
The Mechanical Lung Ventilator Case
Study

Silvia Bonfanti(B) and Angelo Gargantini

University of Bergamo, Bergamo, Italy
{silvia.bonfanti,angelo.gargantini}@unibg.it

Abstract. This paper introduces the ABZ 2024 Case Study: Mechanical
Lung Ventilator (MLV), inspired by the Mechanical Ventilator Milano
developed during COVID-19. The case study reports the specification
of the Mechanical Lung Ventilator used to ventilate patients who are
not able to breathe on their own or need ventilation support. Expected
contributions to the case study include, among others, modeling, val-
idation and verification, management of temporal behavior, modeling
of the graphical user interface or automatically generating executable
source code.

Keywords: ABZ · State Based Formal Methods · Mechanical Lung
Ventilator · Case Study

1 Introduction

At the beginning of the COVID-19 pandemic, the region around Bergamo,
where ABZ 2024 took place, was hit very hard by COVID-19, as suggested
by the high number of hospitalizations and deaths. During those days, a group
of researchers was involved in the design, development, and certification of an
electro-mechanical lung ventilator called MVM (Mechanical Ventilator Milano)1
[1]. The project started from the idea of the physicist Cristiano Galbiati, who
was soon joined by dozens of physicists, engineers, physicians, and computer
scientists from 12 countries around the world2. The team was able to realize a
ventilator that is reliable, easily reproducible on a large scale, available in a short
amount of time, and at a limited cost [4,7]. The MVM has obtained the FDA
(Food and Drug Administration) Emergency Use Authorization (EUA) followed
by authorizations issued by Health Canada and the CE marking.

The specification of the mechanical lung ventilator chosen as case study for
ABZ 2024, is inspired by MVM, with some simplifications to make it suitable as
a case study:

1 https://mvm.care/.
2 At that period, many projects on mechanical ventilator started, but only a few get

certified https://github.com/PubInv/covid19-vent-list.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Bonfanti et al. (Eds.): ABZ 2024, LNCS 14759, pp. 281–288, 2024.
https://doi.org/10.1007/978-3-031-63790-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63790-2_23&domain=pdf
http://orcid.org/0000-0001-9679-4551
http://orcid.org/0000-0002-4035-0131
https://mvm.care/
https://github.com/PubInv/covid19-vent-list
https://doi.org/10.1007/978-3-031-63790-2_23


282 S. Bonfanti and A. Gargantini

– we have removed one component, the supervisor which was responsible for
monitoring the controller, the GUI, and the hardware. In the case of errors,
it raises alarms if not already raised by the controller or the GUI, ensuring
patient safety.

– we use only visual alarms, instead of audio and visual alarms.

The requirement specification for the ABZ 2024 Case Study is available
here [3]. That document is NOT intended to be used as software requirements
specification of a real ventilator.

Note that this case study is one of those proposed by the ABZ conference,
all the case studies can be found here: https://abz-conf.org/case-studies/.

2 Mechanical Lung Ventilator

Fig. 1. High level view of ventilator sensors

The mechanical lung ventilator is intended to ventilate patients in intensive
therapy who require mechanical ventilation [8]. The ventilator proposed for the
ABZ 2024 Case Study works in pressure mode, i.e., the respiratory time cycle
of the patient is controlled by pressure, and, therefore, this ventilator requires a
source of compressed oxygen and medical air readily available in intensive care
units.

The overall structure of the ventilator proposed by the case study is depicted
in Fig. 1. The pressurized air enters the inspiration circuit (continuous line) and
is mixed with the oxygen. Its flux is controlled by a valve (IN) and monitored by

https://abz-conf.org/case-studies/


The Mechanical Lung Ventilator Case Study 283

several sensors. The air enters the breathing circuit with a flux monitored (by
FI2), then, after being inspired by the lungs, it expires and exits the breathing
circuit (dashed arrow) with its pressure monitored by a sensor (PS exp) and
controlled by two valves, one (OUT valve) is controlled by the machine while
the other (PEEP) is manually set to provide a constant Positive End-Expiratory
Pressure.

2.1 Ventilation Modes

By alternating the opening and closing of the two valves, the MLV governs the
entering/exiting flux and air pressure in the lungs. More precisely, the ventilator
has two operative modes: Pressure Controlled Ventilation (PCV) and Pressure
Support Ventilation (PSV). In the PCV mode, the respiratory cycle is kept
constant and the pressure level changes between the target inspiratory pressure
(Pinsp) and the positive end-expiratory pressure (PEEP). New inspiration is
initiated either after a breathing cycle is over, or when the patient spontaneously
initiates a breath. In the former case, the breathing cycle is controlled by two
parameters: the respiratory rate (RR) and the ratio between the inspiratory
and expiratory times (I:E). In the latter case, a spontaneous breath is triggered
when the ventilator detects a sudden pressure drop within the trigger window
during expiration. The PSV mode is unsuitable for patients who are not able to
start breathing on their own. The respiratory cycle is controlled by the patient,
and the ventilator partially takes over the work of breathing. A new respiratory
cycle is initiated with the inspiratory phase, detected by the ventilator when a
sudden pressure drop occurs. When the patient’s inspiratory flow drops below
a set fraction of the peak flow, the ventilator stops the pressure support, thus
allowing exhalation. If a new inspiratory phase is not detected within a certain
amount of time (apnea lag), the ventilator will automatically switch to the PCV
mode because it is assumed that the patient is not able to breathe alone.

The ventilator allows the air to enter/exit through two valves, i.e., an input
valve and an output valve. When the ventilator is not running, the valves are set
to safe mode: the input valve is closed and the output valve is opened. In this
configuration, the ventilator does not prevent breathing thanks to some relief
valves.

When the inspiration starts, the input valve is opened and the output valve is
closed, while during the expiration the input valve is closed and the output valve
is opened. Both in PCV and PSV mode, inspiratory pause, expiratory pause,
and recruitment maneuver are allowed by user request. Inspiratory/Expiratory
pause consists in closing the input and output valves of the ventilator respec-
tively after the inspiration and expiration phases. The inspiratory pause allows
measuring the pressure reached inside the alveoli at the end of the inspiratory
cycle, while the expiratory pause allows measuring the residual pressure to check
possible obstruction in the exhalation channel. The recruitment maneuver is an
emergency procedure required after intubation, and it consists of prolonged lung
inflation as necessary to reactivate the alveoli immediately; during this maneu-
ver, the input valve is opened and the output valve is closed.



284 S. Bonfanti and A. Gargantini

Fig. 2. The high-level software architecture

2.2 Software Architecture

The high-level software architecture, shown in Fig. 2, illustrates the communi-
cation among the software components: graphical user interface (GUI) and con-
troller. The GUI is a touchscreen panel that displays the information needed to
check the respiratory condition, allows parameter setting, and displays ventila-
tion parameters and alarm settings. When the controller receives operator input
from the GUI, it communicates with the valve controllers, serial interfaces, and
other subcomponents and sends them commands.

Before starting the ventilation, the ventilator controller passed through three
phases. The start-up in which the controller is initialized with default parameters,
self-test which ensures that the hardware is fully functional, and ventilation off in
which the controller is ready for ventilation when requested. If during ventilation
and other phases, the controller detects a severe condition that prevents the
ventilator from sustaining the ventilation, the machine is brought to fail-safe
mode (in valve closed and out valve open).

3 Structure of the Specification Document

In this section, we explain the structure of the requirement specification docu-
ment available here [3]. In this article, we do not detail the requirements since
there are around 370 requirements.

The chapter 2. System Requirements contains the general high-level specifi-
cation of the ventilator: functional requirements (2.1), measured and displayed
parameters (2.2), values and ranges of parameters (2.3), interfaces between com-
ponents (2.4), and alarm requirements (2.5).

The chapter 3 GUI Requirements consists of the specifications of the GUI,
which is responsible for receiving information from the user and displaying infor-
mation to the user. It details each mode of operation: Start-up Mode (3.1), Start
Mode (3.2), Menu Mode (3.3), Self-Test Mode (3.4), Ventilation Mode (3.5),
Show Real Time Data Mode (3.6), Settings Mode (3.7), Frozen Mode (3.8), and
Alarm settings Mode (3.9).

The chapter 4 Controller Requirements comprehends the specification of the
controller, which is responsible for controlling the phase of the respiratory cycle
(inhalation, pause, exhalation) by operating on the valves and receiving informa-
tion from sensors and commands from the GUI. It details each mode of opera-
tion: Start-up Mode (4.1), Self Test (4.2), PCV Mode (4.3), PSV Mode (4.4), and
requirements common to multiple modes like inspiratory/expiratory pauses (4.5).

The chapter 5 Alarms presents the specification of the alarm system respon-
sible for raising alarms.



The Mechanical Lung Ventilator Case Study 285

Requirement Numbering Convention

The specification is divided into requirements, and the format of each require-
ment ID is: XXX.n.y, where: XXX is a three-letter code indicating a requirement
type, n is the requirement number, and y is the sub-requirement number (it
is empty if a parent). The following table reports the connection between the
three-letter code and the type of requirement.

Three-letter code Description

AL Alarm requirements
CONT Controller requirements
FUN Functional (general) requirements
GUI GUI requirements
INT Interfaces requirements
PER Values and ranges requirements
SAV Safety requirements

Table 1 reports an example of a GUI requirement:

Table 1. Example of GUI requirement

ID Requirement

GUI.7 The transition from Menu to
Ventilation shall occur when the
Self-test is passed if required (new
patient connected), and the clinician
wants to proceed with the ventilation

Scenario

Besides the requirement specification document, we have released the scenarios
for the initialization. Each scenario reports the state of the controller and the
GUI and the events that lead to the state change. For example, the scenario in
Table 2 refers to the new patient connection: when a new patient is connected,
the doctor selects a new patient and runs the self-test. Once the self-test is
passed, the ventilation can start.

4 Suggested Outcomes

During the development of the MVM software, no formal method has been
applied, mainly because of a lack of developers’ skills with any formal method.



286 S. Bonfanti and A. Gargantini

Table 2. Scenario example

event powerOn start-up ended – selfTestPassed

Controller state Start-Up SelfTest SelfTest VentilationOff
event powerOn start-up ended new Patient selfTestPassed

GUI state Start-Up Start SelfTest Menu

However, we want to propose this case study to demonstrate the feasibility of
developing the ventilator by using a formal method-based approach. Mechanical
lung ventilators, as well as other medical devices which incorporate software,
must be certified before their use. Several standards for the validation of med-
ical devices have been proposed - as ISO 13485, ISO 14971, IEC 60601-1, EU
Directive 2007/47/EC -, but they mainly consider hardware aspects of the phys-
ical components of a device, and do not mention the software component. The
only reference concerning the regulation of medical software is the standard IEC
(International Electrotechnical Commission) 62304. This standard provides a
very general description of common life cycle activities of the software develop-
ment, without giving any indication regarding process models, or methods and
techniques to assure safety and reliability.

With this case study, we aim to study the applicability of formal methods
in the software development of medical devices to satisfy the standards, in this
case, the IEC 62304.

We have envisioned several aspects of the ventilator that could be the object
of research activities. In the following, we give a non-exhaustive list of possible
outcomes.

– A classical approach consists of modeling the system or part of it and applying
the classical V&V activities (as partially done [2]), like formal verification of
the correctness or validation of scenarios. One could check that the system
behavior is correct, like in case of some errors, the system goes into a fail-safe
mode.

– A critical aspect of the system is its temporal behavior. Many properties and
constraints have explicit temporal requirements (like after 10 s ...). One could
model these aspects and make a temporal analysis of the system.

– After the good experience with ABZ2023, we decided to include the GUI.
Research activities could model this critical component and analyze the
human-computer interaction.

– Generation of executable source code and implement a prototype of the ven-
tilator on a simple electronic board like Arduino (or part of it).

5 Contributions to ABZ 2024

In this section, we resume (in random order) the contributions accepted for
publication in the ABZ 2024 proceedings. All the papers use different formal
modeling techniques and contribute to different outcomes.



The Mechanical Lung Ventilator Case Study 287

Paper [9] illustrates the correct-by-construction approach and introduces an
Event-B formal model of the MLV controller and part of alarms. Validation and
verification techniques are applied using the ProB model checker to validate and
verify the specification.

In paper [10] the authors model the controller of the MLV using Timed
Algebraic State-Transition Diagrams (TASTD). Then the specification is validated
using cASTD compiler to translate the specification into C++ code.

Paper [6] models controller and general requirements using the Formal
Requirements Elicitation Tool (FRET) to provide traceability from natural-
language requirements to a formal design model. The authors explore the link
between formal requirements in FRET and formal specifications in Event-B, pre-
senting how techniques like FRET can be used to guide the development of a
formal model in a large case study in a state-based technique (Event-B in this
case).

The MLV is modeled in the process algebra mCRL2 in [5]. The functional
requirements of the MLV are formalized in the modal µ-calculus, and the model
checker is used to analyze whether these requirements hold true in the model.
Each scenario provided with the case study has been can be captured in a modal
µ-calculus formula and verified that the model satisfies those formulas. Their
formalization helped us in revealing a few subtle incomplete or not completely
clear requirements in the informal document and we have used the feedback to
improve the original specification.

The Clock Constraint Specification Language (CCSL) has been applied to
the case-study and the authors report their experience in [11]. CCSL captures
the causal and temporal behavior of a system by specifying constraints on logical
clocks. Logical clocks are integer counters where the occurrence of an event, a
tick, advances the counter and marks the advance in time. The paper introduced
some new real-time constructs to directly encode phenomena like clock drift,
skew and jitter and these constructs are applied to the case study. Earlier versions
of the paper, allowed us to clarify some temporal constraints (e.g., the different
phases in the PCV mode).

Competing Interests. The author(s) has no competing interests to declare that are
relevant to the content of this manuscript.

References

1. Abba, A., et al.: The novel mechanical ventilator Milano for the COVID-19 pan-
demic. Phys. Fluids 33(3), 037122 (2021). https://doi.org/10.1063/5.0044445

2. Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E.: Developing a prototype
of a mechanical ventilator controller from requirements to code with ASMETA.
Electron. Proc. Theor. Comput. Sci. 349, 13–29 (2021)

3. Bonfanti, S., Gargantini, A.: Mechanical Lung Ventilator Requirements Specifica-
tion, December 2024. https://github.com/foselab/abz2024_casestudy_MLV

4. Bonivento, W., Gargantini, A., Krücken, R., Razeto, A.: The mechanical ventilator
Milano. Nucl. Phys. News 31(3), 30–33 (2021)

https://doi.org/10.1063/5.0044445
https://github.com/foselab/abz2024_casestudy_MLV


288 S. Bonfanti and A. Gargantini

5. van Dortmont, D., Keiren, J.J., Willemse, T.A.: Modelling and analysing a mechan-
ical lung ventilator in mCRL2. In: Rigorous State-Based Methods 10th Inter-
national Conference, ABZ 2024, Bergamo, Italy, 25–28 June 2024, Proceedings,
LNCS, vol. 14759. Springer (2024)

6. Farrell, M., Luckcuck, M., Monahan, R., Reynolds, C., Sheridan, O.: FRETting and
formal modelling: a mechanical lung ventilator. In: Rigorous State-Based Methods
10th International Conference, ABZ 2024, Bergamo, Italy, 25–28 June 2024, Pro-
ceedings, LNCS, vol. 14759. Springer (2024)

7. Guardo, M.C.D., et al.: When nothing is certain, anything is possible: open inno-
vation and lean approach at MVM. R&D Manag. (2021). https://doi.org/10.1111/
radm.12453

8. Lei, Y.: Medical Ventilator System Basics: A Clinical Guide. Oxford University
Press, Oxford (2017). https://doi.org/10.1093/med/9780198784975.001.0001

9. Mammar, A.: An Event-B model of a mechanical lung ventilator. In: Rigorous
State-Based Methods 10th International Conference, ABZ 2024, Bergamo, Italy,
25–28 June 2024, Proceedings, LNCS, vol. 14759. Springer (2024)

10. Ndouna1, A.R., Frappier, M.: Modelling the mechanical lung ventilation system
using TASTD. In: Rigorous State-Based Methods 10th International Conference,
ABZ 2024, Bergamo, Italy, 25–28 June 2024, Proceedings, LNCS, vol. 14759.
Springer (2024)

11. Tokariev, P., Mallet, F.: Real-Time CCSL: application to the mechanical lung
ventilator. In: Rigorous State-Based Methods 10th International Conference, ABZ
2024, Bergamo, Italy, 25–28 June 2024, Proceedings, LNCS, vol. 14759. Springer
(2024)

https://doi.org/10.1111/radm.12453
https://doi.org/10.1111/radm.12453
https://doi.org/10.1093/med/9780198784975.001.0001

	The Mechanical Lung Ventilator Case Study
	1 Introduction
	2 Mechanical Lung Ventilator
	2.1 Ventilation Modes
	2.2 Software Architecture

	3 Structure of the Specification Document
	4 Suggested Outcomes
	5 Contributions to ABZ 2024
	References


