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Abstract—Modern software systems operate in complex and
changing environments and are exposed to multiple sources of
uncertainty. Testing methods shall be tailored to uncertainty as
a first-class concern in order to quantify it and deliver increased
confidence in the level of assurance of the final product. In
this paper, we introduce novel model-based exploration strategies
that generate test cases targeting uncertain components of the
system under test. OQur testing framework leverages Markov
Decision Processes as modeling formalism of choice. The tester
explicitly specifies uncertainty by means of beliefs attached to
transition probabilities. The structural properties of the model
and the uncertainty specification are then exploited to drive
the test case generation process. Bayesian inference is used to
achieve this objective by updating the initial beliefs through the
evidence collected by testing. The proposed uncertainty-aware
test selection strategies have been systematically evaluated on
three realistic benchmarks and nine synthetic systems exhibiting
up to 10k model transitions. We demonstrate the effectiveness of
the novel strategies with well-established metrics. Results show
they outperform existing testing methods with a gain up to 2.65x
in terms of accuracy of the inference process.

Index Terms—Model-based testing, Probabilistic systems, Un-
certainty quantification, Bayesian inference

I. INTRODUCTION

Model-based testing (MBT) relies on explicit models that
encode the intended behaviors of a system under test (SUT)
and/or the behavior of its environment [1]], [2], [3]. However,
modern software systems are exposed to sources of uncer-
tainty that can arise from an ambiguous specification of the
system, and execution environments’ characteristics that are
unknown before the system is running [4]. To deal with this
challenge [5], testing techniques have been tailored not only
to detect failures, but also to actively learn the SUT dynamics
and its surroundings in order to verify initial hypothesis [6]],
[7]. In particular, endowing conventional software testing with
techniques and practices able to model, quantify, and mitigate
uncertainty is becoming crucial [8], [9], [10].

The research community is recently investigating the pos-
sibility of endowing MBT approaches with awareness of
possible sources of uncertainty [11], [12]. Existing approaches
focus on spotting unknown occurrences of environmental
uncertainties in Cyber-Physical Systems (CPS) [13]], [14]. An
initial attempt to explicitly model and quantify uncertainty
with Markov Decision Processes (MDP) is shown in [[15]], [[L6]],

however, fixed reward values are used to generate tests. To the
best of our knowledge, there is no approach leveraging fine-
grained characteristics of existing uncertainties to drive MBT.
Thus, further investigation on this topic is required.

The goal of our research is to introduce and compare novel
MBT strategies that are tailored to uncertainty quantifica-
tion and incremental refinement of an initial underspecified
MDP. To achieve this objective, the testing process embeds
awareness on the sources of uncertainty and quantifies it
by applying Bayesian inference [17]. The uncertainty-aware
MBT strategies proposed in this paper are: (¢) History, that
tracks information about visited model regions to select those
test cases that increase the probability of testing unexplored
uncertain components of the SUT; (i) Distance, that uses
information on the SUT branching points that are more likely
to execute components associated with a higher level of
uncertainty; and (zi7) Frequency, that considers the likelihood
of using the different components, hence the actual usage of
the SUT is exploited for the selection of tests. This paper
provides the following main contributions:

« novel MBT strategies that take into account uncertainty-
related characteristics of the SUT;

« extensive evaluation of the effectiveness of these strate-
gies under bounded effort, by comparing the updated
beliefs after testing and the accuracy of the inference
process to quantify existing uncertainties.

As running example, we adopt a CPS benchmark called
SafeHome [9]. The empirical evaluation has been performed
on three realistic systems from literature [9], [18], [19] and
nine synthetic systems generated from pseudorandom MDP
models with the goal of increasing structural complexity (from
250 to 10k model transitions). The empirical evaluation shows
that the Distance strategy yields the smallest relative error
and the highest fault detection rate when testing the selected
realistic systems. The uncertainty quantification capability in-
creases when increasing structural complexity of the synthetic
systems. With complex models, the Distance strategy is likely
to be the best choice, with few exceptions when the overall
level of uncertainty is either very low or very high and
when the number of possible inputs is high. In this case, the
Frequency strategy is likely to be superior.



The remainder of the paper is as follows. Sect. [lI] provides
background concepts. Sect. describes the SafeHome run-
ning example. Sect. provides an overview of our testing
framework and Sect. [V] presents our novel MBT strategies.
Sect. reports an extensive empirical evaluation, all exper-
iments and replication data is publicly available{ﬂ Sect. [VII
discusses related work, and Sect. concludes the paper.

II. PRELIMINARIES

This section introduces basic concepts and techniques used
throughout the paper: Markov Decision Processes (MDPs)
with rewards, Bayesian inference, and online MBT of proba-
bilistic systems.

A. Markov Decision Processes and Rewards

MDPs [20], [21] represent a widely used formalism for
modeling systems exhibiting both probabilistic and nonde-
terministic behavior. Formally, a MDP is defined as a tuple
M = (S, 50, A, d), where:

o S is a finite set of states (sg € S initial state);

o A is a finite alphabet of actions;

e 0:5 x A— Dist(S) is a partial probabilistic transition
function. Dist(S) represents the set of discrete probability
distributions over a countable set S.

State transitions occur in two steps: ¢) a nondeterministic
choice among the actions from state s: A(s) = {a € A :
3d(s,a)}; ii) a stochastic choice of the successor state s,
according to the probability distribution d, such that d(s, a)(s’)
represents the probability that a transition from s to s’ occurs
when a happens. The function ¢ satisfies ), 0(s,a)(s") =1,
for each source state s, action a and target state s’.

MDPs can be augmented with rewards to quantify a benefit
(or loss) due to the sojourn in a specific state or to the
occurrence of a certain state transition. A reward is a non-
negative value assigned to states and/or transitions that can
represent information such as average execution time, power
consumption or usability. A reward structure associated with
a MDP M is defined as a pair r = (r;,7,) composed of a
state reward function 75 : S — R>¢ and an action reward
function v, : § x A x S — Ry( that assigns rewards to
states and transitions, respectively. Given a reward structure, a
common problem is to find a policy function 7 that specifies
the action 7(s) chosen by a decision maker when state s
holds. The best policy 7* maximizes some function of the
cumulated rewards, typically the expected discounted sum over
a potentially infinite path. Namely, given a reward structure 7,
7* can be computed solving a dynamic decision problem [20].
The best policy 7* returns for each state s the action that
allows the cumulated reward to be maximized.

The dataset containing experimental results is available at https:/doi.org/
10.5281/zenodo.4095279. The software used to obtain raw data is an open
source project available at https://github.com/SELab-unimi/mbt-module!

B. Bayesian Inference

A very common goal in statistics is to learn about one
(or more) uncertain parameter(s) 6 describing some details
of a stochastic phenomenon of interest. To learn about 6,
we observe the phenomenon and collect a data sample y =
(y1, Y2, -, Yn) to compute the conditional density f(y|6) of
the observed data given 0, i.e., the likelihood function. The
Bayesian inference approach consists of taking into account
the hypothesis (or assumptions) about . This information is
often available from external sources, such as expert informa-
tion based on past experience or previous studies [22]. The
hypothesis is given in probabilistic terms distribution f(6),
so called prior. The Bayes’ theorem formulation given below
defines how the prior and the likelihood can be combined to
obtain the posterior distribution:

Posterior < Likelihood - Prior (D

The posterior f(f]y) describes the best knowledge of the
true value of 6, given the data sample y. It can be used in
turn to perform point and interval estimation of the uncer-
tain parameters. The estimation yields the notion of updated
beliefs. As described in [[17]], this is typically addressed by
summarizing the distribution through the posterior mean and
the smallest possible credible region of 0.95 probability, called
Highest Density Region (HDR). This region is defined as the
set of 6 values, such that HDRy = {6 : f(0]y) > 0.95}. The
HDR contains the values considered most likely a posteriori
(i.e., credible values having the highest density). The magni-
tude of the region, denoted as ||[HDRy]|, is traditionally used
in Bayesian statistics as a measure of the highest possible
accuracy in the estimation [22]]. Namely, it represents the
confidence of the inference process, i.e., the smaller the
magnitude, the higher the confidence.

III. A RUNNING EXAMPLE

To illustrate our novel testing methods, we adopt the Safe-
Home case study, i.e., an open-source security system bor-
rowed from [9]. It is in charge of controlling and configuring
alarms and sensors that implement some safety features, e.g.,
the intrusion detection.

Fig. [T] shows the high-level behavior of the system modeled
with MDP. After the setup phase, the system exhibits three
main phases: initializing, monitoring and alarm, in charge
of sensor initialization, detection, and alarm handling, re-
spectively. Annotations follow the standard notation “[pre-
condition] trigger / post-condition” and provide guidance on
the interpretation of the MDP model. As an example, from
state so (during monitor initialization), the SafeHome system
tries to initialize all the available sensors by executing the as
action, i.e., the trigger of initSensors. If the task succeeds,
the sensors are correctly registered and the as action can be
executed (i.e., the pre-condition initialized holds) to proceed
towards the monitoring and alarm phases.

According to [23], sources of uncertainty in CPSs affect
the behavior of the SUT at different levels: ) application
level, due to events/data originating from software components
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source  target [pre-condition] trigger / post-condition

S0 S1 [systemOK] ag: activate / ready

S1 So [ready] ay: startInit / monitor

So So [linitialized] as: initSensors / registered

So S1 [linitialized] as: initSensors / failed

So S3 [initialized] a3: startMonitoring / monitoring

S3 S5 [timeout] a4: sensorsCheck / !sensorsOk

S3 S3 [timeout] a4: sensorsCheck / sensorsOk

S3 S8 [timeout and tooManyFailures] a4: sensorsCheck / !sensorsOk
S5 So [sensorsLost] ag: resetSensors / !registered

S8 S8 [assistance] ag: wait / assistance

S3 S3 [sensorsOk] as: intrusionOccurred / !sensed

S3 Sq [sensorsOk] as: intrusionOccurred / sensed

Sy4 S3 [!verified] ag: cancel / setTimerOn

S4 Sg [verified] a7: turnAlarmOn / setTimerOn

S6 S4 [!timeout] ag: cancel / setTimerOff

S6 Sg [timeout or tooManyDetections] ag: notify / success
S6 S7 [timeout or tooManyDetections] ag: notify / networkError
s7 St [notificationSent] ag: wait / notificationSent

Fig. 1: MDP model of the SafeHome system

running upon physical units of the CPS; ) infrastructure
level, due to data transmission through networking and/or
cloud infrastructure; ii7) integration level, due to interactions
among physical units at either application level or infrastruc-
ture levels. To exemplify some of these uncertainties, let us
consider the following scenario. When the system is in state
s3, it means that monitoring holds, sensors can send the as:
intrusionOccurred trigger to the security system that makes
the alarm ring via the effect of ar: turnAlarmOn attached
to the outgoing transition of the state s, intrusionDetected.
Nevertheless, the intrusion detection capability is affected by
uncertainty at integration level. This capability is influenced
by the interaction of sensors and their individual ability of
correctly sensing the physical environment. Thus, the a5 action
leads to either state s4 (i.e., the intrusion has been sensed)
or state s3 (i.e., the intrusion has not been sensed) with a
substantial degree of uncertainty. This uncertain outcome is
explicitly represented by uncertain probability values (i.e.,
0.97 and 0.03, respectively), as shown in the arcs of the
MDP model. We refer to a set of uncertain probability values
associated with a state-action pair in the model as uncertain
region and we denote it as #;. Note that the disjoint union of
all 6; is 6, i.e., the set of uncertain model parameters. The full
list of uncertain regions (and affected levels) of the SafeHome
example is reported in Table

IV. APPROACH OVERVIEW

Our approach adopts online (or on-the-fly) MBT to drive
the selection of tests from an MDP model by stochastically

TABLE I: Uncertain regions

region state-action  affected level  target states  probability values
01 So-a2 integration S2, S1 0.95,0.05
72 S3-ay4 integration S3, S4 0.03,0.97
O3 S3-as application S3, S5, S8 0.01,0.97,0.02
04 Sg-asg infrastructure SG, ST 0.02,0.98

sampling its state space. The functional evaluation procedure
adopted in our framework is based on a conformance game
approach [24]. Beside the conformance game, our focus is the
application of statistical inference during testing to incremen-
tally refine uncertain beliefs of an initial underspecified MDP
model. We make use of Bayesian inference (while gathering
evidence from test executions) to compute the posterior density
function of uncertain/unknown 6 parameters of the MDP.

Our approach relies on the assumption that a partial specifi-
cation of the SUT is available. Namely, the state-action space
is known while transition probabilities can be unknown/uncer-
tain. Thus, design-time uncertainty affects a subset of model
parameters. Furthermore, we assume that we can anticipate
the location (i.e., which model parameters are uncertain/un-
known). These assumptions are valid in many practical cases
as described in [19]]. The advantages (and costs) of modeling in
testing are discussed in many existing papers [S]. We consider
this latter point outside the scope of this paper.

Fig. 2] provides an overview of our approach, where num-
bered labels refer to the major components detailed in the
following. The starting point is a Modeling module (1) that
allows the SUT behavior to be specified as a MDP model (2)
through a simple textual Domain Specific Language (DSL).
This language is also used to define the uncertain param-
eters by annotating MDP transitions with initial (a priori)
hypothesis, given in terms of prior density functions. The
priors (3) describe the modeler’s beliefs on the uncertain
transition probabilities. In addition to that, the DSL permits the
declaration of a number of controllable APIs and observable
outcomes. We adopt the approach introduced in [25] to distin-
guish between controllable behavior from the tester (i.e., the
environment, such as user requests) and observable behavior
from the running software system.

The DSL allows the modeler to map model elements and
software components. More precisely, the modeler uses the
DSL to define a model-system binding that provides the
framework with a high-level view of the SUT behavior at
the abstraction level of the MDP model as follows. Arbitrary
input data for the system is associated with each MDP action
a denoted as Z(a). Input data is a vector ¥, of parameters
provided to a controllable AP associated with each MDP state
and denoted by H(s). Arbitrary pre- and post- conditions are
then associated with MDP transitions. Namely, Pre(s, a) must
hold for Z(a) and Post(s, a) must hold for ¥y, i.e., the output
obtained by executing H(s) with input Z(a). The binding
is then used by the framework to automatically generate a
test harness (4) used by the MBT module to carry out the
conformance game upon the SUT (5).
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Fig. 2: Uncertainty-aware MBT framework

The software tools implementing our approach have been
released as publicly available open-source software using the
Java language for the MBT module and the Xtext/Xtend [26]
framework to develop the Modeling module. However, the
approach is general and does not refer to any specific feature
of our programming language of choice. Therefore, it can
be applied (with limited technological modifications) to other
languages. In the following we provide further details on the
major components of the MBT module: the Controller (6) and
the Observer (7), and the Bayesian analyzer (8).

A. Controller and Observer

The aforementioned conformance game is carried out by
the Controller and the Observer components. These software
modules verify the existence of a conformance relation be-
tween the model and the SUT, formalized by means of the
notions of alternating simulation (27| and refinement [24].

From an operational perspective, the conformance game
starts from the initial state of the model, and it consists of
a sequence of steps. For each step of the game, the Controller
makes its own move: it chooses an available action in A(s)
from the current state s of the model, according to the
adopted test selection strategy. Then, it uses the corresponding
controllable API H(s) to supply the input Z(a) to the running
system. During execution, the test harness provides a serialized
view of the observable behavior resulting from the execution
of the SUT in response of the external stimuli. Thus, the
observer, taking this information as input, makes its own move:
it evaluates the pre-condition Pre(s, a) on the supplied input.
If the pre-condition holds, then it determines the target state
', such that the post-condition Post(s,a), evaluated on the
observed output, holds. Whenever a pre-condition does not
hold or does not exist a target state s’ such that the post-
condition holds, there is a conformance failure. The game
continues until the Controller decides to end the game (i.e.,
a termination condition has been reached) or a conformance
failure is found (i.e., the output produced by the SUT is not
predictable by the model).

B. Bayesian analyzer

During the conformance game, the Observer feeds the
Bayesian analyzer to carry out statistical hypothesis testing.
Namely, starting from the priors defined by the modeler,
we incrementally update the knowledge about the uncertain
parameters taking into account the evidence gathered during
testing by applying Bayesian inference (see Eq. [I). In the
following we provide a brief overview on the statistical
machinery used to perform this activity, but we refer the reader
to [17] for more details.

Dirichlet distributions [28]] are commonly used in Bayesian
statistics as prior density functions. In particular, the Dirichlet
distribution is the natural conjugate prior of the categorical
distribution: a discrete probability distribution describing the
possible outcomes of a random variable that can assume one
of k possible values (i.e., categories), having each category
associated with a specific probability. In our context, we use
Dirichlet distributions as conjugate priors for the uncertain
transition probabilities of a MDP model. Namely, the prior
knowledge on transition probabilities pf = (pﬁj,..., Py b)s
where pf ; is the probability to observe a transition from s,
to s; when the action a is chosen, is described by letting pf
have a Dirichlet distribution with concentration parameters c;
as follows:

pi ~ Dir(o;), where a; = (ay j, ..., i ) 2)

The observer component collects statistics on the occurring
model transitions in order to update the prior knowledge. More
precisely, it collects a sample y that yields for each ¢, j, a, the
occurrences nfj from s; to s;, when the action a is selected.
Given the sample y, the posterior distribution is also a Dirichlet
distribution and can be computed very efficiently as follows:

pily ~ Dir(a)), where o = (Qig+ng;, .o p+niy) (3)

When little information is available, a natural choice is to
use a uninformative prior with o ; =1 /2,¥1, j, a. Otherwise,
when past experience is available, it is possible to use a prior
having «; ; = ng ;. For instance, considering the SafeHome
case study (see Sect. we describe the hypothesis on 65
with a Dirichlet prior and concentration parameters equal to
the following values: (a4 = 970,46 = 20,49 = 10), if
in our past experience we observed 970 transitions from s4 to
S4, 20 transitions from s4 to sg, and 10 transitions from sy to
Sg, in a sample of 1k observations.

The online MBT process calibrates the uncertain 6 pa-
rameters using the posterior mean and the HPD region, as
introduced in Sect. [II} The intuition behind our proposal is to
take advantage of the specification of uncertain parameters to
drive test case generation.

V. TEST SELECTION STRATEGIES

To describe our strategies, we firstly introduce the notion of
uncertainty-aware reward structure, motivated by the practical
need to identify model actions that maximize the probability



of exploring uncertain state transitions (associated with 6 pa-
rameters). The uncertainty-aware reward structure is formally
defined as follows:

Definition 1 (uncertainty-aware reward structure): Given a
MDP model (5, sg, A,d) and a set of uncertain parameters
0; C 0, the uncertainty-aware reward structure is v = (us, Uq ),
s.t.,

(s) k 3Jae€ A(s),s € S:0(s,a)(s') €6;

s = 0 otherwise

. ua(s,a,5) = k 5(5,(1){5’) €0,
0 otherwise

where k € Ny .

The rationale behind this definition is to assign a high and
fixed reward value (k) to uncertain state transitions (and a
low reward value to the other model elements). The best
exploration policy that maximizes the expected cumulated
uncertainty-aware rewards is then computed by applying dy-
namic programming, as anticipated in Sect.

Intuitively, parameters in 6; for each i, compose the un-
certain regions (01, 02, etc. in Table. [) and the set of best
policies (7], 75, etc., respectively) maximizes the probability
to reach each one of them. Thus, for each model state, we have
in general multiple choices to act optimally towards different
uncertain model regions. For example, from s5 we might select
either as or as, depending on the target uncertain region,
i.e., either 0y or 0, respectively. The number of alternative
choices leading to different testing scenarios depends on the
model complexity and/or the number of uncertain regions.
Thus, multiple uncertainty-aware testing methods are likely
to act differently in terms of delivered confidence.

After computing the best policies, our MBT algorithm
makes dynamic (on-the-fly) choices for exploring the uncertain
regions, and these choices are regulated by the adopted test
selection strategy. Such a strategy provides control over test
scenarios by selecting actions during testing based on the
following probabilistic function:

Ps.a) — {0 w(s,a) =0 @

w(s,a)/ D peas wis,a')  otherwise

where w represents a per-state weight function that maps a
state s and an action a to a value in R>o. The weight w
is used to drive the direction of the exploration, i.e., it can
be used to selectively increase or decrease the probability of
certain actions depending on different model-based exploration
strategies.

In the following, we describe the strategies currently imple-
mented in our framework. The flat strategy is used as baseline
(Sect. and the novel strategies are: history (Sect. [V-B));
distance (Sect. [V-C)); frequency (Sect. [V-D); and we also

propose a combination of distance and frequency (Sect. [V-E)).
A. Flat Strategy

The flat strategy represents a pseudo-random test selection
criterion that allows to select the actions depending on a stat-
ically defined weight function wR”, where RT is the acronym

for random testing, and it maps a pair (s, a) to a fixed value.
The idea is to choose among the available actions by using a
discrete uniform distribution whereby all the available actions,
leading to uncertain model regions, have equal weight. Given
the set of best policies {r}}, the function W’ is defined as
follows:

wRT(s,a):{l Hi:ﬂfgs):a 5)
0 otherwise

Intuitively, the weight function wR” makes the Controller
able to stochastically sample the available actions increasing
the likelihood of guiding the testing towards uncertain model
regions.

On the one hand, the flat strategy (originally introduced
in [16]) is guided by the awareness of uncertain model
regions. On the other one hand, it does not take into account
fine-grained information from updated beliefs and structural
properties of the model. Furthermore, as described in [15],
it has been shown superior to traditional MBT strategies.
Thus, we selected this strategy as a baseline in our empirical
evaluation to understand to what extent alternative uncertainty-
aware strategies yield increased cost-effectiveness.

B. History Strategy

History-based test selection strategy (hist) has been intro-
duced to take into account aging of the available actions.
Specifically, we propose a strategy based on global informa-
tion (i.e., considering the full history) which leverages the
notion of decrementing weight commonly adopted when the
tester wants to guide the direction of the exploration balancing
the number of times actions are selected. This strategy selects
among the available actions based on a weight function w”
(i.e., HT stands for history testing) defined as follows:

wHT(S,(l) _ {1/#(5,&)

Ji:wi(s)=a ©)

0 otherwise

where #(s, a) denotes a counter function whose role is to keep
balanced the number of times an uncertain region is visited
during MBT. In this strategy, the more an uncertain model
region is visited, the smaller is the probability to choose again
actions leading to that region. The counter function denotes
how many times the region 6; has been visited during testing;
e.g., from state so, the history strategy is likely to choose
action ag (i.e., the choice given by 77) if #; has been visited
less than 65 during past testing activity.

C. Distance Strategy

The distance strategy (dist) is introduced to consider the
variability of uncertain parameters by calculating the magni-
tude of the HDR containing the credible values, as anticipated
in Sect. Thus, dist selects actions depending on a weight
function wP7, where DT stands for distance testing. Such
a function maps a pair (s,a) to a value that quantifies the
magnitude of the corresponding uncertain region. Namely,
the weight wP” is |[HDRy, || if the best policy 7} maps the
state s to the action a. This way parameters that show higher



possible variability are associated with a higher weight versus
parameters whose uncertainty spans in a smaller range. Given
the set of best policies {7}, the function wP7 is defined as:

HDRy,
wDT(s,a) _ {” 0;

Ji:7wi(s) =a

(7

0 otherwise

The weight function wP” modifies the behavior of the
Controller component that stochastically samples the available
actions maximizing the probability to reach the parameters
showing larger uncertainty in their specification. As a simple
example, suppose the tester starts MBT from diverse prior
knowledge on 6; and 5. High degree of uncertainty may be
associated with 6; (rather than 65) if little information on the
SafeHome behavior in alarm conditions is available. In this
case the tester can adopt an uninformative prior for 6; (i.e.,
large |[HDRy, ||) and a prior expressing definite information for
62 (i.e., small ||HDRy, ||). This unbalanced confidence in beliefs
affects the dist strategy during test case selection. Namely, the
distance strategy is likely to choose those actions given by 77
to collect more evidence on region 6. Our hypothesis is that
dist outperforms both flat and hist when beliefs on uncertain
regions exhibit diverse variability. Thus, testing prioritizes
model regions having higher uncertainty with the aim of
delivering uniform posterior knowledge.

D. Frequency Strategy

The frequency strategy is introduced to consider how many
times an uncertain parameter is involved in a computation, thus
to prioritize the most frequent uncertain regions. Actions are
selected depending on a weight function w’”, where FT stands
for frequency testing. A pair (s, a) is associated to a value that
quantifies the frequency of invoking such actions within the
system actual running. For example, if the uncertain regions 6
and 60, have been visited n and m times, respectively, then the
weight w!T can be calculated by using the ratio n/(n + m),
denoted as freq(6;). This way, parameters that are invoked
more frequently have a higher weight versus parameters that
are less involved in the system running. Given the set of best
policies {7} }, the function wP7 is defined as follows:

(5. a) — {freq(an Jicmi(s) =a

0 otherwise

®)

Intuitively, the weight function w’” modifies the behavior
of the Controller component that stochastically samples the
available actions maximizing the probability to reach the
parameters showing a higher probability of being invoked. We
expect that this strategy outperforms random choices when
there exist uncertain regions frequently invoked during the
system running. The subsequent actions under test are then
affected by such system property.

E. Combined Strategy

The combined strategy is introduced to jointly consider the
magnitude of the uncertainty and how many times an uncertain
parameter is invoked, thus to prioritize the most large and

frequent uncertain regions. This means that actions are selected
depending on a weight function w¢, where CT is the acronym
for combined testing. Such function maps a pair (s,a) to a
value jointly quantifying the largeness and the frequency of
uncertain regions. To this end, let us introduce two tuning
constant values (i.e., ¢q and cy) that denote the importance
of distance and frequency, respectively. The function w¢’ is
defined by a weighted sum of the distance and the frequency
strategies. If they are equally important, then ¢4 = ¢y = 0.5.
This way both the distance and the frequency of uncertainty
are associated to parameters, thus to distinguish their influence
in the MBT. Given the set of best policies {7}, the function
W is defined as follows:

UJCT(

s,a) = cq - WPl (s,a) +cp - w(s,a) )
where cg4, ¢ are real values in [0, 1] and ¢4 + ¢y = 1.

Similarly to previous strategies, the weight function w
modifies the behavior of the Controller component that max-
imizes the probability to reach the parameters showing a
larger distance and a higher probability of being invoked. The
importance of these two system properties is regulated by
the tester that can set different values on the basis of her/his
preference. We expect that this strategy outperforms the flat
strategy whether there exist uncertain regions showing a large
gap in their specification of uncertainty and, at the same time,
frequently invoked during the system running.

cr

VI. EVALUATION

In this section we introduce our research questions
(Sect. [VI-A) for the evaluation of the proposed uncertainty-
aware testing strategies. We describe the experiments in

Sect. and the results are presented in Sect. We
finally discuss threats to validity in Sect.

A. Research Questions

The purpose of the evaluation is to study the effectiveness
of our novel uncertainty-aware MBT methods under bounded
effort. In case an unbounded number of tests is allowed, all the
strategies may eventually converge to the optimal uncertainty
mitigation. We are instead interested in investigating the ability
to converge faster or slower for a bounded number of tests. In
particular, we aim to answer three research questions:

RQ1: What is the effectiveness of our strategies in terms of
relative error of updated beliefs and detection rate of
injected faults?

What is the practical relevance of our strategies in
terms of HDR magnitude and their effect size?

How do our strategies compare in terms of HDR ratio
and their occurrence as best choice?

RQ2:

RQ3:

B. Design of the Evaluation

The strategies under evaluation are discussed in Sect.
specifically: flat, history (hist); distance (dist), and frequency



(freqﬂ and the combination of distance and frequency strate-
gies by setting c4-c; with the following values: 20%-80% (c-
2-8), 50%-50% (c-5-5), and 80%-20% (c-8-2).

To address RQ1, all the strategies have been experimented
on three selected benchmarking examples from different ap-
plication domains: the SafeHome cyber physical system [9]],
the Tele Assistant service-based system (TAS) [18], and an
e-commerce web application (e-comm) [19].

To address RQ2 and RQ3, we generated a number of
synthetic systems from pseudorandom MDP models. This
setting allowed us to control structural properties of interest
and to avoid possible biases of preselected and ad hoc case
studies. Namely, we controlled: #states, #actions per state,
and #transitions, that define the size (i.e., complexity) of
the generated systems. For each size, we varied the level of
uncertainty (i.e., percentage of transitions associated with 6
parameters) between 20% and 80%. We also varied the prior
knowledge by constructing two testing scenarios as follows: (i)
the balanced case, where all the priors express same degree
of confidence (in terms of HDR magnitude); and (ii) the
unbalanced case, where half randomly selected 6 parameters
are more certain (i.e., smaller HDR magnitude) than others.

For all experiments (with both realistic and synthetic bench-
marks), we compared our novel strategies with respect to the
state-of-the-art baseline, i.e., the flar [13]. As anticipated in
Sect. M this choice is motivated by: (i) it embeds and leverages
a coarse grained notion of uncertainty to select tests; and (ii) it
has been shown superior to traditional MBT strategies. Testing
strategies were executed 100 times for each benchmark to
avoid bias in the results and consequently in the findings.

C. Results

RQ1. The MDPs and the uncertain regions of the selected
benchmarks have been obtained following the specification of
these systems presented in [9], [18], and [19], respectively.
Their number of states varies from 9 to 12, the actions
from 6 to 10, the transitions from 20 to 21, and the 6
parameters from 4 to 7. Even though from the perspective
of the structural complexity, the three MDP specifications
show similar characteristics, these systems have very diverse
behavior. For each benchmark we executed all the strategies by
assuming bounded effort equal to 2k tests. We compared the
effectiveness, under bounded effort, by measuring: the Relative
ErrorE| (RE) of the updated beliefs (point summarization of
posteriors) with respect to actual values of 6 parameters;
and the Detection Rate (DR) of injected faults. The injection
process has been carried out by applying perturbations to the
0 values, i.e., uniform sampling between 0.02 and 0.08. Here,
we define detection as the ability to recognize that updated
beliefs (interval summarization of posteriors) exclude initial
beliefs that were set to meet requirements. Thus, the DR can
be interpreted as the ability to spot requirements violations.

2The frequency strategy makes use of an operational profile which assigns
values proportional to the HDR magnitude of priors.

3The RE is computed as the magnitude of the difference between the exact
value and the estimation divided by the magnitude of the exact value.
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Fig. 3: Effectiveness of strategies on realistic benchmarks.

Fig. B4 reports mean and standard deviation of RE results.
Common patterns can be observed in all the three target
systems. The flat strategy is likely to exhibit the worst RE
values. On average, it is above 50% with values above 90%
at peak. The difference between maximum and minimum
values is 0.69, i.e., on average 34% more compared to the
other strategies. This means that the flat strategy yields less
predictability. The lowest RE values correspond to the distance
strategy. On average, we observed mean RE values between
0.09 (e-comm) and 0.23 (TAS). The history is likely to
score better than flat but worse than distance. The usage of
operational profiles (i.e., frequency strategy and combination
of frequency and distance) is not likely to decrease the RE
with respect to distance in all the three target systems.

Fig. Bb] reports the DR results. Consistently with our previ-
ous findings, the distance strategy yields the highest DR values
across the three benchmarks. With this strategy we were able
to detect on average 30% more faults compared to the flat
strategy. The flat strategy yields the worst DR values. The
DR values measured by using the history strategy are close
to the one obtained with frequency: the average difference
across the three benchmarks is 2%. The frequency strategy
and combinations of frequency and distance do not yield better
DR values.

Summary: By using representative benchmarks, we found
the distance strategy as the most effective one in terms
of RE and DR. The flat baseline strategy is always less
effective compared to our strategies.

RQ2. To answer this question, we measured the accuracy
of the inference process (i.e., uncertainty quantification capa-
bility) through the HDR magnitude of the posteriors, i.e., a
traditional metric for this purpose in Bayesian statistics (see
Sect. [[). Table [[T] shows the results obtained by testing the
synthetic systems mdp; to mdpg, having complexity ranging
from 250 to 10k structural elements, respectively. To ensure a
fair comparison among the strategies, the testing campaign on
the synthetic systems have been conducted by assuming equal



TABLE II: HDR magnitude using flat, history, distance, frequency, and combined strategies for 9 synthetic systems varying:
structural compexity, %uncertainty, and balanced/unbalanced prior knowledge.

[ balanced unbalanced
size (states;
actions; transitions) Youncertainty | flat hist dist freq c-2-8 c-5-5 c-8-2 Sfat hist dist freq c-2-8 c-5-5 c-8-2
20 0367 | 0.144 | 0.159 | 0.174 | 0.150 | 0.149 | 0.150 | 0.215 | 0.108 | 0.086 | 0.089 | 0.088 | 0.089 | 0.084
mdpy (10; 5; 250) 350 0316 | 0256 | 0.243 [0.258 | 0260 | 0.247 | 0.240 | 0212 | 0.194 | 0.138 [ 0.153 | 0.158 | 0.161 | 0.147
80 0411 | 0382 | 0344 [ 0383 | 0362 | 0359 | 0347 | 0317 | 0317 | 0352 | 0276 [ 0324 | 0307 | 0352
20 0312 | 0.108 | 0.108 | 0.132 | 0.121 | 0.111 | 0.106 | 0.175 | 0.076 | 0.063 | 0.063 | 0.064 | 0.063 | 0.065
mdps (10; 10; 500) 50 0357 | 0.194 [ 0217 | 0233 | 0226 | 0206 | 0216 | 0227 | 0.142 | 0.125 [0.132 | 0.132 | 0.129 | 0.125
80 0381 | 0282 | 0258 | 0.254 [ 0.251 | 0.246 | 0.246 | 0.305 | 0.226 | 0.183 [ 0.197 | 0.190 | 0.181 | 0.173
20 0387 | 0.064 | 0062 | 0.073 | 0.070 | 0.066 | 0.062 | 0.189 | 0.050 | 0.046 | 0.045 | 0.044 | 0.046 | 0.045
mdps (10; 20; 1K) 50 0341 | 0.124 | 0.134 | 0.149 | 0.142 | 0.136 | 0.133 | 0.249 | 0.097 | 0.079 [ 0.095 | 0.094 | 0.091 | 0.089
80 0327 | 0250 | 0215 [ 0217 | 0.208 | 0.211 | 0.206 | 0.247 | 0.196 | 0.141 | 0.146 | 0.150 | 0.141 | 0.134
20 0241 | 0.154 | 0.145 | 0.160 | 0.155 | 0.152 | 0.150 | 0.180 | 0.125 | 0.122 | 0.119 | 0.120 | 0.124 | 0.130
mdpy (20; 5; 1K) 50 0226 | 0234 | 0216 | 0228 | 0218 | 0.212 | 0.207 | 0.166 | 0.193 | 0.148 [ 0.153 | 0.146 | 0.146 | 0.143
80 0231 | 0293 | 0225 [0227 | 0222 | 0230 | 0.222 | 0.183 | 0226 | 0.19 | 0.182 [ 0.189 | 0.182 | 0.189
20 0212 | 0.100 | 0.107 | 0.122 | 0.111 | O.111 | 0.106 | 0.161 | 0.091 | 0.080 | 0.078 | 0.077 | 0.077 | 0.082
mdps (20; 10; 2K) 350 0229 | 0209 | 0.178 [ 0209 | 0.190 | 0.189 | 0.178 | 0.166 | 0.154 | 0.131 | 0.126 [ 0.127 | 0.126 | 0.127
80 0211 | 0.184 [ 0.184 | 0200 | 0.192 | 0.191 | 0.183 | 0.167 | 0.146 | 0.146 | 0.140 [ 0.148 | 0.140 | 0.148
20 0260 | 0.091 | 0.089 | 0.105 | 0.093 | 0.090 | 0.089 | 0.222 | 0.075 | 0.069 | 0.068 | 0.069 | 0.068 | 0.068
mdpe (20; 20; 4k) 50 0225 | 0.64 | 0.127 [0.133 | 0.128 | 0.127 | 0.128 | 0.170 | 0.134 | 0.098 [ 0.099 | 0.099 | 0.100 | 0.100
80 0222 | 0.156 | 0.155 | 0.166 | 0.163 | 0.153 | 0.155 | 0.184 | 0.132 | 0.123 [ 0.123 | 0.121 | 0.118 | 0.120
20 0.174 | 0.156 | 0.129 [ 0.157 | 0.144 | 0.130 | 0.123 [ 0.101 | 0.100 | 0.060 | 0.096 | 0.096 | 0.096 | 0.095
mdp7 (30; 5; 2.5k) 50 0.174 | 0227 | 0.169 | 0.171 | 0.173 | 0.162 | 0.165 | 0.143 | 0.175 | 0.123 | 0.129 | 0.131 | 0.125 | 0.125
80 0.186 | 0.179 | 0.075 | 0.180 | 0.181 | 0.175 [ 0.175 | 0.160 | 0.169 | 0.156 | 0.151 [ 0.154 | 0.161 | 0.165
20 0.178 | 0.127 | 0.105 | 0.101 | 0.009 | 0.102 | 0.098 | 0.124 | 0.092 | 0,071 | 0.074 | 0.075 | 0.070 | 0.071
mdps (30; 10; 5k) 350 0.161 | 0.166 | 0.141 [ 0.148 | 0.144 | 0.138 | 0.136 | 0.126 | 0.138 | 0.118 [0.122 | 0.124 | 0.112 | 0.125
80 0.173 | 0232 | 0.167 [0.073 | 0.173 | 0.166 | 0.167 | 0.143 | 0213 | 0.147 | 0.138 [ 0.139 | 0.142 | 0.149
20 0209 | 0.081 | 0.8 | 0.93 | 0.087 | 0.085 | 0.084 | 0.148 | 0.069 | 0.066 | 0.065 | 0.065 | 0.064 | 0.065
mdpg (30; 20; 10k) 50 0.166 | 0.108 [ 0.110 | 0.116 | 0.112 | 0.109 | 0.112 | 0.139 | 0.093 | 0.086 | 0.085 [ 0.086 | 0.086 | 0.088
80 0.167 | 0.150 | 0.121 | 0.119 [0.119 | 0.119 | 0.121 | 0.134 | 0.121 | 0.095 [ 0.097 | 0.098 | 0.096 | 0.095
effort proportional to the model size’] Detailed results for each TABLE III: Efect size as measured by Aj.
single # parameter within a specific experiment are provided in %uncertainty #actions
the Publ'lcly available .data}set paired with this paper. Boldface balanced 20 50 %0 5 10 20
entries in Table highlight the best results (i.e., smallest hist 1.000 0716 0531 | 0617 0704 0926
HDR magnitude) when considering all the strategies. Gray dist 1.000  0.790  0.679 | 0741  0.802  0.951
. . - . freq 1.000 0.728 0.630 0.704 0.753 0.951
C.GHS instead emphasize the Comparlson betwgen ﬂat., hlstory, -8 1000 0765 0654 | 0741 0753 0975
distance, and frequency strategies, i.e., excluding their combi- c-5-5 1.000  0.815 0667 | 0728 0852  0.951
nation. Results show that the flat strategy (i.e., the baseline) c-8-2 1000 0.815 0.691 | 0.753 0.802  0.975
: : : : : e balanced 20 50 80 5 10 20
is often i with high HDR magnitude. It exhibits th unba
s often associated with hig agnitude. It exhibits the hist 0963 0716 0556 | 0531 0642  0.901
worst behavior in 85% of the experiments. Few exceptions dist 0988 0951  0.691 0741 0741 | 0975
have been observed within high level of uncertainty (80%) freq 0.988 0926~ 0716 | 0.741  0.840 ~ 0.975
: c-2-8 0.988 0.926 0.667 0.728 0.790 0.951
and small number of actions (). o ¢-5-5 0988 0926 0741 | 0741 079 0975
To deepen our investigation we compared each individual c-8-2 0975 0926 0704 | 0728 0704  1.000

strategy with the baseline by following the practical guidelines
introduced in [29]. Namely, we used the standardized non-
parametric Vargha and Delaney’s Ay, effect size to measure
practical value of the HDR magnitude. In our context, the
Ay, indicates the probability that a selected strategy yields
increased confidence compared to the flat one. Results are
shown in Table Values represent the effect size by varying
three major factors: %uncertainty, model structural complexity
(#actions per state), and the prior knowledge (balanced vs
unbalanced). Similarly to Table [II} the best values are high-
lighted. We can observe that all the strategies in both balanced
and unbalanced conditions outperform the flat strategy (i.e.,
Alg > 0.5). In most cases, the distance method is associated
with the highest value. On the contrary, the history is the
method exhibiting the lowest values (e.g., 0.53 with 80% un-

4The total effort is N X #transitions, with N constant value equal to 4 in
our experimental campaign.

certainty in the balanced case, and 5 actions in the unbalanced
scenario). Consistently with our initial intuition, see Sect.
those strategies that take into account prior knowledge (i.e.,
distance, frequency, and combinations) improve their perfor-
mance for high level of uncertainty (80%) in the unbalanced
conditions w.r.t. the same strategies in balanced conditions.

When increasing structural complexity (i.e., increasing the
degrees of freedom during MBT) all the new strategies in-
crease the magnitude of the improvement. Such a trend can
be understood by reading the values in both the balanced and
unbalanced conditions. The effect size of combined strategies
has been the highest in 90% of the experiments. However, they
are not likely to achieve the highest confidence, especially in
unbalanced conditions. Overall, we can observe the highest
confidence without combination in 75% of our experiments.




TABLE IV: Gain in terms of HDR ratio.

% uncertainty #actions

balanced 20 50 80 5 10 20
hist 2.549 1.399 1.111 1.232 1.383 2.305
dist 2.622 1.478 1.253 1.331 1.537 2.385
freq 2.283 1.378 1.214 1.222 1.462 2.164
c-2-8 2.469 1.421 1.240 1.292 1.510  2.256
c-5-5 2.565 1.485 1.257 1.336 1.565 2.333
c-8-2 2.649 1.492 1.270 1.358 1.588  2.374

unbalanced 20 50 80 5 10 20
hist 2.084 1.317 1.093 1.125 1.271 1.910
dist 2.357 1.617 1272 1.389 1.560  2.190
freq 2419 1.524 1.308 | 1.329 1.527 2.140
c-2-8 2.363 1.523 1.272 1.301 1.516  2.154
c-5-5 2.359 1.550 1.306 1.301 1.578  2.167
c-8-2 2.352 1.560 1.305 1.316 1.546  2.175

Summary: Our testing methods are likely to outperform
the flat strategy to a large extent in both balanced and
unbalanced scenarios. We observed that the magnitude
of the improvement increases by increasing the structural
complexity of the SUT.

RQ3. To answer this question, we studied the gain obtained
out of the testing activity in terms of accuracy of the inference
process. Such a gain is calculated as the ratio of the HDR
magnitude obtained using a target strategy vs the baseline (i.e.,
the flat strategy). Table shows the results when varying:
Youncertainty, structural complexity, and prior knowledge.

Values are always greater than 1.0, meaning that our strate-
gies deliver more confidence than the flat one. Consistently
with the discussion for RQ2, the gain is smaller when decreas-
ing the level of uncertainty. Nevertheless, we can observe a
decreased gain loss in the unbalanced case. On average, the
gain loss is 43% in the balanced case when passing from 20%
to 50% uncertainty level. Such a value is reduced to 34% in
the unbalanced case. On the contrary, the gain increases when
scaling up the model complexity (#actions per state). In the
balanced case, the gain increases on average from 16% to 78%
when increasing the #actions from 5 to 10 and from 10 to 20,
respectively. In the unbalanced condition the same values are
15% and 65%, respectively. Overall, the gain of the distance
and frequency strategies is always larger than the history one.
More specifically, the distance exhibits the largest one in the
balanced scenario, whereas the frequency scores better in the
unbalanced scenario, with 20% and 80% uncertainty level.
Combined strategies, instead, show higher effectiveness mostly
in the balanced condition, largest value is 2.65 obtained with
c-8-2 and 20% uncertainty, see Table Here they achieve
highest gain values in 85% of our experiments, whereas in the
unbalanced case this percentage is lower (30%).

To determine the best strategy (between history, distance,
and frequency) depending on the characteristics of the SUT,
we measured the frequency of occurrence of best confidence
gain for all the experiments on the synthetic systems. Table [V]
shows the results summarized by prior knowledge (balanced
vs unbalanced), level of uncertainty, and model complexity.
Insights extracted from data follow. We can observe that by
increasing the uncertainty level, the history strategy undergoes

TABLE V: Best choice frequency.

% uncertainty #actions

balanced 20 50 80 5 10 20
hist 0.33 0.33 0.00 0.22 0.33 0.33
dist 0.55 0.67 0.78 0.78 0.56 0.44
freq 0.11 0.00 0.22 0.00 0.11 0.22

unbalanced 20 50 80 5 10 20
hist 0.00 0.00 0.00 0.00 0.00 0.00
dist 0.33 0.78 033 0.56 0.44 0.33
freq 0.67 022 0.67 | 0.44 0.56 0.67

a degradation in favor of the distance one. With high level of
uncertainty (80%) the distance has been the best choice in 78%
of the experiments. Considering the unbalanced condition,
history is always worse than both distance and frequency. We
found that the distance is likely to be the most effective choice
when the level of uncertainty is ~ 0.5 (i.e., the number of
certain vs uncertain regions is almost equal). On the contrary,
when the number of § parameters is very high (> 80%) or very
low (< 20%), the usage of operational profiles that selectively
increase/decrease chances to hit uncertain regions (depending
on the degree of uncertainty), reveals a substantial effective-
ness. In these cases, the frequency strategy has been the best
choice in 67% of the performed experiments. Taking into
account the #actions factor, we can observe that both distance
and frequency are always better than history. This trend is
even more evident with unbalanced condition. Furthermore, by
increasing the #actions, the effectiveness of distance decreases
whereas the effectiveness of frequency increases. Despite this
trend, in the unbalanced case, the distance strategy always
results the best choice the tester can do. In the unbalanced
condition instead, frequency is better than distance with high
#actions, e.g., frequency increased by 34% with 20 #actions
per state.

Summary: In terms of accuracy of the inference process,
our strategies yield a gain up to 2.65x. The distance is the
best choice in case of balanced scenarios. The frequency
is better in the unbalanced scenario with an increasing
structural complexity.

D. Threats to Validity

Generalization of results is a typical threat to external
validity in empirical evaluations. We mitigated such a threat
by conducting a large testing campaign on several case studies
showing different structural complexity. Furthermore, we de-
tailed all the factors controlled in our experiments (i.e., model
structural characteristics, uncertain regions, prior knowledge).

To mitigate threats to internal validity, we designed our
experimental environment to have direct manipulation of the
factors of interest. In particular, we controlled both true values
of 6 parameters and design-time beliefs expressed by priors.
This setting has been crucial to assess cause-effect relations
between external factors and effectiveness of our strategies.
This fine-grained access to independent variables provides
a greater internal validity based on an association observed



without manipulation. Direct manipulation enables also the
replication of the same experimental setting when varying test
generation strategy.

We addressed threats to conclusion validity by reducing
the possibility of producing results by chance. We repeated
experiments 100 times and using for each experiment a very
large sample size (between 200 and 4k). We followed the
guidelines introduced in [29] to detect statistical differences.
Namely, we conducted a pairwise comparison among selected
strategies using the Mann-Whitney U test to calculate p-value
with significance level o = 0.05. In addition to statistical
differences, we used the standardized Vargha and Delaney’s
Alg non-parametric effect size measure.

We handled major construct validity threats by assessing the
validity of the metrics used during our experimental campaign.
The effort has been measured by considering the total number
of executed tests that represents a traditional choice to assess
randomized testing algorithms [29]]. The effectiveness has
been measured by adopting the RE ad the DR that represent
sensible choices to measure the precision of updated beliefs
as reported in [15]. The HDR magnitude yields instead the
highest possible accuracy in estimating the 6 parameters. As
described in [17]], this is a traditional measure in Bayesian
inference to assess the confidence of the posterior knowledge.

VII. RELATED WORK

A survey on MBT approaches is reported in [30] where the
strategy for test case generation is highlighted as challenging.
In [31] the idea of variability-aware testing is fostered, test
cases are generated with the goal of minimizing the effort
and maximizing the accuracy. In [32] testing is supported
by behavioral coverage using machine learning algorithms
to augment standard syntactic testing. In [33] reachability
information is used to generate test cases for different goals
and/or program variants. All these MBT methodologies pro-
pose optimized test case generation but they do not consider
system uncertainties for such a scope.

Several approaches have been defined to measure the vari-
ation of uncertain input parameters and system output [34]].
A taxonomy of potential sources of uncertainty is presented
in [35] where a distinction is made for the different phases of
software development, but testing is almost neglected. Uncer-
tainty propagation for dependability has been investigated in
analytical models [36], and there exist approaches embedding
the specification of uncertain parameters for performance and
reliability [37], [38]]. However, to the best of our knowledge,
there is no approach modifying the very analysis process.

Probabilistic models and their adaptation is proposed by: (i)
[39], i.e., time-varying transition probabilities of Markov mod-
els are continuously updated; (ii) [19], i.e., runtime quantitative
verification and sensitivity analysis are used to support self-
adaptive systems; (iii) [40], i.e., queueing networks include
adaptation knobs dynamically set to fulfill performance goals.
However, all these works modify the system models to react to
runtime changes, whereas our approach exploits uncertainties
to deeper analyze specific parts of such a model.
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Uncertainty awareness in MBT recently gained attention due
to the potential of increasing the level of assurance of delivered
software [41], [42]. In [43] uncertainty sampling is used to
generate test data and it outperforms conventional random
testing. An uncertainty-wise modeling framework has been
proposed in [23] to create test-ready models and support MBT
of uncertain CPSs. Discovering uncertainties (occurred with
unknown sources) of CPSs is tackled in [9] where test cases
are generated to guarantee coverage of models. Uncertainty
is considered as first-class concern also in [16]], however all
uncertainties are equally treated, there is no distinction on
their peculiar characteristics. In [10] the test case generation
process takes into account the uncertainty in timing properties
(e.g., the detection time of external events), and statistical
model checking is adopted to verify timing constraints. In [[11]]
an approximation-refinement loop (consisting of incrementing
the training data and refining a target system’s model) is
introduced in combination with testing to detect requirements
violations. A domain specific language to deal with the uncer-
tainty affecting physical behavior of CPSs has been introduced
in [12] where sampling and machine learning techniques are
adopted to generate appropriate test cases.

Summarizing, this paper differs from the state-of-the-art
since it leverages on fine-grained characteristics of the un-
certain model regions to drive MBT exploration strategies.

VIII. CONCLUSION

In this paper we presented novel MBT strategies that
exploit awareness on sources of uncertainty to drive the testing
process. Our fine-grained strategies are based on past knowl-
edge (History), magnitude of the variability of the uncertain
parameters (Distance), and operational profiles (Frequency).
We empirically evaluated the effectiveness of these strategies
on three representative benchmarks from different domains
and nine synthetic systems with increasing structural com-
plexity up to 10k model transitions, and varying percentage
of uncertainty, and balanced/unbalanced prior knowledge. We
show that our novel strategies outperform the flat baseline in
terms of relative error, detection rate of injected faults, and
the accuracy of the estimations.

Summarizing, the Distance strategy greedily optimizes the
local density regions and resulted to be the best choice,
with few exceptions in the unbalanced scenario where the
Frequency strategy instead scores better in the presence of
a high number of model actions. As future work, we plan to
further investigate the trade-off between these two strategies,
in fact when a limited number of samples is available the
greediness of Distance may reduce its overall performance,
due to limited coverage of some parameters. Moreover, we
plan to conduct additional assessment of our uncertainty-aware
testing methods in industrial case studies.
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