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Motivation

▶ There is a great advantage in being able to verify the correctness of
computer systems, whether they are hardware, software, or a
combination. This is most obvious in the case of safety-critical
systems, but also applies to those that are commercially critical, such
as mass-produced chips, mission critical, etc.
▶ Formal veri�cation methods have quite recently become usable by

industry and there is a growing demand for professionals able to apply
them.

▶ We study a fully automatic way to perform formal veri�cation
▶ not rule-based
▶ called model checking
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Formal veri�cation by model checking

▶ Le tecniche di veri�ca formale sono generalmente viste come la somma
di tre componenti:
▶ Un framework in cui modellare il sistema che vogliamo analizzare

▶ Un linguaggio di speci�ca delle proprietà da veri�care
▶ Un metodo per veri�care che il sistema soddis� le proprietà speci�cate.

▶ Solitamente il Model Checking si basa sull'utilizzo di una logica
temporale. Quindi, le tre componenti possono essere costituite come
segue:

▶ Si costruisce un modello M che descrive il comportamento del sistema
▶ Si codi�ca la proprietà da veri�care in una formula temporale ϕ
▶ Si chiede al model checker di veri�care che M |= ϕ

Angelo Gargantini temporal logic March 12, 2025 5 / 66



Formal veri�cation by model checking

▶ Le tecniche di veri�ca formale sono generalmente viste come la somma
di tre componenti:
▶ Un framework in cui modellare il sistema che vogliamo analizzare

▶ Un linguaggio di speci�ca delle proprietà da veri�care
▶ Un metodo per veri�care che il sistema soddis� le proprietà speci�cate.

▶ Solitamente il Model Checking si basa sull'utilizzo di una logica
temporale. Quindi, le tre componenti possono essere costituite come
segue:

▶ Si costruisce un modello M che descrive il comportamento del sistema
▶ Si codi�ca la proprietà da veri�care in una formula temporale ϕ
▶ Si chiede al model checker di veri�care che M |= ϕ

Angelo Gargantini temporal logic March 12, 2025 5 / 66



Logiche temporali

▶ Esistono diverse logiche temporali che possono essere divise in due
clasi fondamentali:
▶ le linear-time logics (LTL) e le branching-time logics (CTL).
▶ LTL considera il tempo come un insieme di cammini, dove cammino é

una sequenza di istanti di tempo
▶ CTL rappresenta il tempo come un albero, con radice l'istante corrente
▶ Un'altra classi�cazione divide tra tempo continuo e discreto. Noi

studieremo solo logiche discrete e senza metrica.
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Propositional logic

The aim of logic in computer science is to develop languages to model the
situations we encounter as computer science professionals, in such a way
that we can reason about them formally. Reasoning about situations means
constructing arguments about them; we want to do this formally, so that
the arguments are valid and can be defended rigorously, or executed on a
machine. Consider the following argument:

Example 1.1

If the train arrives late and there are no taxis at the station, then John is
late for his meeting. John is not late for his meeting. The train did arrive
late. Therefore, there were taxis at the station.
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Valid argument

Intuitively, the argument is valid, since if we put the �rst sentence and the
third sentence together, they tell us that if there are no taxis, then John
will be late. The second sentence tells us that he was not late, so it must
be the case that there were taxis.

Another example

Example 1.2 If it is raining and Jane does not have her umbrella with her,
then she will get wet. Jane is not wet. It is raining. Therefore, Jane has
her umbrella with her.

Angelo Gargantini temporal logic March 12, 2025 8 / 66



Valid argument

Intuitively, the argument is valid, since if we put the �rst sentence and the
third sentence together, they tell us that if there are no taxis, then John
will be late. The second sentence tells us that he was not late, so it must
be the case that there were taxis.

Another example

Example 1.2 If it is raining and Jane does not have her umbrella with her,
then she will get wet. Jane is not wet. It is raining. Therefore, Jane has
her umbrella with her.

Angelo Gargantini temporal logic March 12, 2025 8 / 66



Propositions

Example 1.1 Example 1.2

the train is late it is raining

there are taxis at the station Jane has her umbrella with her

John is late for his meeting Jane gets wet.

The argument in each example could be stated without talking about trains
and rain, as follows:
If p and not q, then r. Not r. p. Therefore, q.
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Declarative sentences

The language we begin with is the language of propositional logic. It is
based on propositions, or declarative sentences which one can, in principle,
argue as being true or false.

1. The sum of the numbers 3 and 5 equals 8.

2. Jane reacted violently to Jack's accusations.

3. Every even natural number >2 is the sum of two prime numbers.

4. All Martians like pepperoni on their pizza.

5. Albert Camus�etait un�ecrivain fran�cais.

6. Die W� urde des Menschen ist unantastbar.
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NOT Declarative sentences

The kind of sentences we won't consider here are non-declarative ones, like

▶ Could you please pass me the salt?

▶ Ready, steady, go!

▶ May fortune come your way.
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Atomic sentences

Our strategy is to consider certain declarative sentences as being atomic, or
indecomposable, like the sentence

`The number 5 is even.'

We assign certain distinct symbols p, q, r, . . ., or sometimes p1, p2, p3, . .
. to each of these atomic sentences and we can then code up more complex
sentences in a compositional way. For example, given the atomic sentences

p: `I won the lottery last week.'

q: `I purchased a lottery ticket.'

r: `I won last week's sweepstakes.'

we can form more complex sentences according to the rules below:
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Logical connectives

¬ The negation of p is denoted by ¬p and expresses `I did not
win the lottery last week,' or equivalently `It is not true that I
won the lottery last week.'

∨ Given p and r at least one of them is true: `I won the lottery
last week, or I won last week's sweepstakes;' we denote this
by p ∨ r and call it the disjunction of p and r.

∧ Dually, the formula p ∧ r denotes the conjunction of p and r:
`Last week I won the lottery and the sweepstakes.'

� `If I won the lottery last week, then I purchased a lottery
ticket.' expresses an implication between p and q, suggesting
that q is a logical consequence of p. We write p � q for that
. We call p the assumption of p � q and q its conclusion.
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Di�erenza tra → e ↔

←→ `If and only if it is Sunday, I'm happy' expresses an
equivalence between p and q, suggesting that q is a logical
consequence of p and also p is a logical consequence of q.
We write p ←→ q for that.

Nota che alcune volte usare ↔ è più completo che usare la semplice
implicazione �.
Ad esempio se ho un metodo isPositive(x) che restituisce vero se x e
positivo e false se non lo è, allora la completa carratterizzazione del metodo
è x > 0 ↔ isPositive(x). Se scrivessi solo x > 0→ isPositive(x) allora con
x negativo il metodo sarebbe libero di ritornare quello che vuole (true o
false).

Angelo Gargantini temporal logic March 12, 2025 14 / 66



LTL sintassi

▶ La logica è costruita su di un insieme di formule atomiche AP {p, q, r,
...} che rappresentano descrizioni atomiche del sistema
▶ De�niamo in maniera ricorsiva le formule LTL:
▶ come la logica proposizionale (1) (| signi�ca �oppure�) - in stile come

grammatica BNF

ϕ ::= ⊤|⊥|p ∈ AP| ¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ→ ϕ|

▶ ⊤,⊥ sono vero e falso
▶ ¬,∧,∨,→ sono connettivi logici classici
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LTL sintassi - (2) operatori temporali

▶ Inseriamo operatori temporali (2):

ϕ ::=
⊤|⊥|p ∈ AP| ¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ→ ϕ|
Xϕ|Fϕ|Gϕ| ϕUϕ|ϕWϕ|ϕRϕ

▶ X, F, G, U,W, R sono connettivi temporali
▶ In particolare: X,F,G sono unari:

▶ X means `neXt state,'
▶ F means `some Future state,' and
▶ G means `all future states (Globally).'

▶ The next three, U, R and W sono binari e sono `Until,' `Release' and
`Weak-until' respectively.
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Alcuni esempi

▶ FG a -> corretto come F(G(a)): in futuro da un certo punto in poi
varrà sempre a

▶ a U (b /\c) �> a vale �no a quando poi varrà b e c
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Precedenza degli operatori

The unary connectives (consisting of ¬ and the temporal connectives X, F
and G) bind most tightly. Next in the order come U, R and W; then come
∧ and ∨; and after that comes �.

▶ Esercizio: alcuni esempi di LTL con e senza parentesi
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Semantica per LTL

▶ The kinds of systems we are interested in verifying using LTL may be
modeled as transition systems. A transition system models a system by
means of states (static structure) and transitions (dynamic structure).
A transition system M = (S, s0,�, L) is
▶ a set of states S endowed
▶ a state is the initial state s0
▶ with a transition relation � (a binary relation on S), such that every s
∈ S has some s' ∈ S with s � s', and

▶ a labelling function L : S � P (AP)

I transition system sono i nostri modelli.
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Labelling function

▶ a labelling function L : S � P (AP)
P (AP) è il powerset � l'insieme delle parti � di proposizioni atomiche
(AP)
▶ L is that it is just an assignment of truth values to all the propositional

atoms, as it was the case for propositional logic (we called that a
valution)

▶ The di�erence now is that we have more than one state, so this
assignment depends on which state s the system is in: L(s) contains all
atoms which are true in state s.
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Graphical representation

▶ all the information about a (�nite) transition system M can be expressed
using directed graphs whose nodes (which we call states) contain all
propositional atoms that are true in that state.

Example: M has only three states A, B, and C. The atomic
propositions AP = {p,q,r}. The only possible transitions are A � B,
A � C, B � A, B � C and C � C; and if L(A) = {p, q}, L(B) =
{q, r} and L(C) = {r}:

p, qstart

A

q, r

B

r

C
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No deadlock

▶ The requirement in De�nition that for every s ∈ S there is at least one
s' ∈ S such that s � s' means that no state of the system can
`deadlock.'
▶ This is a technical convenience, and in fact it does not represent any

real restriction on the systems we can model. If a system did deadlock,
we could always add an extra state sd representing deadlock,

▶ un esempio di deadlock
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Path

▶ A path in a model M = (S, �, L) is an in�nite sequence of states s1,
s2 , s3 , . . . in S such that, for each i ≥ 1, si � si+1.
▶ We write the path as s1 � s2 � . . . .
▶ We write πi for the su�x starting at si , e.g., π

3 is s3 � s4 � . . . .
▶ Esempio
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Esempio

▶ A -> B ->A -> B -> C ...
▶ altri esempi
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Validità di una formula LTL su un path (prop)

De�nition

Let M = (S, �, L) be a model and π = s1 � . . . be a path in M.
Whether π satis�es an LTL formula is de�ned by the satisfaction relation |=
as follows:

1. π|=⊤
2. π̸|=⊥
3. π|=p i� p ∈ L(s1)

4. π|=¬φ i� π ̸|=φ
5. π|=φ1 ∧ φ2 i� π |=φ1 and π |=φ2
6. π|=φ1 ∨ φ2 i� π |=φ1 or π |=φ2
7. π|=φ1 � φ2 i� π |=φ2 whenever π |=φ1
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Validità di una formula LTL su un path (time)

De�nition

Let M = (S, �, L) be a model and π = s1 � . . . be a path in M.
Whether π satis�es an LTL formula is de�ned by the satisfaction relation |=
as follows:

8. π|=X φ i� π2 |=φ
9. π|=G φ i�, for all i ≥ 1, πi |=φ
10. π|=F φ i� there is some i ≥ 1 such that πi |= φ
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Validità di una formula LTL (time 2)

11. (Until) π|=a U b i� there is some i ≥ 1 such that πi |= b and for all j
= 1, . . . , i = 1 we have πj |= a

12. (Weak Until) π|=a W b i� either there is some i ≥ 1 such that πi |=b
and for all j = 1, . . . , i = 1 we have πj |= a; or for all k ≥ 1 we have
πk |=a

▶ U, which stands for `Until,' is the most commonly encountered one of
these. The formula a U b holds on a path if it is the case that a holds
continuously until b holds. Moreover, a U b actually demands that b
does hold in some future state.
▶ Weak-until is just like U, except that aW b does not require that b is

eventually satis�ed along the path in question, which is required by
a U b.
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Validità di una formula LTL (time 3)

13. (Release) π|=a R b i� either there is some i ≥ 1 such that πi |= a and
for all j = 1, . . . , i we have πj |=b, or for all k ≥ 1 we have πk |=b.

▶ It is called `Release' because its de�nition determines that b must
remain true up to and including the moment when a becomes true (if
there is one); a `releases' b.
▶ Release R is the dual of U; that is, a R b is equivalent to ¬(¬a U ¬b).
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Rappresentazione gra�ca

▶ Until: a is true until b become true, a U b

a a a a a b

▶ Release: a releases b: a R b

b b b b b b b
a

aggiungere gra�ca per weak until
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Formula valida

▶ Quando una formula è valida per una macchina M (e non solo per un
path) ?

De�nition

Suppose M =( S, � ,L ) is a model, s ∈ S ,and φ an LTL formula. We
write M ,s |=φ if, for every execution path π of M starting at s, we have
π |= φ

Example

Figura 3.3 e �gura 3.5, alcune formule
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Formula valida con stato iniziale

▶ Se la macchina M ha uno stato iniziale s0
▶ Quando una formula è valida per una macchina M (e non solo per un

path da uno stato) ?

De�nition

Suppose M =(S, s0,� ,L ) is a model, s0 ∈ S lo stato iniziale, and φ an
LTL formula. We write M |=φ if, for every execution path π of M starting
at s0, we have π |= φ
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Formula valida con stati iniziali

▶ Se la macchina M ha un insieme di stati iniziali S0
▶ Quando una formula è valida per una macchina M (e non solo per un

path) ?

De�nition

Suppose M =(S, S0,� ,L ) is a model, S0 ⊆ S gli stati iniziali, and φ an
LTL formula. We write M |=φ if per ogni s0 ∈ S0 vale M, s0 |= φ
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Practical Pattern of speci�cations

▶ Safety properties:
▶ something is always true Gϕ

▶ something bad never happens G¬ϕ,
▶ Liveness properties:

▶ something will happen Fϕ
▶ something good keeps happening (GFψ or G(ϕ→ Fψ))

▶ Esempi più complessi - 3.2
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Important equivalences between LTL formulas

We say that two LTL formulas φ and ψ are semantically equivalent, or
simply equivalent, writing φ ≡ ψ, if for all models M and all paths π in M:
π |=φ i� π |=ψ.
▶ solite equivalenze di and, or, not ....
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Until e weak until

A weak until binary operator, denoted W, with semantics similar to that of
the until operator but the stop condition is not required to occur (similar to
release).

▶ φ W ψ ≡ (φ U ψ) ∨ G φ
Both U and R can be de�ned in terms of the weak until:
▶ Until and Weak until: φ U ψ ≡ φ W ψ ∧ F ψ

Also R can be de�ned in terms of W
▶ φ W ψ ≡ (φ U ψ) ∨ G φ ≡ φ U (ψ ∨ G φ) ≡ ψ R (ψ ∨ φ) φ U ψ ≡ Fψ
∧ (φ W ψ) φ R ψ ≡ ψ W (ψ ∧ φ)
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F and G duality

▶ F and G are duals:
▶ ¬ G φ ≡ F ¬ φ ¬ F φ ≡ G ¬ φ
▶ X is dual of itself: ¬ X φ ≡ X ¬ φ
▶ U and R are duals of each other:

▶
¬ ( φ U ψ ) ≡¬ φ R ¬ ψ ¬ ( φ R ψ ) ≡¬ φ U ¬ ψ
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Distributive

▶ It's also the case that F distributes over ∨ and G over ∧ , i.e.,
▶ F( φ ∨ ψ ) ≡ F φ ∨ F ψ G( φ ∧ ψ ) ≡ G φ ∧ G ψ
▶ But F does not distribute over ∧ and G does not over ∨.
▶ F and G can be written as follows using U

▶ F φ ≡ ⊤U φ G φ ≡⊥ R φ
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Adequate sets of connectives for LTL

Non tutti i connettivi sono necessari. Basterebbero di meno, ma per facilità
nelle scritture delle formule li usiamo tutti.
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Pattern of LTL properties

Esistono dei pattern pratici per la speci�ca mediante LTL di proprietà
comuni:
http://patterns.projects.cis.ksu.edu/documentation/patterns/

ltl.shtml

Alcune volte gli operatori si indicano così: G anche [] □, F anche <>♢
Absence � P is false:

Globally G (!P)

Before R F R -> (!P U R)

After Q G (Q -> G (!P))

Between Q and R G ((Q & !R & F R) -> (!P U R))
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Pattern (Existence)

Existence P becomes true :

Globally F (P)

(*) Before R !R W (P & !R)

After Q G (!Q) | F (Q & F P))

(*) Between Q and R G (Q & !R -> (!R W (P & !R)))

(*) After Q until R G (Q & !R -> (!R U (P & !R)))
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Pattern (Universality)

Universality P is true :

Globally G (P)

Before R F R -> (P U R)

After Q G (Q -> G (P))

Between Q and R G ((Q & !R & F R) -> (P U R))

(*) After Q until R G (Q & !R -> (P W R))
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Altri Pattern

▶ Precedence S precedes P
▶ Response S responds to P :
▶ Precedence Chain ...
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Example: mutual exclusion

When concurrent processes share a resource (such as a �le on a disk or a
database entry), it may be necessary to ensure that they do not have
access to it at the same time. Several processes simultaneously editing the
same �le would not be desirable
a process to access a critical resource must be in critical section
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mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter its
critical section, it will eventually be permitted
to do so.

Non-blocking: A process can always request to enter its
critical section.

No strict sequencing: Processes need not enter their critical
section in strict sequence.
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mutual exclusion �rst model

n1n2start

s0

t1n2

s1

c1n2

s2

t1t2

s3

c1t2

s4

n1t2

s5

n1c2

s6

t1c2

s7

Every process can be in state:
{non critical (n), trying to
enter (t), critical state (c)}.
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mutual exclusion properties

Safety G ¬ ( c1 ∧ c2 ). OK

Liveness: G ( t1 � F c1 ). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing
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Limiti LTL

Ricorda la de�nizione:

De�nition

Suppose M is a model, s ∈ S ,and φ an LTL formula. We write M,s |=φ if,
for every execution path π of M starting at s, we have π |= φ

▶ Qundi M,s |=Fa vuol dire per ogni path a partire da s a accade
▶ Come faccio a dire che non sempre accade in futuro ma potrebbe

accadere?

Angelo Gargantini temporal logic March 12, 2025 47 / 66



CTL

COMPUTATION TREE LOGIC - CTL La CTL è una logica con connettivi
che ci permette di speci�care proprietà temporali.

▶ Essendo una logica branching-time, i suoi modelli sono rappresentabili
mediante una struttura ad albero in cui il futuro non è deterministico:
esistono di�erenti computazioni o paths nel futuro e uno di questi sarà
il percorso realizzato.

Cosa è un modello per una logica proposizionale ???

▶ Un assegnamento di un valore di verità ad ogni proposizione
▶ che rende vera la formula

▶ a ∨ b ∧ c: trova un modello
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CTL sintassi

▶ La logica è costruita su di un insieme di formule atomiche AP {p, q, r,
...} che rappresentano descrizioni atomiche del sistema
▶ De�niamo in maniera induttiva le formule CTL:

ϕ ::= ⊤|⊥|p ∈ AP|¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ→ ϕ|

▶ ⊤,⊥,¬,∧,∨,→ sono connettivi logici classici
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CTL sintassi

▶ Operatori temporali:

ϕ ::=
AXϕ|EXϕ AFϕ|EFϕ

|A[ϕUϕ]|E [ϕUϕ] AGϕ|EGϕ|

▶ ⊤,⊥,¬,∧,∨,→ sono connettivi logici classici
▶ AX, EX, AG, EG, AU, EU, AF e EF sono connettivi temporali
▶ In particolare: A sta per "along All paths" (inevitably) E sta per "along

at least (there Exists) one path" (possibly)
▶ X, F, G e U sono gli operatori della logica temporale lineare

▶ Nota Bene: AU e EU sono operatori binari e i simboli X, F, G e U non
possono occorrere se non preceduti da A o E e viceversa.
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Priorità degli operatori

▶ Convenzione sull' ordinamento: gli operatori unary (AG, EG, AF, EF,
AX, EX) legano con priorità più elevata, seguono gli operatori binary
A, V, e dopo ancora �>, AU ed EU.
▶ Esempi di formule CTL ben-formate

▶ AG (q �> EG r)
▶ EF E(r U q)
▶ A[p U EF r]
▶ EF EG p �> AF r
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Attenzione

▶ Esempi di formule CTL non ben-formate
▶ EF G r

▶ A!G!p
▶ F[r U q]
▶ EF(r U q)
▶ AEF r
▶ A[(r U q) /\ (p U r)]
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Semantica per CTL (brief)

De�nition

Let M = (S, �, L) be a model for CTL, s in S, φ a CTL formula. The
relation M, s |= φ is de�ned by structural induction on φ.

▶ If φ is atomic, satisfaction is determined by L.
▶ If the top-level connective of φ is a boolean connective ( ∧ , ∨ , ¬ ,

etc.) then the satisfaction question is answered by the usual truth-table
de�nition and further recursion down φ.

▶ If the top level connective is an operator beginning A, then satisfaction
holds if all paths from s satisfy the `LTL formula' resulting from
removing the A symbol.

▶ Similarly, if the top level connective begins with E, then satisfaction
holds if some path from s satisfy the `LTL formula' resulting from
removing the E.
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Semantic of CTL

Non temporal formula are treated as usual

1. M, s |= ⊤
2. M, s ̸|=⊥
3. M, s |=p i� p ∈ L(s)

4. M, s |=¬φ i� π M, s ̸|=φ
5. M, s |=φ1 ∧ φ2 i� M, s |=φ1 and M, s |=φ2
6. M, s |=φ1 ∨ φ2 i� M, s |=φ1 or M, s |=φ2
7. M, s |=φ1 � φ2 i� M, s |=φ2 whenever M, s |=φ1
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Validità di una formula CTL (time)

8. M, s |=AX φ i� forall s1such that s → s1 we have M, s1 |=φ
9. M, s |=EX φ i� some s1such that s → s1 we have M, s1 |=φ
10. M, s |=AG φ i�, for all paths s → s1 → s2 . . . and all si along the

path, we have M, s |=φ
11. M, s |=EG φ i�, there is a path s → s1 → s2 . . . and all si along the

path, we have M, s |=φ
▶ AX: `in every next state.'

▶ EX: `in some next state.'
▶ AG: for All computation paths beginning in s the property φ holds

Globally
▶ EG: there Exists a path beginning in s such that φ holds Globally along

the path.
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Validità di una formula CTL (time 2)

12. M, s |=AF φ i�, for all paths s → s1 → s2 . . . there exists some si
along the path, we have M, s |=φ

13. M, s |=EF φ i�, there is a path s → s1 → s2 . . . and for some si along
the path, we have M, s |=φ

▶ AF: for All computation paths beginning in s there will be some Future
state where φ holds.
▶ EF: there Exists a computation path beginning in s such that φ holds

in some Future state;
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Validità di una formula CTL
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Validità di una formula CTL (time 3)

11. M, s |= A[ϕ1Uϕ2] i�, for all paths s → s1 → s2 . . . , that path
satis�es ϕ1Uϕ2i.e., there is some si along the path, such that
M, s |= ϕ2, and, for each j < i, we have M, s |= ϕ1.

12. M, s |= E [ϕ1Uϕ2] i�, there exists a path s → s1 → s2 . . . , that path
satis�es ϕ1Uϕ2.

▶ A U All computation paths beginning in s satisfy that φ1 Until φ2
holds on it.
▶ E U there Exists a computation path beginning in s such that φ1 Until
φ2 holds on it.
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Esempio

Figura 3.3 e computation tree 3.5
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Formula valida con stato iniziale

▶ Se la macchina M ha un insieme di stati iniziali S0
▶ Quando una formula è valida per una macchina M (e non solo per un

path) ?

De�nition

Suppose M =(S, S0,� ,L ) is a model, S0 ⊆ S gli stati iniziali, and φ an
CTL formula. We write M |=φ if per ogni s0 ∈ S0 vale M, s0 |= φ
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Pattern of CTL properties

Esistono dei pattern pratici per la speci�ca mediante CTL di proprietà
comuni:
http://patterns.projects.cis.ksu.edu/documentation/patterns/

ctl.shtml

Absence � P is false:

Globally AG(!P)

Before R A[(!P | AG(!R)) W R]

After Q AG(Q -> AG(!P))
Many of the mappings use the weak until operator (W) which is related to
the strong until operator (U) by the following equivalences:
A[x W y] = !E[!y U (!x & !y)]
E[x U y] = !A[!y W (!x & !y)]
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Pattern (Existence)

Existence P becomes true :

Globally AF(P)

(*) Before R A[!R W (P & !R)]

After Q A[!Q W (Q & AF(P))]

(*) Between Q and R AG(Q & !R -> A[!R W (P & !R)])

(*) After Q until R AG(Q & !R -> A[!R U (P & !R)])
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Pattern (Universality)

Universality P is true :

Globally AG(P)

(*) Before R A[(P | AG(!R)) W R]

After Q AG(Q -> AG(P))

(*) Between Q and R AG(Q & !R -> A[(P | AG(!R)) W R])

(*) After Q until R AG(Q & !R -> A[P W R])
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Practical patterns of speci�cations

▶ It is possible to get to a state where started holds, but ready doesn't:
EF ( started ∧ ¬ready ). To express impossibility, we simply negate
the formula.
▶ For any state, if a request (of some resource) occurs, then it will

eventually be acknowledged: AG ( requested � AF acknowledged ).
▶ A certain process is enabled in�nitely often on every computation path:

AG (AF enabled ).
▶ From any state it is possible to get to a restart state: AG (EF restart ).
▶ Altri esempi
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Important equivalences between CTL formulas

▶ We have already noticed that A is a universal quanti�er on paths and
E is the corresponding existential quanti�er. Moreover, G and F are
also universal and existential quanti�ers, ranging over the states along
a particular path.

▶ We can derive the following equivalences:
▶ ¬ AF φ ≡ EG ¬φ and EG φ ≡ ¬ AF ¬φ
▶ ¬ EF φ ≡ AG ¬φ and AG φ ≡ ¬ EF ¬φ
▶ ¬ AX φ ≡ EX ¬φ.
▶ We also have the equivalences AF φ ≡ A[ ⊤U φ ] and

▶ EF φ ≡ E[ ⊤U φ ] which are similar to the corresponding equivalences
in LTL.

▶ Adequate sets of CTL connectives: not all the connectives are
necessary.

▶ We could (and will) use only AF, EU, EX
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CTL* and the expressive powers of LTL and CTL

▶ CTL allows explicit quanti�cation over paths, and in this respect it is
more expressive than LTL, as we have seen.
▶ However, it does not allow one to select a range of paths by describing

them with a formula, as LTL does. In that respect, LTL is more
expressive. For example, in LTL we can say `all paths which have a p
along them also have a q along them,' by writing F p � F q . It is not
possible to write this in CTL because of the constraint that every F has
an associated A or E.

▶ CTL* is a logic which combines the expressive powers of LTL and CTL,
by dropping the CTL constraint that every temporal operator (X, U, F,
G) has to be associated with a unique path quanti�er (A, E).

▶ Past operators in LTL can be added.
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