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Abstract In this paper, we show how the OMG’s metamodelling approach to

domain-specific language definition can be exploited to infer human-usable tex-

tual notations (concrete syntaxes) from the conceptualization provided by meta-

models (abstract syntaxes). We give general rules to derive a context-free EBNF

(Extended Backus-Naur Form) grammar from a MOF-compliant metamodel, and

we show how to instruct a parser generator by these rules for generating a com-
piler which is able to parse the grammar and to transfer information about models

into a MOF-based instance repository. The approach is exemplified for the Ab-
stract State Machines Metamodel (AsmM), a metamodel for the Abstract State

Machine (ASM) formal method, by illustrating the derivation of a textual nota-

tion to write ASM specifications conforming to the AsmM, and the process to

input ASM models into a MOF repository.

1 Introduction

The Model-driven Engineering (MDE) [8] conceives metamodelling as a modular and

layered way to endow a language or formalism with an abstract notation, so separat-

ing the abstract syntax and semantics of the language constructs from their different

concrete notations. A language has to be equipped by at least a proper MOF-compliant

metamodel which provides the language abstract syntax, an easy to learn concrete syn-

tax, possibly graphic, a well-founded semantics, and a uniform style (through, e.g., the

XML base format [29]) of representing language constructs for interchanging purposes.

The process of deriving textual or graphical concrete notations from a MOF com-

pliant metamodel (forward engineering) is not yet well established, while the oppo-

site, from EBNF grammars to MOF (reverse engineering), has been more intensively

studied [14,17,6,27]. The forward process is more demanding than the reverse, since

MOF-based metamodels inherently contain more information than EBNF grammars.

Metamodels are graphs with special edges that specify different nodes relationships

(generalizations, aggregations, compositions, and so on), whereas EBNF grammars can

be presented as tree of nodes and directed edges, but the edges do not contain as much

information as properties in a metamodel. A mapping from EBNF grammars to meta-

models uses only a subset of the capabilities of metamodels, and the generated meta-

model may need to be further enriched in order to make it more abstract.

Complex MOF-to-text tools, capable of generating text grammars from specific

MOF-based repositories, exist [16,10]. These tools render the content of a MOF-based
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repository (known as a MOFlet) in textual form, conforming to some syntactic rules

(grammar). However, although automatic, since they are designed to work with any

MOF model and generate their target grammar based on predefined patterns, they do

not permit a detailed customization of the generated language.

The work presented in this paper is part of our effort toward the development of

a general framework for Abstract State Machine (ASM) tools interoperability. Indeed,

the increasing application of the ASMs as formal and engineering method for hardware

and software systems development, has caused a rapid development of tools around

ASMs of various complexity and goals: tools for mechanically verifying properties us-

ing theorem provers or model checkers and execution engines for simulation and testing

purposes [9]. However, ASM tools have been usually developed by individual research

groups, are loosely coupled and have syntaxes strictly depending on the implementa-

tion environment. This makes the integration of tools hard to accomplish and prevents

ASMs from being used in an efficient and tool supported manner during the software

development life-cycle.

In [22,15], we adopted the MDE suggestion upon which a wide interoperability of

tools can be reached through metamodels and model transformations: the metamodel of

each tool is linked to those of other tools by a logical pivot metamodel which abstracts a

certain number of general concepts and constructs about the domain-specific language.

We defined a metamodel for ASMs with the intention to use it as the pivot metamodel

toward a definition of a standard family of languages for the ASMs and a systematic

integration of a number of ASM tools upon metamodelling techniques.

After developing the pivot metamodel, as further step, we intended to define a con-

crete syntax derived from the metamodel as textual notation to write ASM models con-

forming to the metamodel. Since ASM is not an object-oriented formalism (even if

it can model OO concepts), we did not want to use existing tools as HUTN or Anti-

Yacc since they provide concrete notations strongly reflecting the object-oriented na-

ture of the MOF meta-language. Therefore, we define general rules how to derive a

context-free EBNF (Extended Backus-Naur Form) grammar from a MOF-compliant

metamodel, and we show how to use these mapping rules to instruct the JavaCC parser
generator for generating a compiler which is able to parse the grammar and to transfer

information about models into a MOF-based instance repository.

Although the task (possibly iterative) of defining a metamodel for a language is

not trivial and its complexity closely matches that of the language being considered,

we like to remark that the effort of developing from scratch a new EBNF grammar for

a complex formalism, like the ASMs, would not be less than the effort of realizing a

MOF-compliant metamodel for the ASMs, and then deriving a EBNF grammar from it.

Moreover, the metamodel-based approach has the advantage of being suitable to derive

from the same metamodel (through mappings or projections) different alternative con-

crete notations, for various scopes like graphical rendering, model interchange, standard

encoding in programming languages, and so on.

The paper is organized as follows. ASMs and the ASM metamodel are presented

in Section 2. Section 3 introduces the rules for deriving an EBNF grammar from a

MOF metamodel and discusses how to instruct the JavaCC parse generator to build our
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compiler. An example of ASM written in the textual notation derived by the metamodel

is shown in Section 4. Related and future work are given in Sections 5 and 6.

2 Overview of the case study

Abstract State Machines Abstract State Machines (ASMs) [9] are a system engineer-

ing method that guides the development of hardware and software systems seamlessly

from requirements capture to their implementation. Even if the ASM method comes

with a rigorous scientific foundation [9], the practitioner needs no special training to

use it since Abstract State Machines are a simple extension of Finite State Machines,

and can be understood correctly as pseudo-code or Virtual Machines working over ab-

stract data structures. The computation of a machine is determined by firing transition
rules describing the modification of the functions from one state to the next. The notion

of ASMs moves from a definition which formalizes simultaneous parallel actions of a

single agent, either in an atomic way, Basic ASMs, and in a structured and recursive

way, Structured or Turbo ASMs, to a generalization where multiple agents interact in

a synchronous way, or asynchronous agents proceed in parallel at their own speed and

whose communications may provide the only logical ordering between their actions,

Synchronous/Asynchronous Multi-agent ASMs.

We assume the reader is familiar with the ASM method. A complete presentation

on the ASMs and their successful application in different fields can be found in [9].

The AsmM metamodel The Abstract State Machines Metamodel (AsmM) is a com-

plete meta-level representation of ASMs concepts based on the OMG’s MOF metalan-

guage. The specification of AsmM [7] comprises: (i) an abstract syntax, i.e. a MOF-

compliant metamodel and OCL constraints representing in an abstract (and visual) way

concepts and constructs of the ASM formalism as described in [9]; (ii) an interchange
syntax, i.e. a standard XMI-based format automatically derived from the AsmM, for

the interchange of ASM models; and, (iii) a Java application program interface (API)

based on the standard Java Metadata Interfaces (JMI) [18] for MOF 1.4 for managing

and accessing metadata (that in our case are ASM models) in a MOF-based repository.

For the metamodel semantics, we adopt the ASM semantics in [9].

We developed the metamodel in a modular way reflecting the natural classification

of ASMs in Basic, Turbo, and Multi-Agent (Sync/Async). Metamodelling representa-

tion results into class diagrams (a natural visual rendering of MOF models). Each class

is also equipped with a set of relevant constraints, OCL invariants written to fix how to

meaningful connect an instance of a construct to other instances, whenever this cannot

be directly derived from the class diagrams. The complete metamodel contains about

115 classes, 114 associations, and 130 OCL constraints and is organized in one package

called ASM which is further divided into five sub-packages:

– the ASMStructure package or the structural language defines the architectural con-

structs (modules and machines) required to specify the backbone of an ASM model

(this package contains the hierarchy of classes rooted by the class Asm);
– the ASMDefinitions package or the definitional language contains constructs (func-

tions, domains, rule declarations, etc.) which characterize algebraic specifications;
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– the ASMTerms package or the language of terms provides all kinds of syntactic

expressions which can be evaluated in a state of an ASM;

– the ASMTransitionRules package or the language of rules contains all possible tran-

sition rules scheme of Basic and Turbo ASMs;

– the DataTypes package specifies further MOF types used to define the AsmM itself

(for typing classes attributes).

A standard AsmM library of predefined domains and functions is provided in [7].

We have drawn the AsmM with the Poseidon UML tool (v.4.0) [21] empowered

with an ancillary tool UML2MOF which transforms UML models to MOF 1.4 and is

provided by the MDR Netbeans framework [3]. The XMI format has been generated

automatically from the AsmM: according to the MOF 1.4 to XMI 1.2 mapping [28], a

XML document type definition file, commonly named DTD, has been generated from

the AsmM in the MDR framework. Similarly, the AsmM JMI was obtained automat-

ically by the MDR framework according to the standard MOF-to-Java mapping [18].

Through the AsmM JMI, a Java client (like the parser generated by the JavaCC, see sec.

3) can access the AsmM packages, create instances of classes of the AsmM, and set and

modify attributes and associations of these instances.

3 From MOF to EBNF: how to generate a context-free grammar
and instruct a parser generator

In this section, we give mapping rules to derive an EBNF grammar from a MOF meta-

model. Even if they have been used to provide the ASM formal method with a textual

notation, here called AsmM-CS, conforming to the AsmM, they are general enough and

do not rely on the specific domain language.

For the MOF to EBNF mapping, we take into account all MOF 1.4 constructs which

bring information about the domain knowledge, except constructs like operations and

exceptions which are related to the execution semantics of MOF-based repositories

rather than to the concepts being meta-modeled, and packages which are used to group

elements within a metamodel for partitioning and modularization purposes only. These

constructs, however, and, in general, the whole structure of the metamodel are taken

into account inside the parser to instantiate and query the content of a MOF repository.

We also provide guidance on how to assemble a JavaCC file given in input to the

JavaCC [1] parser generator to automatically produce a parser for the EBNF grammar

of the AsmM-CS. This parser is more than a grammar checker: it is able to process

ASM models written in AsmM-CS and to create instances of the AsmM in a MDR

MOF repository trough the use of the AsmM JMIs.

A JavaCC file contains a sequence of Java-like method declarations each represent-

ing the EBNF production rule for a non terminal symbol and corresponding to an iden-

tically named method in the final generated Java parser. Each JavaCC method begins

with a set of Java declarations and code (to access the MOF repository, create instances

of the classes of the metamodel using the AsmM JMIs), which become the initial dec-

larations and code of the generated Java method and hence are executed every time the

non-terminal is parsed.
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A JavaCC method continues with the expansion unit statement, or parser actions, to

instruct the generated parser on how to parse symbols and make choices. The expansion

unit corresponds to the <expression with symbols>of the EBNF rule and may contain

Java code within braces to perform actions like set attributes and references. The expan-

sion unit can also include lookaheads of various types – local, syntactic, and semantic –

(see [1] for details). Lexical and syntactical analysis errors can be caught and reported

using standard Java exception handling. The JavaCC grammar file for the Asm-CS can

be found in [7] and consists of about 6852 lines of code. We report here some fragments

of it in typewriter font.

Note that, the grammar and the input file for the parser generator can be further

optimized and enriched. For example, suitable methods were added to the AsmM-CS

in order to allow alternative representations of the same concepts (i.e. a class instance

in the metamodel can admit many equivalent notations) such as the interval notation for

sets/sequences/bags of reals, special expressions to support the infix notation for some

functions on basic domains (like plus, minus, mult, etc.), and so on.

Following sections explain the set of rules on how to map MOF 1.4 constructs into

EBNF and into JavaCC. We assume the reader familiar with MOF and EBNF.

3.1 Class

A MOF class acts as the namespace for attributes and outgoing role names on associa-

tions.

Rule 1: A class C is always mapped to a non terminal symbol C. User-defined keywords

– optional and chosen depending on how one wants the target textual notation appears

– delimit the expression with symbols in the derivation rule for C. The expression rep-

resents the actual content of the class and is determined by the full descriptor1 of the

class according to the other rules below. For each class C, we introduce in JavaCC one

method which has the following schema.

C C(): { // create result, a new instance of C in the repository
// temp variables for attributes and references

}{ // expansion unit
<startC> // expression starting delimiter
// read content of C and fill the instance result
<endC> // expression ending delimiter

{ return result;}}

The method has signature C() and returns a JMI instance of the class C. When ex-

ecuted to parse the grammar symbol C, it creates a new instance of C called result

and initializes a list of variables to store attributes and references of C. Then it starts

parsing the content of C enclosed between the keywords <startC> and <endC>, i.e. it

reads attributes and references of C, as explained in the following sections, and sets the

attributes and references of result. In the end it returns result.

1 A full descriptor is the full description needed to describe an object. It contains a description

of all of the attributes, associations, etc. that the object contains, including features inherited

from ancestor classes.
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Figure 1. Example of class with attributes, references and associations

Rule 2: The start symbol of the grammar is the non-terminal symbol corresponding to

the root class of the metamodel, i.e. the class from which all the other elements of the

metamodel can be reached.

Example Fig. 1 shows the MOF model of an ASM defined by a name, a Header (to

establish the signature), a Body (to define domains, functions, and rules), a mainrule, an

Initialization (for the set of initial states), and one initial state elected as default (designed

by the association end defaultInitialState). For this class we introduce a non terminal

Asm in the grammar and a method Asm Asm() in JavaCC. The derivation rule of the

non terminal Asm has the keyword "asm" as starting delimiter and no ending delimiter

(<EOF> in JavaCC code). The class Asm is the root element of the metamodel, therefore

its corresponding non terminal is chosen as start symbol of the grammar.

3.2 Multiplicity

Rule 3: Multiplicity values are mapped to repetition ranges. A 0..1 multiplicity (zero

or one) is mapped to brackets [ ] or a question mark ?. A * multiplicity (zero or more)

corresponds to the application of the Kleene star operator *. A 1..* multiplicity (one or

more) corresponds to the the Kleene cross operator +. A n multiplicity (exactly n) cor-

responds to the operator {n}. A n..* (n or more) multiplicity corresponds to the operator

{n,}, a n..m multiplicity (at least n but not more than m) corresponds to the operator

{n,m}.

3.3 Data Type

MOF supports two kinds of data type: primitive data types like Boolean, Integer, and

String; constructors like enumeration types, structure types, collection types, and alias

types to define more complex types. Primitive data types do not have a direct represen-

tation in terms of EBNF elements, while in JavaCC are mapped to the correspondent

primitive data types. However, they are used to transform attributes in EBNF concepts

(see the next section for details). For structured data types, we do not introduce new
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EBNF rules, since each attribute of structured type can be turned in an attribute of Class

type by replacing the structured data type with a class definition in the metamodel.

3.4 Attribute (instance-level)

The representation of attributes of a class C within the expression on the right-hand of

the derivation rule of the nonterminal C depends on the type (a MOF data type or a

class of the metamodel) of the attribute and on its multiplicity (optional, single-valued,

or multi-valued). Usually, optional attributes are represented when their value is present,

and are not represented when their value is absent.

Rule 4: Attributes of Boolean type are represented as keywords (terminal symbols)

reflecting the name of the attribute and followed by a question mark ? to indicate it

is optional. At instance level, the presence of the keyword in a textual specification

indicates that the attribute value is true, and vice-versa.

Rule 5: Attributes of String type are represented by a string literal value <STRING>
preceded by an optional keyword which reflects the name of the attribute. If a class has

an attribute “name” of String type, then that attribute is used as identifier for objects of

the class2. We represent the identifier for a class C in EBNF by a non terminal <ID_C>
which is a sequence of string literals (optional constraints can be given on characters in

an identifier). The identifier can be used to retrieve an instance of C when needed. In

the following, we refer to an object by name, if we use its name to univocally refer to it.

In JavaCC we introduce a function C getCByName() which reads the string ID_C and

retrieves the instance of C with that name.

No restrictions are placed on the order of the attribute and reference representations

(see sec. 3.6) within the production for the non terminal of a class. Although it is ex-

pected that the produced grammar has a consistent ordering of the syntactic parts, such

ordering is fixed during the derivation process of the grammar from the metamodel

(e.g. through interactive wizards), but no extensions (like stereotypes or special tags)

are imposed on the MOF-based metamodel in order to reflect the linear order of EBNF.

Example 1 For the attributes of the Asm class in Fig. 1, by rule 4 and rule 5, we

introduce the following EBNF derivation rule and JavaCC method:

Asm ::= "asm" ("isAsyncr")? <ID_Asm>

Asm Asm(): {Asm result = AsmStructure.getAsm().createAsm();
String name;
boolean isAsyncr = false;

} { “asm” [“asyncr” { result.setAsynchr(true);}]
name = <ID_Asm> { result.setName(name);}
//read the header, initial states, body, ...

<EOF>
{ return result;}}

Rule 6: Attributes of Enumeration type are represented as a choice group of keywords

which reflect the name of the enum literals.

2 Note that in MOF2 the ’isId’ attribute can be used for this purpose.
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Figure 2. Example of a collection data type and of a multi-valued reference

Rule 7: Attributes of Integer type are represented by an optional keyword for the name

of the attribute followed by a literal representation of the attribute value.

Rule 8: Attributes of Collection data type are represented by an optional keyword which

reflect the name of the attribute, followed by a representation of the elements of the

collection. Each element can be represented either by-value, i.e. by an occurrence of

the non terminal of the typing class, or by-name, i.e. an occurrence of the identifier if

any. Moreover, elements of the collection can be optionally enclosed within parentheses

( and ), and separated by comma.

Example 2 The class ProductDomain in Fig. 2 has an attribute which is a collection of

type-domains. By rule 1, we use the initial keyword Prod as delimiter for ProductDo-
main. We apply rule 8 omitting the keyword for the attribute domains and we choose

to represent the elements of the collection in a by-name fashion (TypeDomain inherits

the attribute name from the ancestor class Domain), separated by comma. The feature

ordered is reflected by the ordering in the EBNF. The multiplicity 2..* corresponds to

the operator {2,}, which is turned into the form a(a)+ with a a syntactic part.

ProductDomain ::= "Prod" "("<ID_Domain> ("," <ID_Domain>)+ ")"
The following method in JavaCC is associated to the class ProductDomain. It creates

a new ProductDomain, read the delimiters in keyword form and read the list of type-

domains by the method getTypeDomainByName(), adding them to a new list domains. In

the end, domains is assigned to the domains attribute.

ProductDomain ProductDomain(): { ProductDomain result =
AsmDefinitions.getProductDomain().createProductDomain();
Collection domains = new LinkedList();
TypeDomain td;

}{"Prod" "(" td = getTypeDomainByName()
{/* add td to the domain list */ domains.add(td);}

("," td = getTypeDomainByName()
{/* add td to the domain list*/

domains.add(td); } )+ ")"
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{ /* set the domains */ result.setDomains(domains);}
{ return result;}}

Rule 9: Attributes whose type is a class of the metamodel are represented by keywords

which reflect the name of the attribute, followed by either a full representation of the

instance (or by-value), i.e. an occurrence of the non terminal of the typing class, or

by-name, taking into account the multiplicity.

Rule 10: Attributes of Alias type are represented depending on the aliased type.

Rule 11: Derived attributes3 are not mapped to EBNF concepts, since the parser can

infer them, and then instantiate them in a MOFlet, from other existing elements (which

are instead expressed at EBNF level). In JavaCC they are set at the end of the method,

just before returning the result.

Rule 12: Other MOF features like visibility, isLeaf, isRoot, changeability, and default

values are not considered for an EBNF representation.

3.5 Association and Association End

Associations are represented in terms of their ends, and association ends are represented

in EBNF in terms of their corresponding references (see next section). Only eligible
association ends are represented (Rule 13). An association end is considered eligible4

if it is navigable, if there is no explicit MOF reference for that end within the same

outermost package, and if the association of the end is owned by the same package that

owns the type of its opposite end (to avoid circular package dependencies). Moreover,

similarly to attributes, derived association ends (even if eligible) are ignored.

3.6 Reference

MOF references are a means for classes to be aware of class instances that play a part

in an association, by providing a view into the association as it pertains to the observing

instance. Here, MOF references are inferred by each eligible association end. There-

fore, the EBNF representation of a reference depends on the nature (simple, shared

aggregation, composite aggregation) of the association to which it refers.

Rule 14: A reference in a simple association (that is, the associated instance can exist

outside the scope of the other instance) is represented by an optional keyword, which

reflects the name of the reference or the role name of the association end, followed by

either a by-value or a by-name representation if any, taking into account the multiplicity.

Moreover, referenced collections can be optionally enclosed within parentheses, and the

syntactic parts for its elements are separated by comma.

3 The MOF flag isDerived determines whether the contents of the notional value holder is part

of the explicit state of a class instance, or is derived from other state. Derived attributes or

association ends are denoted with a slash (/) preceding the name.
4 We take this definition from the UML profile for MOF 1.4 by the MDR framework [3]. It is

used to automatically imply MOF references by association ends. MOF references are implied,

in fact, by each eligible UML association end.
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Example 1 In Fig. 2, MOF references are shown as attributes with «reference» stereo-

type, as implied by each eligible association end. By rule 1 for the class PowersetDo-
main we decided to use the initial keyword Powerset as delimiter, while by rule 14 we

omit the keyword for the reference baseDomain. This last is represented by-name, and

the elements of the referenced collection (in this case just one element) are enclosed

within parentheses ( and ).
EBNF: PowersetDomain ::= "Powerset" "(" <ID_TypeDomain> ")"
In JavaCC we introduce a new method PowersetDomain, which reads the delimiters

in keyword form and read the type-domain by name calling the method TypeDomain
getTypeDomainByName().

PowersetDomain PowersetDomain(): { PowersetDomain result =
AsmDefinitions.getPowersetDomain().createPowersetDomain();
TypeDomain baseDomain;

}{ "Powerset" "(" baseDomain = getTypeDomainByName() ")"
{ /*set the baseDomain */

result.setBaseDomain(baseDomain);}
{ return result;}}

Rule 15: In a shared aggregation (white-diamond, weak ownership, i.e. the part may

be included in several aggregates) or in a composite aggregation (black-diamond, the

contained instance does not exist outside the scope of the whole instance), the refer-

ence to the contained instance is represented in the production rule of the non terminal

corresponding to the whole class in a by-value fashion, i.e. as a non terminal (corre-

sponding to the class of the contained instance) preceded by an optional keyword 5

reflecting the name of the reference or of the role end, and combined with other parts

of the production taking into account the multiplicity. Moreover, referenced collections

can be optionally enclosed within parentheses, and the syntactic parts for its elements

are separated by comma. A reference to the whole instance (if any) is not represented.

Example 2 By rule 1 for the class SetTerm in Fig. 2 we decided to use the keywords {
and } as delimiters, while by rule 15 we omit the keyword for the reference term. This

last is represented in a by-value fashion, and the elements of the referenced collection

are not enclosed within parentheses, but are separated by comma. Finally, by rule 11
the derived attribute size is not represented at EBNF level; however (see the JavaCC

code below) inside the parser its value is calculated and set accordingly.

EBNF: SetTerm ::= "{" Term ( "," Term )* "}"
The term reference in the SetTerm class is a multi-valued reference. In this case the

reference is set by adding elements to the collection returned by the JMI operation

public java.util.Collection getTerm(). This JMI method returns the value of the

reference term, i.e. the collection of elements (as terms) of the set-term.

SetTerm SetTerm():{
SetTerm result = AsmTerms.getSetTerm().createSetTerm();

Collection term = result.getTerm();
Term t;

5 Note that for shared/composite aggregations, the initial keyword for the reference is necessary

in case of more than one reference (with different roles) to the same (aggregated) class.
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}{ "{" t=Term() { term.add(t); }
( "," t=Term() { term.add(t);} )* "}"
{ /*sets the derived attribute size*/

result.setSize(term.size());}
{return result;}}

Example 3 By the rules above, the production rule for the Asm class in Fig. 1 can be

completed as follows.

EBNF: Asm ::= "asm" ("isAsyncr")? <ID_Asm> Header (Initialization)* ("default" Initial-
ization)?
Body ("main" RuleDeclaration)?

Asm Asm() : { Asm result = structurePack.getAsm().createAsm();
String name;
boolean isAsyncr = false;
Header headerSection;
Initialization initialState;
Body bodySection;
RuleDeclaration mainrule;

}{ "asm" [ "asyncr" {result.setAsynchr(true);}]
name = <ID_Asm> {result.setName(name);}]
//reads the header and sets the header reference of the ASM
headerSection = Header(){ result.setHeaderSection(headerSection);}
//reads the initial states and the body of the ASM
//reads the main rule of the ASM sets the main rule reference
[ "main" mainrule = RuleDeclaration(){ result.setMainrule(mainrule);}]
<EOF>

{ return result;}}

3.7 Generalization

We distinguish between a generalization from an abstract class and a generalization

from a concrete class.

Rule 16: In case classes C1, ..,Cn inherit from an abstract class C, the production rule

for the non terminal C is a choice group C::=C1|..|Cn. Attributes and references inherited

by classes Ci from the class C are represented in the same way in all production rules

for the corresponding non terminals Ci.

Example Fig. 3 shows the complete classification of the ASM transition rules under the

abstract class Rule. The production rule for the non terminal Rule follows.

EBNF : Rule ::= TermAsRule | BasicRule | TurboRule | DerivedRule
In JavaCC we introduce the following method, where (...|...) denotes the choice

operator.

Rule Rule(): { Rule result;
}{ // expansion unit

(result = TermAsRule() | ... | result = DerivedRule )
{ return result;}}
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Figure 3. Example of Generalization from an abstract class

Rule 17: If classes C1, ..,Cn inherit from a concrete class C, a production rule C::= Cc
| C1|. . .|Cn is introduced to capture the choice in the class hierarchy, together with a

production rule for the new non terminal symbol Cc built according to the content (at-

tributes and references) of of the superclass C. We assume that attributes and references

of C inherited by classes Ci are represented in the production rules for the non terminals

Ci as in that for Cc.

3.8 Constraint

OCL constraints are not mapped to EBNF concepts. Appropriate parser actions are

added to the JavaCC code to instruct the generated parser on how to check whether the

input model is well-formed or not according to the OCL constraints defined on the top

of the metamodel. In our case, we explicitly implemented in Java an OCL checker by

hard-encoding the OCL rules of AsmM. Constraint incompatibility errors are detected

and reported using standard Java exception handling. Alternatively, an OCL compiler

could be connected to the generated parser for the constraint consistency check.

4 The AsmM Concrete Syntax

The complete AsmM-CS grammar derived from the AsmM can be found in [7]. Fig. 4

shows the specification written in AsmM-CS of a Flip-Flop device originally presented

in [9, page 47]. The first rule (FSM) models a generic finite state machine and the second

rule (FLIPFLOP) instantiates the FSM for a Flip-Flop:

FSM(i,cond,rule,j) =

if ctl_state = i and cond then {rule, ctl_state := j} endif
FLIPFLOP = {FSM(0,high,skip,1),FSM(1, low,skip,0)}

5 Related Work

The OMG standardization effort for a Human Usable Textual Notation for the Enter-

prise Distributed Object Computing (EDOC) standard [16], is the main attempt to gen-

erate text grammars from specific MOF metamodels. The HUTN proposal is conceptu-

ally closer to our approach, as it aims at providing a textual input language for human
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asm FLIP_FLOP import STDL/StandardLibrary
signature:
domain State subsetofNatural
controlled ctl_state : State
monitored high : Boolean
monitored low : Boolean
default init initial_state:
function ctl_state = 0
function high = false
function low = false
definitions:
domain State = {0,1}
macro r_Fsm ($ctl_state in State, $i in State, $j in State,

$cond in Boolean, $rule in Rule ) =
if $ctl_state=$i and $cond then par $rule

$ctl_state := $j endpar endif
axiom over high(),low(): not( high and low )
main rule r_flip_flop = par

r_Fsm(ctl_state,0,1,high,< <skip> >)
r_Fsm(ctl_state,1,0,low,< <skip> >) endpar

Figure 4. Flip-Flop Specification

consumption (XML was explicitly excluded as being insufficiently human-friendly on

a large scale). However, although automatic, the HUTN approach is designed to work

with any MOF model and generate their target notation based on predefined patterns,

it does not, therefore, permit a detailed customization of the generated language which

reflect the object-oriented nature of the MOF meta-language.

Another MOF-to-text tool is the Anti-Yacc [10], which can be used to extract the

contents of MOF-based repositories in a textual form conforming to some specified

syntax. This tool is, therefore, useful to extract information from a MOFlet taking the

target language grammar as input, i.e. to realize walkers in a MOF repository for code

generation, interfacing with legacy syntaxes, and general report writing.

In [14,17], a metamodel for the ITU language SDL-2000 [24] is obtained by a semi-

automatic reverse engineering process that allows the derivation of a metamodel from

the SDL grammar definition. A very similar method to bridge grammarware and mod-
elware is also proposed by other authors in [6,27]. All these approaches are comple-

mentary to our forward engineering process. Moreover, while we adopt a pure MOF to

write metamodels, in the approaches mentioned above, especially [27], a MOF profile
which strictly reflects the organization and grouping mechanism of the EBNF formal-

ism is used and therefore the target metamodel obtained from a source grammar requires

to be heavily processed not only (as expected) to provide the additional semantics not

captured by the EBNF, but also to remove information regarding EBNF technicalities.

Defining graphical concrete syntaxes on the top of metamodels is another problem

already addressed by the OMG with the adoption of a standard for diagram interchange

for UML2 (UML-DI) [26] and by numerous authors (see for example [25]) and meta-
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CASE tools like GME [13], DOME [12], AToM3 [11], MetaCASE [19], etc. Indeed,

it has to be considered different from the problem addressed in this paper, although

related in goal – both concern the definition of concrete syntaxes of languages whose

abstract syntax is already available in form of a metamodel.

Concerning the case-study, other previous proposals exist for the definition of a

textual notation for ASMs. The AsmL [20] developed by the Foundation Software En-

gineering group at Microsoft is the greatest effort in this respect. AsmL is a rich exe-

cutable specification language, based on the theory of ASMs, expression- and object-

oriented, and fully integrated into the .NET framework. However, AsmL does not pro-

vide a semantic structure targeted for the ASM method. “One can see it as a fusion of

the Abstract State Machine paradigm and the .NET type system, influenced to an extent

by other specification languages like VDM or Z” [30]. Adopting a terminology cur-

rently used in the MDA vision, AsmL is a platform-specific modeling language (PSM)

for the .NET type system. A similar consideration can be made also for the AsmGofer

language [23]. An AsmGofer specification can be thought, in fact, as a specific PSM

for the Gofer environment.

6 Conclusions

this paper, we propose a MOF-to-EBNF mapping to derive a textual concrete syntax

from a language’s metamodel (the abstract syntax). We also give guidelines helping

a language designer to instruct, in a semi-automatic way, a traditional parser genera-

tor for grammars (like JavaCC) to generate a metamodel-specific bridge between the

grammarware and the modelware technical spaces. We believe that the MOF is suitable

as meta-language for deriving different concrete notations from metamodels, however,

further investigations are necessary to decide if arbitrary grammars can be generated.

We implemented the approach for the definition of an EBNF grammar from the

ASM metamodel for a textual notation for the ASM formal method. We also provide

a parser which processes specifications written in the concrete syntax, checks for their

consistency with the metamodel, and translates information about concrete models into

a MOF-based instance repository. The applicability of our results to make possible the

coupling of different types of ASM tools has been discussed in [22,15]. Soon, we plan to

integrate the compiler with a proper Integrated Development Environment which acts as

front-end for the modeler, and to develop an ASM virtual machine to simulate AsmM-

CS specifications. Furthermore, we intend to upgrade the AsmM to MOF 2.0 and to

use the Mof2Text standard or the QVT standard to specify the rules in a more formal

way. We are also evaluating the possibility to exploit other metamodelling frameworks,

like the ATL project [2], the MTL engine [4], the Xactium XMF Mosaic [5], to better

support model transformations and model evolution activities such as code generation,

reverse engineering, model refinement, model refactoring, etc..
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