hz).

2. The runtime observation interface allows us to observe presence, positions,
and speeds of the controlled vehicle and of its four closest front vehicles up to a
range of 200m.

2 E.g., a vehicle braking in the first half of the cycle can accelerate in the second half.



6 A. Bombarda et al.

3. As required by ML models for a better accuracy, the observed features
are normalized (using the min-max method) in range [-1,1] and are relative to
the controlled vehicle, while those of the controlled vehicle are absolute. Note
that the RSS formula requires absolute values, therefore, the observations are
de-normalized before they are used by the enforcement model.

4. The maximum observable distance from the front vehicle may be smaller
than the safety distance, even with an infinitesimally small response time.

5. When calculating the safety distance RSS, three cases could be considered:
(i) the speed of the controlled vehicle is less than the maximum speed and, after
accelerating with the maximum acceleration during the response time, it is still
less than the maximum speed; (ii) the speed of the controlled vehicle is less than
the maximum speed, but when accelerating with the maximum acceleration it
reaches the maximum speed before the response time has elapsed; (iii) the speed
of the controlled vehicle is equal to the maximum speed. In the first case, the RSS
formula is used as it is. In the second case, the RSS formula could be adapted
to be more specific, but we use it as it is; therefore, a higher RSS value is used,
making the model more stringent. In the last case, the RSS formula is used by
setting the maximum acceleration to 0 m/s2.

6. In the multi-lane case, when considering which vehicles are occupying a
lane, the following assumptions are made:
– All vehicles traveling straight ahead in the lane occupy the lane;
– All vehicles leaving the lane but not yet traveling straight on the other lane

occupy the lane;
– All vehicles leaving another lane and just entering the lane but not yet

traveling straight on occupy the lane.
Consequently, it is possible for a vehicle to occupy multiple lanes.

7. In the multi-lane case, we consider a vehicle proceeding straight on a lane
when its y position is close enough to the ylane position associated to a lane with
a given tolerance Θ (default 0.1m):

ylane −Θ < y < ylane +Θ

8. When calculating the distance between two vehicles, the vehicle dimen-
sions, particularly the length, are considered. The x and y coordinates when
observing a vehicle refer to its center. Therefore, when considering the distance
between two vehicles, it is necessary to consider the front half of the length for
the rear vehicle and the rear half of the length for the front vehicle, i.e. the full
length of a vehicle must be removed from the observed distance between two
vehicles.

9. If there is no observable front vehicle (either because it is further than
the maximum observable distance or there are four closest vehicles in the other
lanes), the enforcer is not activated since not necessary. The enforcer is not
activated also when the controlled vehicle is changing lane until the maneuver is



Safety enforcement for autonomous vehicles using Asmeta 7

complete; this steady state ensures that any adaptation made by the enforcement
is based on a stable snapshot of the controlled vehicle’s status3.

10. The RSS safety distance refers only to longitudinal (X-axis) positions
and speeds. The lateral position (on the Y-axis) is used to determine which lane
each vehicle is in, while the lateral speed is not used. The Y-axis position and
speed could be used in some formulas such as the one defined in Lemma 4 in [21]
to calculate the lateral (Y-axis) safety distance, but some variables (e.g., the
maximum lateral acceleration) required by this formula are not provided.

11. We say that the lane directly right is free if no front vehicles would be
observed by the ego vehicle once changed lane to right maintaining the same
X-position.

3.2 Enforcement model details

We here illustrate excerpts of the Asmeta models specifying the enforcement
strategies reported in Table 1 (specification task of step 2 of the RSE process).
We incrementally defined various models to achieve all the three goals (goals G1
and G2 for both the single-lane and multi-lane cases, and G3 for the multi-lane
case only). A replication package containing these models, all software artifacts,
and data sets used in the evaluation of our approach is available online at [5].

For this case study, the enforcement rules are extremely intuitive and take
the form of an ASM conditional rule if cond then updates. They are actually
aimed at correcting the output (0-ary) function outAction representing the final
decision, i.e. the control action (chosen from the set {FASTER, SLOWER, IDLE,
LANE_LEFT, LANE_RIGHT}) that replaces the one chosen by the AI agent and is
actuated on the ego vehicle until the next observation and decision.

Case single-lane. To achieve G1, first we introduced the Asmeta model for the Go
super safe strategy. Essentially, to promote a super safe policy we introduced the
threshold dRSS_upper_bound denoting an upper bound on the safest distance
observable in the worst-case scenario and calculated setting vr to vmax and vf
to 0:

dRSS_upper_bound =

[
vmax · ρ+

1

2
· amax · ρ2 + (vmax + ρ · amax)

2

2 · βmin

]
+

where vmax is the maximum speed of the ego vehicle. The corresponding en-
forcement rule is reported in Code 1. The rule is triggered when the actual lon-
gitudinal distance to the front vehicle (the 0-ary function actual_distance)4
is less than dRSS_upper_bound. In this case, the enforcement model prescribes
slowing down. An alternative way to achieve G1 is by maintaining the RSS dis-
tance (Go safe strategy) as specified by the enforcement rule reported in Code

3 In a self-adaptive system, it is usually assumed that the target system is in a steady
state before an adaptation is triggered in response to environmental changes [23].

4 In all models, the actual_distance is a derived function defined using the X-axis
positions of the vehicles: actual_distance = x_front - x_self - l_vehicle.



8 A. Bombarda et al.

macro rule r_unsafeDistanceSuperSafe =
if actual_distance <= dRSS_upper_bound

then outAction := SLOWER endif

Code 1: Enforcement rule for goal G1,
strategy Go super safe.

macro rule r_unsafeDistanceSafe =
if actual_distance <= dRSS

then outAction := SLOWER endif

Code 2: Enforcement rule for goal G1,
strategy Go safe.

macro rule r_goFast =
if actual_distance > dRSS ∗ gofast_perc

then outAction := FASTER endif

Code 3: Enforcement rule for goal G2,
strategy Go fast.

macro rule r_keepRight = if rightLaneFree
then outAction := LANE_RIGHT
endif

Code 4: Enforcement rule for goal G3,
strategy Take the rightmost free lane.

2, where the (0-ary) function dRSS is calculated from the observations of the
current cycle using the formula described in Section 2.1.

To achieve goal G2, we introduce the enforcement rule shown in Code 3 that
prescribes to speed up safely, i.e. when the front vehicle is more than a certain
percentage of the dRSS distance (e.g., 70%).

Case multi-lane. Enforcement rules introduced for goals G1 and G2 in the single-
lane case can be used also in the multi-lane setting, where each vehicle can also
change lanes. Additionally, we introduce the enforcement rule shown in Code 4 to
achieve goal G3, namely to promote a virtuous driving style by preferring the lane
directly right when free (as by our assumption 11). We postpone dealing with
more complex multi-lane scenarios to future work (step 5 of the RSE process).
framework. Note that the enforcement model can evolve and be re-engineered
separately, and re-deployed easily without re-building the component framework.
This is the main flexibility of using runtime models that are causally linked to
the target system, rather than integrated into the system via embed code or
model synthesis.

To combine enforcement rules we use the ASM par-rule constructor in the
main rule (entry point of execution) of an Asmeta model as shown in Code 5,
where we select one rule per each goal. Moreover, since the main rule consists of
guarded parallel updates of the same out function outAction, in order to avoid
inconsistent function updates we applied the semantic pattern mutual exclusive
guards5 by making the guards of the enforcement rules mutually exclusive. As an
example, Code 6 shows how the r_unsafeDistance rule has been restructured
after applying such a pattern. Note that in the proposed rule scheduling, we
prioritize the change to the right lane rather then other actions, whenever it is
possible to do it safely (i.e., the lane directly right is free).

5 The workflow of the machine follows only one of the possible parallel execution paths.



Safety enforcement for autonomous vehicles using Asmeta 9

main rule r_Main = par
r_unsafeDistance[]
r_goFast[]
r_keepRight[]

endpar

Code 5: Main rule of the Asmeta
enforcement model

macro rule r_unsafeDistance =
if actual_distance <= dRSS

if not rightLaneFree then
outAction := SLOWER

endif endif

Code 6: Enforcement rule for goal G1,
strategy Go safe (refined).

3.3 RSE framework for driving agents on a simulated highway

According to step 3 of the RSE process, we designed the enforcer mechanism to
act as a proxy system which wraps the controlled AI driving agent. We developed
it using the Python programming language and embedded it into a closed loop
setting with the AI agent in the simulated highway environment of AVs.

Figure 1 shows an overview of the architecture of the enforcer component
(the subsystem Enforcer Framework) once instantiated and bound to the sim-
ulated highway environment, using a UML-like notation. The I/O interfaces6
used by the ego AI agent (the subsystem Autonomous Driving System) and
by the Enforcer are as follows: the input interface I corresponds to the AVs
observations as provided by the simulated environment, while the output inter-
face O is the action decided by the ego autonomous agent. The Observation
Processor is responsible for de-normalizing run-time observations and making
them absolute (see assumption 3 of Sect. 3.1). The interface I’ corresponds to
the de-normalized and absolute observations and the interface O’ corresponds
to the sanitized action to actuate. The Configuration Manager initializes the
environment and framework using the configuration file Config.json, setting pa-
rameters like the number of highway lanes and the vehicle’s policy frequency. The
Model Uploader and the Enforcer interact with the ASM@run.time Simulator
via its AsmetaS REST API. The Model Uploader is responsible for uploading the
proper Asmeta enforcement model into the online simulator, while the Enforcer
is in charge of starting, executing (one single step per cycle), and stopping
the Asmeta model. Finally, the Experiment Data Exporter and the Logging
Manager collect quality metrics and logging data for debugging/manual inspec-
tion, respectively.

4 Evaluation

In this section, we evaluate our proposed approach. Our benchmark contains 4
enforcement models, listed in Table 2 along with the strategies they implement
and the goals they address. The first three models (SafetyEnforcerSuperSafe,
SafetyEnforcerSlower, and SafetyEnforcerFaster) were applied on a single-
lane highway. The fourth model, SafetyEnforcerKeepRight, was applied on
6 The circle (or ball) indicates input events or data that the component can handle;

the semi-circle (or socket) indicates output events or data from the component.



10 A. Bombarda et al.

«subsystem»
Enforcer Framework

Logging
Manager

Configuration
Manager

Experiment
Data Exporter

Administrator

Enforcer

Observation
Processor

\«subsystem»
ASM@run.time

Simulator
«artifact»

Asmeta Model

«subsystem»
Autonomous Driving System

AI Agent

I' O

AsmetaS
REST API

O'

I

Config
Data

Log
Data

Experiment
Data

O'

Model
Uploader

Stats.xlsx

Log.log

Simulated
Highway

Environment 

Config.json
«artifact»

Fig. 1: RSE framework for simulated AVs driving on a highway.

Table 2: Mapping of Asmeta models to driving strategies and safety goals.
Asmeta Enforcement Model Strategies Goals

SafetyEnforcerSuperSafe.asm Go super safe G1
SafetyEnforcerSlower.asm Go safe G1
SafetyEnforcerFaster.asm Go safe, Go fast safely G1, G2
SafetyEnforcerKeepRight.asm Go safe, Go fast safely, G1, G2

Take the rightmost free lane G3

a 3-lane highway where all vehicles travel in the same direction. We start by
presenting the offline validation and verification activities and, then, we discuss
the experiments we run to assess the efficiency and efficacy of our framework.

4.1 Offline validation & verification

We here report on the validation and verification results (analysis task of step
2 of the RSE process) for the functional correctness of the enforcement models.
This stage is carried out offline (i.e., at design-time) before releasing the Asmeta
enforcement model in production with the enforcer framework and letting them
co-operate at runtime. To ensure that an enforcement model behaves as expected,
i.e. it achieves the enforcement goal(s) for which it was designed, we carried out
both model validation by scenarios using the validator AsmetaV, and property
verification using the Asmeta model checker AsmetaSMV.

We run different scenarios on each model to cover all rules. In Figure 2 we
report an example of scenario execution on the SafetyEnforcerFaster.asm
specification. After a few steps, where the safety distance was violated and the
enforcer forces the ego vehicle to go slower (outAction=SLOWER), once the front
vehicle is far enough the strategy G2 is implemented (outAction=FASTER). Note
that AsmetaV does not support natively approximate comparison among real
numbers, so we had either to specify the values with all decimal digits (like in
Fig. 2) or use the abs function explicitly.



Safety enforcement for autonomous vehicles using Asmeta 11

Fig. 2: Scenario execution for the SafetyEnforcerFaster.asm specification.

Regarding the verification process, we have used AsmetaSMV by invoking
NuXmv [12], the symbolic model checker to analyze synchronous finite-state and
infinite-state systems. This choice became necessary because the specification in
Asmeta makes use of real, hence infinite, domains. At first, we started by proving
Linear Temporal Logic (LTL) properties, with these general forms:

LTLSPEC g(ϕ implies φ)
LTLSPEC g(ϕ implies x(φ))

However, the model checker was not able to prove their correctness. Due to their
form, we expressed properties as invariants, propositional formulas that must
always hold in the model. As an example, we report the invariants of the model
SafetyEnforcerFaster we have verified using IC3 engines [13].

/∗If the ego vehicle is close to the front vehicle, break (go SLOWER)∗/
INVARSPEC NAME invar_01 := (actual_distance<=dRSS) −> next(outAction=SLOWER)

/∗If the front vehicle is far enough from the ego vehicle, increase the speed (go FAST)∗/
INVARSPEC NAME invar_02 := (actual_distance>(dRSS∗gofast_perc)) −> next(outAction

=FASTER)

/∗If there is no risk of collision, keep the action decided by the agent∗/
INVARSPEC NAME invar_03 := (actual_distance>dRSS and actual_distance<=(dRSS∗

gofast_perc)) −> next(outAction=currentAgentAction)

4.2 Online validation

Once in operation in the simulated highway (step 4 of the RSE process), we
check whether our enforcement framework, based on the enforcement rules as
served at run-time by the Asmeta model, is able to ensure under change the
required safety and the other considered driving requirements. Specifically, we
address the following Research Questions (RQs):
RQ1 How effective is the enforcer in ensuring safety while adjusting speed and

driving style?
RQ2 What is the computation overhead of running the enforcer in combination

with the simulated system?



12 A. Bombarda et al.

RQ1 investigates how well the corrective measures of our enforcement frame-
work are able to deliver the intended behavior by enhancing three key outcomes:
It ensures safety by avoiding collisions, travels a significant distance, and spends
a significant time on the rightmost lane. RQ2 is regarding the cost, in terms
of computation time (the wall-clock time), of the enforcement software. This
section reports on the design of the evaluation and the major results.

4.3 Design of the evaluation

To answer RQ1 and RQ2, we compared the enforced driving agent of the con-
trolled vehicle with the non-enforced one (baseline system). Both RQs are ad-
dressed with the same setup. The experiments were performed on a PC with
Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz and 16 GB RAM, running Win-
dows 11. The server exposing the Spring REST API of AsmetaS was executed
natively on Windows 11, while the enforcement framework was executed on the
same machine via WSL (Windows Subsystem for Linux) running Ubuntu 24.04,
within a Python virtual environment using Python 3.11 as the runtime platform.

For both lane configurations (single-lane and multi-lane), the case study [18]
provides two agents trained using Deep Q-learning (DQN): A base agent, which
receives penalties for collisions and rewards for maintaining high speed and stay-
ing in the right lane, and an adversarial agent, which is rewarded for collisions,
high speed, and frequent lane changes. This setup results in 8 different config-
urations for the single-lane scenario: no enforcement and 3 enforcement models
applied to both the base and adversarial agents; and 4 configurations for the
multi-lane scenario: no enforcement and the multi-lane enforcement model ap-
plied to both agent types.

The experiments were conducted extending the test run duration from 40
simulation seconds, as defined in the case study, to 100 simulation seconds.
This duration was chosen based on manual observations of the agent’s behavior
executing without the enforcer. In the single-lane configuration, the base (non-
adversarial) agent’s performance deteriorates due to poor decision-making. A
longer duration allows us to quantitatively assess this decline in performance.
A test run concludes in one of two cases: either the ego vehicle crashes or the
simulation duration ends. The experiments were initially conducted with a policy
frequency of 1 Hz, which means that the agent made one decision per simulation
second, resulting in a response time of 1 sec. The experiments were then repeated
with a doubled policy frequency (2 Hz), reducing the response time to 0.5 sec.
The simulation frequency was set to the default value of 15 Hz. Therefore, a
total of 24 configurations were tested, with 50 test runs each, and metrics were
recorded during every run.

Our efforts to introduce enforcement techniques aims to enhance the safety
of autonomous vehicles. To evaluate this in RQ1, we meticulously record the
number of crashes that occurred in various scenarios and with different enforce-
ment models. More specifically, for each simulation run, we recorded whether it
terminated because of a crash or because the simulation duration expired. Con-
sidering that one of our objective, beyond the safety, is to let the vehicle travel



Safety enforcement for autonomous vehicles using Asmeta 13

the longest distance, we also recorded the distance traveled by the ego vehicle
during the test run, expressed in kilometers and computed by multiplying speed
by the simulation time. Furthermore, in our experiments we favor scenarios in
which the vehicle travels in the rightmost lane. Thus, we record (only when mul-
tiple lanes are available) the distance traveled on the rightmost lane by the ego
vehicle during the test run, expressed in kilometers.

Additionally, in RQ2, we are interested in evaluating the overhead introduced
by the enforcement framework. To measure the impact of enforcer interventions
on output sanitization, we calculated the percentage of times the interventions
changed the agent’s action compared to the total number of actions performed
by the ego vehicle (i.e., the product of the effective durations by the policy
frequency). Moreover, we collected, for each test run, the total execution time
and the enforcement overhead introduced by the enforcer, consisting of the time
required to start and stop the execution of the Asmeta model and the time
required to perform all output sanitizations. Both times are measured in wall-
clock seconds. The overhead measurements include the time associated with
the HTTP request and the execution time of the Asmeta model, which serves
as the run-time model for enforcement. To collect the wall-clock time we used
time.perf_counter() to capture high-precision timestamps.

4.4 Results

Table 3 reports the results of our statistical tests. In the following, we discuss
them for the two proposed research questions separately.

RQ1 - Effectiveness. To assess the effectiveness of our enforcement approach, we
have measured, for each test run, the number of crashes, the traveled distance
and, in case multiple lanes were available, the distance traveled on the rightmost
lane (see Table 3). The box plot depicted in Figure 3 visually shows the results.

Regarding the number of crashes (see Figure 3a), our results confirm the posi-
tive impact of enforcement techniques: regardless of the enforcement model, only
one crash were registered when the enforcer was activated, while 210 happened
if no enforcer was used. The only crash reported when using the enforcement
framework happened in the multi-lane scenario with adversarial agents, when
using the lowest policy frequency (i.e., 1 Hz). A manual inspection revealed that
the limited observation interface that allows to observe only the four closest
front vehicles, as described in assumption 2 of Sect. 3.1, made it possible to
observe the nearest vehicle on the same lane only when overtaking a vehicle in a
different lane. This limitation, combined with a high response time, ultimately
resulted in a crash. Increasing the policy frequency, i.e., reducing the response
time, allowed us to solve this limitation and to avoid any crash. To further val-
idate this finding, we ran 50 additional experiments with the KeepRight model
for the multi-lane scenario with the adversarial agent and a policy frequency of
2 Hz, which resulted in no occurrence of crashes. However, we acknowledge that
rare failure cases may still be possible. Interestingly, reducing the response time
never reduced the number of crashes when no enforcement was used. Overall, we



14 A. Bombarda et al.

Table 3: Effectiveness and efficiency of the safety enforcement models.
Policy Lane Agent Enforc. Number Distance Distance on Enforc. Execution Enforc.
Freq. Config. Model of [km] Right Lane Interventions Time [s] Overhead
[Hz] Crashes [km] [%] [s]
1 Single-lane Base — 0 0.97 ± 0.17 — — 11.34 ± 1.52 —

SuperSafe 0 0.08 ± 0.00 — 14.70 ± 0.58 12.21 ± 1.30 0.70 ± 0.50
Slower 0 0.89 ± 0.09 — 21.14 ± 0.93 13.94 ± 0.95 2.23 ± 0.28
Faster 0 1.44 ± 0.02 — 40.28 ± 1.53 14.10 ± 1.59 2.42 ± 0.37

Adversarial — 50 0.08 ± 0.01 — — 0.29 ± 0.06 —
SuperSafe 0 1.34 ± 0.04 — 63.04 ± 1.48 13.47 ± 0.60 1.93 ± 0.18
Slower 0 1.47 ± 0.02 — 51.00 ± 0.00 14.53 ± 0.32 2.92 ± 0.06
Faster 0 1.47 ± 0.02 — 51.00 ± 0.00 13.89 ± 0.39 2.33 ± 0.06

Multi-lane Base — 4 1.97 ± 0.46 1.79 ± 0.58 — 13.61 ± 3.14 —
KeepRight 0 2.01 ± 0.07 1.34 ± 0.87 48.62 ± 5.15 17.53 ± 0.75 2.21 ± 0.26

Adversarial — 50 0.35 ± 0.18 0.09 ± 0.08 — 1.46 ± 0.73 —
KeepRight 1 1.97 ± 0.26 0.83 ± 0.97 50.15 ± 2.55 17.46 ± 2.37 2.23 ± 0.31

2 Single-lane Base — 0 0.99 ± 0.15 — — 11.99 ± 0.46 —
SuperSafe 0 0.06 ± 0.00 — 14.56 ± 0.41 13.98 ± 0.40 1.02 ± 0.05
Slower 0 0.98 ± 0.11 — 15.53 ± 2.48 18.71 ± 0.77 4.88 ± 0.44
Faster 0 1.45 ± 0.02 — 32.51 ± 1.45 18.55 ± 0.55 4.87 ± 0.13

Adversarial — 50 0.08 ± 0.01 — — 0.28 ± 0.06 —
SuperSafe 0 1.32 ± 0.03 — 59.02 ± 0.73 17.47 ± 0.32 3.65 ± 0.08
Slower 0 1.48 ± 0.02 — 50.50 ± 0.00 19.78 ± 0.17 6.07 ± 0.06
Faster 0 1.47 ± 0.02 — 50.50 ± 0.00 19.04 ± 0.48 4.85 ± 0.13

Multi-lane Base — 6 1.96 ± 0.41 1.58 ± 0.72 — 15.83 ± 3.25 —
KeepRight 0 2.03 ± 0.05 1.49 ± 0.82 46.53 ± 8.78 22.85 ± 1.13 4.53 ± 0.74

Adversarial — 50 0.44 ± 0.20 0.09 ± 0.11 — 2.01 ± 0.93 —
KeepRight 0 2.04 ± 0.06 0.89 ± 0.96 48.21 ± 6.08 22.22 ± 0.37 4.67 ± 0.15

Values report mean ± standard deviation, except for ‘Number of Crashes’ which is reported as
the total count; Times values refer to clock-wall time. The prefix SafetyEnforcer is omitted from
filenames, as well as the suffix .asm.

can state that adopting our Asmeta-based enforcement framework is effective in
reducing the number of crashes of the considered agent.

When it comes to the traveled distance (see Figures 3b and 3c) we can see
that its value increases as the goal moves from G1 to G2/G3, i.e., from Super
safe to the Go fast safely/Take the rightmost free lane strategy. As for the num-
ber of crashes, using our proposed solution allows for improving the measured
results. Moving towards G2/G3 increases the speed of the vehicle, but this does
not influence its safety. Interestingly, when considering the distance traveled on
the rightmost free lane, using the safety enforcement strategy leads to different
results depending on the agent type. On the one hand, when the agent is non-
adversarial, using a safety enforcement model leads to a decrease in the distance
traveled on the rightmost lane, while still traveling a higher total distance. This
is because the agent was trained with a reward for staying in the right lane,
whereas the safety enforcer prioritizes the driving safety, changing to the right
lane only when it is completely free. Consequently, the vehicle may spend less
time in the rightmost lane when doing so helps to avoid crashes. On the other
hand, if the agent is adversarial (trained without a reward for staying in the
right lane), the vehicle spends more time on the rightmost lane when under
enforcement.



Safety enforcement for autonomous vehicles using Asmeta 15

NONE KeepRight
Enforcement model

0

25

50

75

100

125

150

175

200
Nu

m
be

r o
f c

ra
sh

es

(a) # Crashes

NONE SuperSafe Slower Faster
Enforcement model

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
av

el
ed

 d
ist

an
ce

 [k
m

]
Policy frequency [Hz]

1
2

(b) Distance with Single-lane

NONE KeepRight
Enforcement model

0.5

1.0

1.5

2.0

Tr
av

el
ed

 d
ist

an
ce

 [k
m

]

Policy frequency [Hz]
1
2

(c) Distance with Multi-lane

Fig. 3: Effectiveness analysis.

RQ1 Summary. The Asmeta-based RSE framework effectively reduces the
number of collisions, while favoring the right lane (when safe) and often
achieving a higher distance traveled within the simulation time than driving
without safety enforcement.

RQ2 - Efficiency. To assess the efficiency of the proposed enforcement framework
and models, we have recorded (see Table 3), for each test run, the percentage of
enforcer interventions (i.e., the number of times in which the enforcer changed the
decision previously made by the agent divided by the total number of decisions),
the total execution time, and the overhead due to the use of the enforcer. The
overhead does not include the time to de-normalize and convert the observations
to absolute values, as this computation is also necessary to collect metrics when
the enforcer is not running. For the sake of completeness, we report that this
computation is approximately 70-80% less costly than the enforcement overhead.

For what concerns the number of interventions we can observe that, both
in single-lane and multi-lane scenarios, the number of interventions is greater
with the adversarial agent. This is because the adversarial agent makes more
dangerous decisions, which must be sanitized to return the AV to a safe state.
Furthermore, in the single-lane scenario, we can observe two different trends,
depending on the agent type. On the one hand, when the agent behaves as non-
adversarial, we can see that the number of interventions increases as the goal
moves from G1 to G2, i.e., from Super safe to the Go fast safely strategy. This is
due to the fact that, if no front vehicle is observed, the enforcer is not activated,
as described in assumption 9 in Section 3.1, and the agent slows down until the
vehicle stops. In such a case, both the Super safe and Go safe strategies do not
intervene, but the Super safe strategy brings the simulation to such a case earlier,
resulting in fewer interventions. Meanwhile, the Go fast safely strategy actively
intervenes even when the front vehicle is far, resulting in an increased number



16 A. Bombarda et al.

of interventions. On the other hand, with an adversarial agent, the number of
enforcement interventions decreases when switching from the Super safe to the
Go safe strategy and remains stable when adding the Go fast safely strategy.
This is due to the fact that such an agent always tries to increase the speed.
Therefore, at the beginning of the simulation, the Super safe strategy requires
more interventions to ensure a safe state compared to the Go safe strategy and,
after that, the two strategies will behave very similarly. In addition, the Go fast
safely strategy is never activated, therefore it does not increase the number of
interventions. In all cases, however, using one of the enforcement models allows
for higher execution time w.r.t. the baseline scenario in which no enforcer is used.
This result is compliant to what we observed in RQ1: with the enforcer active,
the number of crashes is lower, and the AV can proceed more often till the end
of the simulation time. Furthermore, the overhead introduced by the enforcer is
negligible in all analyzed scenarios and does not exceed an average of 6.07 sec in
any configuration.

RQ2 Summary. The Asmeta-based RSE framework does not introduce sig-
nificant time overhead compared to driving without safety enforcement.

5 Related Work

The complexity of AI-based systems can hinder safety assurance for testers and
developers. Some literature suggests using simple techniques to control these
systems. For instance, [20] proposes leveraging a simple and verified controller
taking control over an unverified system to enforce safety properties. Similarly,
in this paper, we use a simple Asmeta model to force unsafe AI-based agents
to behave in a safe and predictable manner. Our approach, presented in [7], is
inspired by the RSS properties suggested in [21] and acts as a safety shield.

Runtime assurance for neural controllers is crucial in software engineering.
In [19], the authors introduce Neural Simplex Architecture for potentially unsafe
neural controllers, improving safety through online retraining without signifi-
cantly impacting performance. Two different approaches are analyzed in [1], in
which the safety shield is placed either before (pre-shielding) or after the sys-
tem under control (post-shielding), and our approach is comparable with this
last post-shielding technique. In the future, we may explore if corrective actions
from an Asmeta model can aid in retraining AI-based controllers.

The approach in [22] uses a ProB specification alongside a reinforcement
learning (RL) agent as a safety shield. Unlike this solution implemented in ProB,
which requires the RL agent to receive a set of enabled operations and to chose
among them, our approach uses an Asmeta model for correcting the output of
the agent. The formulas we adopted are derived from those presented in the
case study description and in [14], where the authors used them to prove safety
properties through model-based assurance cases in Isabelle, or in Event-B [16].

In [7], we proposed a gray-box approach to safety enforcement. In addition to
the I/O, this mechanism can observe specific system’s operational changes and



Safety enforcement for autonomous vehicles using Asmeta 17

compute more effective enforcement actions to maintain safety through prob-
ing and effecting interfaces provided by the target system. This mechanism uses
Asmeta enforcement models and the MAPE-K feedback loop [15] to architect the
enforcer as an autonomic manager for self-adaptation. We here adopted a black-
box enforcement mechanism instead, as no probe/effector interfaces (and/or ex-
planation facilities about the agent behavior [3,11]) are available to monitor and
adapt the AV; we treated it as a black box by observing only its I/O.

6 Conclusion

We presented a RSE framework for the output sanitization of the AI-based ego
AV of the highway simulation environment [17] for the ABZ 2025 case study [18].
The main enforcement goals consist in maintaining safety while achieving good
performance in terms of total distance traveled and time spent on the right-
most free lane. The enforcer wraps the ego vehicle agent and, using decisions
made by an Asmeta runtime model, adjusts the agent’s control action to meet
enforcement goals and, possibly, overrides agent’s decisions when they are con-
sidered to be unsafe. Though the case study is based on a simulated environment
and we considered a limited number of scenarios, the two forms of analysis we
conducted, @design.time and @run.time, suggest a new way of analyzing safety-
critical software. This new approach combines the rigor of formal safety-critical
analysis environments during system design or development with the benefits of
run-time analysis when the system is in operation and more realistic evidence is
available.

Acknowledgments. This work has been partially funded by PNRR - ANTHEM
(AdvaNced Technologies for Human-centrEd Medicine) - Grant PNC0000003 – CUP:
B53C22006700001 - Spoke 1 - Pilot 1.4. and by project SERICS (PE00000014) under
the NRRP MUR program funded by the EU - NGEU and by the European Union -
Next Generation EU. We also acknowledge financial support of the project PRIN 2022
SAFEST (Trust assurance of Digital Twins for medical cyber-physical systems), funded
by the European Union - Next Generation EU, Mission 4, Component 2, Investment
1.1, CUP F53D23004230006, under the National Recovery and Resilience Plan (NRRP)
– Grant Assignment Decree No. 959 adopted on 30 June 2023 by the Italian Ministry
of University and Research (MUR).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
Reinforcement Learning via Shielding. Proceedings of the AAAI Conference on
Artificial Intelligence 32(1) (Apr 2018). https://doi.org/10.1609/aaai.v32i1.
11797

https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797


18 A. Bombarda et al.

2. Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra,
P.: The ASMETA Approach to Safety Assurance of Software Systems. In: Logic,
Computation and Rigorous Methods - Essays Dedicated to Egon Börger on the
Occasion of His 75th Birthday. Lecture Notes in Computer Science, vol. 12750, pp.
215–238. Springer (2021). https://doi.org/10.1007/978-3-030-76020-5_13

3. Bersani, M.M., Camilli, M., Lestingi, L., Mirandola, R., Rossi, M.G., Scandurra,
P.: Architecting Explainable Service Robots. In: Tekinerdogan, B., Trubiani, C.,
Tibermacine, C., Scandurra, P., Cuesta, C.E. (eds.) Software Architecture - 17th
European Conference, ECSA 2023, Istanbul, Turkey, September 18-22, 2023, Pro-
ceedings. Lecture Notes in Computer Science, vol. 14212, pp. 153–169. Springer
(2023). https://doi.org/10.1007/978-3-031-42592-9_11

4. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(2009). https://doi.org/10.1109/MC.2009.326

5. Bombarda, A., Bonfanti, S., Gargantini, A., Pellegrinelli, N., Scandurra, P.:
Replication Package for the Paper: Safety Enforcement for Autonomous Driving
on a Simulated Highway Using Asmeta models@run.time. https://github.com/
foselab/abz2025_casestudy_autonomous_driving (2025)

6. Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra, P.: AS-
META Tool Set for Rigorous System Design. In: Formal Methods - 26th Interna-
tional Symposium, FM 2024, Milan, Italy, September 9-13, 2024, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 14934, pp. 492–517. Springer (2024).
https://doi.org/10.1007/978-3-031-71177-0_28

7. Bonfanti, S., Riccobene, E., Scandurra, P.: A Component Framework for the Run-
time Enforcement of Safety Properties. Journal of Systems and Software 198,
111605 (2023). https://doi.org/https://doi.org/10.1016/j.jss.2022.111605

8. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Berlin, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

9. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level Sys-
tem Design and Analysis. Springer Verlag (2003). https://doi.org/10.1007/
978-3-642-18216-7

10. Calinescu, R., Kikuchi, S.: Formal Methods @ Runtime. In: Foundations of Com-
puter Software. Modeling, Development, and Verification of Adaptive Systems. pp.
122–135. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21292-5_7

11. Camilli, M., Mirandola, R., Scandurra, P.: XSA: eXplainable Self-Adaptation.
In: 37th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2022, Rochester, MI, USA, October 10-14, 2022. pp. 189:1–189:5. ACM
(2022). https://doi.org/10.1145/3551349.3559552

12. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic Model Checker. In: Biere,
A., Bloem, R. (eds.) CAV. Lecture Notes in Computer Science, vol. 8559, pp. 334–
342. Springer (2014). https://doi.org/10.1007/978-3-319-08867-9_22

13. Cimatti, A., Griggio, A.: Software Model Checking via IC3. In: Madhusudan, P., Se-
shia, S.A. (eds.) Computer Aided Verification. pp. 277–293. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_
23

14. Crisafulli, P., Taha, S., Wolff, B.: Modeling and analysing Cyber–Physical Systems
in HOL-CSP. Robotics and Autonomous Systems 170, 104549 (2023). https://
doi.org/10.1016/j.robot.2023.104549

15. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1)
(Jan 2003). https://doi.org/10.1109/MC.2003.1160055

https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-031-42592-9_11
https://doi.org/10.1007/978-3-031-42592-9_11
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1109/MC.2009.326
https://github.com/foselab/abz2025_casestudy_autonomous_driving
https://github.com/foselab/abz2025_casestudy_autonomous_driving
https://doi.org/10.1007/978-3-031-71177-0_28
https://doi.org/10.1007/978-3-031-71177-0_28
https://doi.org/https://doi.org/10.1016/j.jss.2022.111605
https://doi.org/https://doi.org/10.1016/j.jss.2022.111605
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1145/3551349.3559552
https://doi.org/10.1145/3551349.3559552
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1016/j.robot.2023.104549
https://doi.org/10.1016/j.robot.2023.104549
https://doi.org/10.1016/j.robot.2023.104549
https://doi.org/10.1016/j.robot.2023.104549
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055


Safety enforcement for autonomous vehicles using Asmeta 19

16. Kobayashi, T., Bondu, M., Ishikawa, F.: Formal Modelling of Safety Architec-
ture for Responsibility-Aware Autonomous Vehicle via Event-B Refinement. In:
Chechik, M., Katoen, J.P., Leucker, M. (eds.) Formal Methods. pp. 533–549.
Springer International Publishing, Cham (2023). https://doi.org/10.48550/
arXiv.2401.04875

17. Leurent, E.: An Environment for Autonomous Driving Decision-Making. https:
//github.com/eleurent/highway-env (2018)

18. Leuschel, M., Vu, F., Rutenkolk, K.: Case Study: Safety Controller for Au-
tonomous Driving on Highways – Specification document v3. https://abz-conf.
org/case-study/abz25/ (2025)

19. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neu-
ral Simplex Architecture. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou,
D. (eds.) NASA Formal Methods. pp. 97–114. Springer International Publishing,
Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_6

20. Sha, L.: Using Simplicity to Control Complexity. IEEE Software 18(4), 20–28
(2001). https://doi.org/10.1109/MS.2001.936213

21. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a Formal Model of Safe and
Scalable Self-driving Cars (2018). https://doi.org/10.48550/arXiv.1708.06374

22. Vu, F., Dunkelau, J., Leuschel, M.: Validation of Reinforcement Learning Agents
and Safety Shields with ProB. In: NASA Formal Methods: 16th International Sym-
posium, NFM 2024, Moffett Field, CA, USA, June 4–6, 2024, Proceedings. p.
279–297. Springer-Verlag, Berlin, Heidelberg (2024). https://doi.org/10.1007/
978-3-031-60698-4_16

23. Weyns, D.: Introduction to Self-Adaptive Systems: A Contemporary Software En-
gineering Perspective. Wiley (2020)

24. Weyns, D., Bencomo, N., Calinescu, R., Cámara, J., Ghezzi, C., Grassi, V.,
Grunske, L., Inverardi, P., Jézéquel, J., Malek, S., Mirandola, R., Mori, M.,
Tamburrelli, G.: Perpetual Assurances for Self-Adaptive Systems. In: Software
Engineering for Self-Adaptive Systems III. Assurances - International Seminar,
Dagstuhl Castle, Germany, December 15-19, 2013, Revised Selected and Invited
Papers. Lecture Notes in Computer Science, vol. 9640, pp. 31–63. Springer (2013).
https://doi.org/10.1007/978-3-319-74183-3_2

https://doi.org/10.48550/arXiv.2401.04875
https://doi.org/10.48550/arXiv.2401.04875
https://doi.org/10.48550/arXiv.2401.04875
https://doi.org/10.48550/arXiv.2401.04875
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://abz-conf.org/case-study/abz25/
https://abz-conf.org/case-study/abz25/
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.48550/arXiv.1708.06374
https://doi.org/10.48550/arXiv.1708.06374
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-319-74183-3_2
https://doi.org/10.1007/978-3-319-74183-3_2

