
Logica temporale

Angelo Gargantini

March 12, 2025

1

5.1 Motivation

Motivation

� There is a great advantage in being able to verify the correctness of computer
systems, whether they are hardware, software, or a combination. This is most
obvious in the case of safety-critical systems, but also applies to those that are
commercially critical, such as mass-produced chips, mission critical, etc.

� Formal veri�cation methods have quite recently become usable by industry
and there is a growing demand for professionals able to apply them.

� We study a fully automatic way to perform formal veri�cation

* not rule-based

* called model checking

Formal veri�cation by model checking

� Le tecniche di veri�ca formale sono generalmente viste come la somma di tre com-
ponenti:

� Un framework in cui modellare il sistema che vogliamo analizzare

* Un linguaggio di speci�ca delle proprietà da veri�care

* Un metodo per veri�care che il sistema soddis� le proprietà speci�cate.

� Solitamente il Model Checking si basa sull'utilizzo di una logica temporale.
Quindi, le tre componenti possono essere costituite come segue:

* Si costruisce un modello M che descrive il comportamento del sistema

* Si codi�ca la proprietà da veri�care in una formula temporale ϕ

* Si chiede al model checker di veri�care che M |= ϕ

Logiche temporali

� Esistono diverse logiche temporali che possono essere divise in due clasi fondamen-
tali:

� le linear-time logics (LTL) e le branching-time logics (CTL).

� LTL considera il tempo come un insieme di cammini, dove cammino é una
sequenza di istanti di tempo

� CTL rappresenta il tempo come un albero, con radice l'istante corrente

� Un'altra classi�cazione divide tra tempo continuo e discreto. Noi studieremo
solo logiche discrete e senza metrica.

2

5.2 Propositional logic

Propositional logic
The aim of logic in computer science is to develop languages to model the situations we

encounter as computer science professionals, in such a way that we can reason about them
formally. Reasoning about situations means constructing arguments about them; we want
to do this formally, so that the arguments are valid and can be defended rigorously, or
executed on a machine. Consider the following argument:

Example 1.1

If the train arrives late and there are no taxis at the station, then John is late for his
meeting. John is not late for his meeting. The train did arrive late. Therefore, there
were taxis at the station.

Intuitively, the argument is valid, since if we put the �rst sentence and the third
sentence together, they tell us that if there are no taxis, then John will be late. The
second sentence tells us that he was not late, so it must be the case that there were taxis.
Much of this book will be concerned with arguments that have this structure, namely,

that consist of a number of sentences followed by the word `therefore' and then another
sentence. The argument is valid if the sentence after the `therefore' logically follows from
the sentences before it. Exactly what we mean by `follows from' is the subject of this
chapter and the next one. Consider another example:
Example 1.2 If it is raining and Jane does not have her umbrella with her, then she

will get wet. Jane is not wet. It is raining. Therefore, Jane has her umbrella with her.
This is also a valid argument. Closer examination reveals that it actually has the same

structure as the argument of the previous example! All we have done is substituted some
sentence fragments for others:

Propositions

Example 1.1 Example 1.2

the train is late it is raining

there are taxis at the station Jane has her umbrella with her

John is late for his meeting Jane gets wet.

The argument in each example could be stated without talking about trains and rain,
as follows:
If p and not q, then r. Not r. p. Therefore, q.
In developing logics, we are not concerned with what the sentences really mean, but

only in their logical structure. Of course, when we apply such reasoning, as done above,
such meaning will be of great interest.

3

5.3 Declarative sentences

In order to make arguments rigorous, we need to develop a language in which we can
express sentences in such a way that brings out their logical structure. The language
we begin with is the language of propositional logic. It is based on propositions, or
declarative sentences which one can, in principle, argue as being true or false. Examples
of declarative sentences are:

1. The sum of the numbers 3 and 5 equals 8.

2. Jane reacted violently to Jack's accusations.

3. Every even natural number >2 is the sum of two prime numbers.

4. All Martians like pepperoni on their pizza.

5. Albert Camus�etait un�ecrivain fran�cais.

6. Die W� urde des Menschen ist unantastbar.

These sentences are all declarative, because they are in principle capable of being de-
clared `true', or `false'. Sentence (1) can be tested by appealing to basic facts about
arithmetic (and by tacitly assuming an Arabic, decimal representation of natural num-
bers). Sentence (2) is a bit more problematic. In order to give it a truth value, we need
to know who Jane and Jack are and perhaps to have a reliable account from someone
who witnessed the situation described. In principle, e.g., if we had been at the scene,
we feel that we would have been able to detect Jane's violent reaction, provided that
it indeed occurred in that way. Sentence (3), known as Goldbach's conjecture, seems
straightforward on the face of it. Clearly, a fact about all even numbers >2 is either
true or false. But to this day nobody knows whether sentence (3) expresses a truth or
not. It is even not clear whether this could be shown by some �nite means, even if it
were true. However, in this text we will be content with sentences as soon as they can,
in principle, attain some truth value regardless of whether this truth value re�ects the
actual state of a�airs suggested by the sentence in question. Sentence (4) seems a bit
silly, although we could say that if Martians exist and eat pizza, then all of them will
either like pepperoni on it or not. (We have to introduce predicate logic in Chapter 2 to
see that this sentence is also declarative if no Martians exist; it is then true.) Again, for
the purposes of this text sentence (4) will do. Et alors, qu'est-ce qu'on pense des phrases
(5) et (6)? Sentences (5) and (6) are �ne if you happen to read French and German a
bit. Thus, declarative statements can be made in any natural, or arti�cial, language.

NOT Declarative sentences
The kind of sentences we won't consider here are non-declarative ones, like

� Could you please pass me the salt?

� Ready, steady, go!

4

� May fortune come your way.

Primarily, we are interested in precise declarative sentences, or statements about the
behaviour of computer systems, or programs. Not only do we want to specify such
statements but we also want to check whether a given program, or system, ful�ls a
speci�cation at hand. Thus, we need to develop a calculus of reasoning which allows us
to draw conclusions from given assumptions, like initialised variables, which are reliable
in the sense that they preserve truth: if all our assumptions are true, then our conclusion
ought to be true as well. A much more di�cult question is whether, given any true
property of a computer program, we can �nd an argument in our calculus that has
this property as its conclusion. The declarative sentence (3) above might illuminate the
problematic aspect of such questions in the context of number theory. The logics we
intend to design are symbolic in nature. We translate a certain su�ciently large subset
of all English declarative sentences into strings of symbols. This gives us a compressed
but still complete encoding of declarative sentences and allows us to concentrate on the
mere mechanics of our argumentation. This is important since speci�cations of systems
or software are sequences of such declarative sentences. It further opens up the possibility
of automatic manipulation of such speci�cations, a job that computers just love to do1.

Atomic sentences
Our strategy is to consider certain declarative sentences as being atomic, or indecom-

posable, like the sentence

`The number 5 is even.'

We assign certain distinct symbols p, q, r, . . ., or sometimes p1, p2, p3, . . . to
each of these atomic sentences and we can then code up more complex sentences in a
compositional way. For example, given the atomic sentences

p: `I won the lottery last week.'

q: `I purchased a lottery ticket.'

r: `I won last week's sweepstakes.'

we can form more complex sentences according to the rules below:

¬ The negation of p is denoted by ¬p and expresses `I did not win the lottery last week,'
or equivalently `It is not true that I won the lottery last week.'

∨ Given p and r we may wish to state that at least one of them is true: `I won the lottery
last week, or I won last week's sweepstakes;' we denote this declarative sentence by
p ∨ r and call it the disjunction of p and r 2.

11 There is a certain, slightly bitter, circularity in such endeavours: in proving that a certain computer

program P satis�es a given property, we might let some other computer program Q try to �nd a

proof that P satis�es the property; but who guarantees us that Q satis�es the property of producing

only correct proofs? We seem to run into an in�nite regress.

5

∧ Dually, the formula p ∧ r denotes the rather fortunate conjunction of p and r: `Last
week I won the lottery and the sweepstakes.'

� Last, but de�nitely not least, the sentence `If I won the lottery last week, then I
purchased a lottery ticket.' expresses an implication between p and q, suggesting
that q is a logical consequence of p. We write p � q for that3 . We call p the
assumption of p � q and q its conclusion.

↔ `If and only if it is Sunday, I'm happy' expresses an equivalence between p and q,
suggesting that q is a logical consequence of p and also p is a logical consequence
of q. We write p ←→ q for that.

Of course, we are entitled to use these rules of constructing propositions repeatedly. For
example, we are now in a position to form the proposition p ∧ q � ¬r ∨ q which means
that `if p and q then not r or q'. You might have noticed a potential ambiguity in this
reading. One could have argued that this sentence has the structure `p is the case and if
q then . . . ' A computer would require the insertion of brackets, as in (p ∧ q) � ((¬r)
∨ q) to disambiguate this assertion. However, we humans get annoyed by a proliferation
of such brackets which is why we adopt certain conventions about the binding priorities
of these symbols. Convention 1.3 ¬ binds more tightly than ∨ and ∧, and the latter two
bind more tightly than �. Implication � is right-associative: expressions of the form p
� q � r denote p � (q � r).

Di�erenza tra → e ↔

←→ `If and only if it is Sunday, I'm happy' expresses an equivalence between p and q,
suggesting that q is a logical consequence of p and also p is a logical consequence
of q. We write p ←→ q for that.

Nota che alcune volte usare ↔ è più completo che usare la semplice implicazione �.
Ad esempio se ho un metodo isPositive(x) che restituisce vero se x e positivo e false se

non lo è, allora la completa carratterizzazione del metodo è x > 0 ↔ isPositive(x). Se
scrivessi solo x > 0 → isPositive(x) allora con x negativo il metodo sarebbe libero di
ritornare quello che vuole (true o false).

5.4 Linear-time temporal logic

LTL sintassi

� La logica è costruita su di un insieme di formule atomiche AP {p, q, r, ...} che
rappresentano descrizioni atomiche del sistema

� De�niamo in maniera ricorsiva le formule LTL:

� come la logica proposizionale (1) (| signi�ca �oppure�) - in stile come gram-
matica BNF

6

ϕ ::= ⊤|⊥|p ∈ AP | ¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ→ ϕ|

� ⊤,⊥ sono vero e falso

� ¬,∧,∨,→ sono connettivi logici classici

LTL sintassi - (2) operatori temporali

� Inseriamo operatori temporali (2):

ϕ ::=
⊤|⊥|p ∈ AP | ¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ→ ϕ|
Xϕ|Fϕ|Gϕ| ϕUϕ|ϕWϕ|ϕRϕ

� X, F, G, U,W, R sono connettivi temporali

� In particolare: X,F,G sono unari:

* X means `neXt state,'

* F means `some Future state,' and

* G means `all future states (Globally).'

� The next three, U, R and W sono binari e sono `Until,' `Release' and `Weak-
until' respectively.

Alcuni esempi

� FG a -> corretto come F(G(a)): in futuro da un certo punto in poi varrà sempre a

� a U (b /\c) �> a vale �no a quando poi varrà b e c

Precedenza degli operatori
The unary connectives (consisting of ¬ and the temporal connectives X, F and G) bind

most tightly. Next in the order come U, R and W; then come ∧ and ∨; and after that
comes �.

� Esercizio: alcuni esempi di LTL con e senza parentesi

Semantica per LTL

� The kinds of systems we are interested in verifying using LTL may be modeled as
transition systems. A transition system models a system by means of states (static
structure) and transitions (dynamic structure).

A transition system M = (S, s0,�, L) is

� a set of states S endowed

� a state is the initial state s0

� with a transition relation � (a binary relation on S), such that every s ∈ S
has some s' ∈ S with s � s', and

� a labelling function L : S � P (AP)

I transition system sono i nostri modelli.

7

Labelling function

� a labelling function L : S � P (AP)

P (AP) è il powerset � l'insieme delle parti � di proposizioni atomiche (AP)

� L is that it is just an assignment of truth values to all the propositional atoms,
as it was the case for propositional logic (we called that a valution)

� The di�erence now is that we have more than one state, so this assignment
depends on which state s the system is in: L(s) contains all atoms which are
true in state s.

Graphical representation

� all the information about a (�nite) transition system M can be expressed using directed
graphs whose nodes (which we call states) contain all propositional atoms that are true in
that state.

Example: M has only three states A, B, and C. The atomic propositions AP =
{p,q,r}. The only possible transitions are A � B, A � C, B � A, B � C and C
� C; and if L(A) = {p, q}, L(B) = {q, r} and L(C) = {r}:

p, qstart

A

q, r

B

r

C

No deadlock

� The requirement in De�nition that for every s ∈ S there is at least one s' ∈ S such
that s � s' means that no state of the system can `deadlock.'

� This is a technical convenience, and in fact it does not represent any real
restriction on the systems we can model. If a system did deadlock, we could
always add an extra state sd representing deadlock,

* un esempio di deadlock

Path

� A path in a model M = (S, �, L) is an in�nite sequence of states s1, s2 , s3 , . .
. in S such that, for each i ≥ 1, si � si+1.

� We write the path as s1 � s2 �

� We write πi for the su�x starting at si, e.g., π
3 is s3 � s4 �

� Esempio

8

Esempio

� A -> B ->A -> B -> C ...

� altri esempi

Validità di una formula LTL su un path (prop)

De�nition 1. Let M = (S, �, L) be a model and π = s1 � . . . be a path in M.
Whether π satis�es an LTL formula is de�ned by the satisfaction relation |= as follows:

1. π|=⊤

2. π̸|=⊥

3. π|=p i� p ∈ L(s1)

4. π|=¬φ i� π ̸|=φ

5. π|=φ1 ∧ φ2 i� π |=φ1 and π |=φ2

6. π|=φ1 ∨ φ2 i� π |=φ1 or π |=φ2

7. π|=φ1 � φ2 i� π |=φ2 whenever π |=φ1

Validità di una formula LTL su un path (time)

De�nition 2. Let M = (S, �, L) be a model and π = s1 � . . . be a path in M.
Whether π satis�es an LTL formula is de�ned by the satisfaction relation |= as follows:

8. π|=X φ i� π2 |=φ

9. π|=G φ i�, for all i ≥ 1, πi|=φ

10. π|=F φ i� there is some i ≥ 1 such that πi|= φ

Validità di una formula LTL (time 2)

11. (Until) π|=a U b i� there is some i ≥ 1 such that πi|= b and for all j = 1, . . . , i
= 1 we have πj |= a

12. (Weak Until) π|=a W b i� either there is some i ≥ 1 such that πi|=b and for all
j = 1, . . . , i = 1 we have πj |= a; or for all k ≥ 1 we have πk|=a

� U, which stands for `Until,' is the most commonly encountered one of these. The
formula aU b holds on a path if it is the case that a holds continuously until b
holds. Moreover, a U b actually demands that b does hold in some future state.

� Weak-until is just like U, except that aW b does not require that b is eventually
satis�ed along the path in question, which is required by aU b.

9

Validità di una formula LTL (time 3)

13. (Release) π|=a R b i� either there is some i ≥ 1 such that πi|= a and for all j =
1, . . . , i we have πj |=b, or for all k ≥ 1 we have πk|=b.

� It is called `Release' because its de�nition determines that b must remain true up
to and including the moment when a becomes true (if there is one); a `releases' b.

� Release R is the dual of U; that is, a R b is equivalent to ¬(¬a U ¬b).

Rappresentazione gra�ca

� Until: a is true until b become true, a U b

a a a a a b

� Release: a releases b: a R b

b b b b b b b
a

aggiungere gra�ca per weak until

Formula valida

� Quando una formula è valida per una macchina M (e non solo per un path) ?

De�nition 3. Suppose M =(S, � ,L) is a model, s ∈ S ,and φ an LTL formula.
We write M ,s |=φ if, for every execution path π of M starting at s, we have |=

Example 4. Figura 3.3 e �gura 3.5, alcune formule

Formula valida con stato iniziale

� Se la macchina M ha uno stato iniziale s0

� Quando una formula è valida per una macchina M (e non solo per un path
da uno stato) ?

De�nition 5. Suppose M =(S, s0,� ,L) is a model, s0 ∈ S lo stato iniziale, and
φ an LTL formula. We write M |=φ if, for every execution path π of M starting at
s0, we have |=

10

Formula valida con stati iniziali

� Se la macchina M ha un insieme di stati iniziali S0

� Quando una formula è valida per una macchina M (e non solo per un path)
?

De�nition 6. Suppose M =(S, S0,� ,L) is a model, S0 ⊆ S gli stati iniziali, and
φ an LTL formula. We write M |=φ if per ogni s0 ∈ S0 vale M, s0 |= φ

Practical Pattern of speci�cations

� Safety properties:

� something is always true Gϕ

* something bad never happens G¬ϕ,
� Liveness properties:

* something will happen Fϕ

* something good keeps happening (GFψ or G(ϕ→ Fψ))

� Esempi più complessi - 3.2

Important equivalences between LTL formulas
We say that two LTL formulas φ and ψ are semantically equivalent, or simply equiva-

lent, writing φ ≡ ψ, if for all models M and all paths π in M: π |=φ i� π |=ψ.
� solite equivalenze di and, or, not

Until e weak until
A weak until binary operator, denoted W, with semantics similar to that of the until

operator but the stop condition is not required to occur (similar to release).

� φ W ψ ≡ (φ U ψ) ∨ G φ

Both U and R can be de�ned in terms of the weak until:

� Until and Weak until: φ U ψ ≡ φ W ψ ∧ F ψ

Also R can be de�ned in terms of W

� φ W ψ ≡ (φ U ψ) ∨ G φ ≡ φ U (ψ ∨ G φ) ≡ ψ R (ψ ∨ φ) φ U ψ ≡ Fψ ∧ (φ
W ψ) φ R ψ ≡ ψ W (ψ ∧ φ)

F and G duality

� F and G are duals:

� ¬ G φ ≡ F ¬ φ ¬ F φ ≡ G ¬ φ

� X is dual of itself: ¬ X φ ≡ X ¬ φ

� U and R are duals of each other:

* ¬ (φ U ψ) ≡¬ φ R ¬ ψ ¬ (φ R ψ) ≡¬ φ U ¬ ψ

11

Distributive

� It's also the case that F distributes over ∨ and G over ∧ , i.e.,

� F(φ ∨ ψ) ≡ F φ ∨ F ψ G(φ ∧ ψ) ≡ G φ ∧ G ψ

� But F does not distribute over ∧ and G does not over ∨.
� F and G can be written as follows using U

* F φ ≡ ⊤U φ G φ ≡⊥ R φ

Adequate sets of connectives for LTL
Non tutti i connettivi sono necessari. Basterebbero di meno, ma per facilità nelle

scritture delle formule li usiamo tutti.

Pattern of LTL properties
Esistono dei pattern pratici per la speci�ca mediante LTL di proprietà comuni:
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

Alcune volte gli operatori si indicano così: G anche [] □, F anche <>♢
Absence � P is false:

Globally G (!P)

Before R F R -> (!P U R)

After Q G (Q -> G (!P))

Between Q and R G ((Q & !R & F R) -> (!P U R))

Pattern (Existence)
Existence P becomes true :

Globally F (P)

(*) Before R !R W (P & !R)

After Q G (!Q) | F (Q & F P))

(*) Between Q and R G (Q & !R -> (!R W (P & !R)))

(*) After Q until R G (Q & !R -> (!R U (P & !R)))

Pattern (Universality)
Universality P is true :

Globally G (P)

Before R F R -> (P U R)

After Q G (Q -> G (P))

Between Q and R G ((Q & !R & F R) -> (P U R))

(*) After Q until R G (Q & !R -> (P W R))

12

Altri Pattern

� Precedence S precedes P

� Response S responds to P :

� Precedence Chain ...

Example: mutual exclusion
When concurrent processes share a resource (such as a �le on a disk or a database

entry), it may be necessary to ensure that they do not have access to it at the same time.
Several processes simultaneously editing the same �le would not be desirable
a process to access a critical resource must be in critical section

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter its critical section, it will even-
tually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

No strict sequencing: Processes need not enter their critical section in strict se-
quence.

mutual exclusion �rst model

n1n2start

s0

t1n2

s1

c1n2

s2

t1t2

s3

c1t2

s4

n1t2

s5

n1c2

s6

t1c2

s7

Every process can be in state:
{non critical (n), trying to enter

(t), critical state (c)}.

mutual exclusion properties

Safety G ¬ (c1 ∧ c2). OK

Liveness: G (t1 � F c1). This is FALSE

13

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Limiti LTL
Ricorda la de�nizione:

De�nition 7. Suppose M is a model, s ∈ S ,and φ an LTL formula. We write M,s |=φ
if, for every execution path π of M starting at s, we have |=

� Qundi M,s |=Fa vuol dire per ogni path a partire da s a accade

� Come faccio a dire che non sempre accade in futuro ma potrebbe accadere?

5.5 Branching-time temporal logic

CTL
COMPUTATION TREE LOGIC - CTL La CTL è una logica con connettivi che ci

permette di speci�care proprietà temporali.

� Essendo una logica branching-time, i suoi modelli sono rappresentabili mediante
una struttura ad albero in cui il futuro non è deterministico: esistono di�erenti
computazioni o paths nel futuro e uno di questi sarà il percorso realizzato.

Cosa è un modello per una logica proposizionale ???

� Un assegnamento di un valore di verità ad ogni proposizione

* che rende vera la formula

� a ∨ b ∧ c: trova un modello

CTL sintassi

� La logica è costruita su di un insieme di formule atomiche AP {p, q, r, ...} che
rappresentano descrizioni atomiche del sistema

� De�niamo in maniera induttiva le formule CTL:

ϕ ::= ⊤|⊥|p ∈ AP |¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ→ ϕ|

� ⊤,⊥,¬,∧,∨,→ sono connettivi logici classici

ppp

14

CTL sintassi

� Operatori temporali:

ϕ ::=
AXϕ|EXϕ AFϕ|EFϕ

|A[ϕUϕ]|E[ϕUϕ] AGϕ|EGϕ|

� ⊤,⊥,¬,∧,∨,→ sono connettivi logici classici

� AX, EX, AG, EG, AU, EU, AF e EF sono connettivi temporali

� In particolare: A sta per "along All paths" (inevitably) E sta per "along at
least (there Exists) one path" (possibly)

� X, F, G e U sono gli operatori della logica temporale lineare

* Nota Bene: AU e EU sono operatori binari e i simboli X, F, G e U non
possono occorrere se non preceduti da A o E e viceversa.

Priorità degli operatori

� Convenzione sull' ordinamento: gli operatori unary (AG, EG, AF, EF, AX, EX)
legano con priorità più elevata, seguono gli operatori binary A, V, e dopo ancora
�>, AU ed EU.

� Esempi di formule CTL ben-formate

* AG (q �> EG r)

* EF E(r U q)

* A[p U EF r]

* EF EG p �> AF r

Attenzione

� Esempi di formule CTL non ben-formate

� EF G r

* A!G!p

* F[r U q]

* EF(r U q)

* AEF r

* A[(r U q) /\ (p U r)]

15

Semantica per CTL (brief)

De�nition 8. Let M = (S, �, L) be a model for CTL, s in S, φ a CTL formula. The
relation M, s |= φ is de�ned by structural induction on φ.

� If φ is atomic, satisfaction is determined by L.

� If the top-level connective of φ is a boolean connective (∧ , ∨ , ¬ , etc.) then
the satisfaction question is answered by the usual truth-table de�nition and
further recursion down φ.

� If the top level connective is an operator beginning A, then satisfaction holds
if all paths from s satisfy the `LTL formula' resulting from removing the A
symbol.

� Similarly, if the top level connective begins with E, then satisfaction holds if
some path from s satisfy the `LTL formula' resulting from removing the E.

Semantic of CTL
Non temporal formula are treated as usual

1. M, s |= ⊤

2. M, s ̸|=⊥

3. M, s |=p i� p ∈ L(s)

4. M, s |=¬φ i� π M, s ̸|=φ

5. M, s |=φ1 ∧ φ2 i� M, s |=φ1 and M, s |=φ2

6. M, s |=φ1 ∨ φ2 i� M, s |=φ1 or M, s |=φ2

7. M, s |=φ1 � φ2 i� M, s |=φ2 whenever M, s |=φ1

Validità di una formula CTL (time)

8. M, s |=AX φ i� forall s1such that s→ s1 we have M, s1 |=φ

9. M, s |=EX φ i� some s1such that s→ s1 we have M, s1 |=φ

10. M, s |=AG φ i�, for all paths s → s1 → s2 . . . and all si along the path, we have
M, s |=φ

11. M, s |=EG φ i�, there is a path s→ s1 → s2 . . . and all si along the path, we have
M, s |=φ

� AX: `in every next state.'

� EX: `in some next state.'

� AG: for All computation paths beginning in s the property φ holds Globally

� EG: there Exists a path beginning in s such that φ holds Globally along the
path.

16

Validità di una formula CTL (time 2)

12. M, s |=AF φ i�, for all paths s→ s1 → s2 . . . there exists some si along the path,
we have M, s |=φ

13. M, s |=EF φ i�, there is a path s → s1 → s2 . . . and for some si along the path,
we have M, s |=φ

� AF: for All computation paths beginning in s there will be some Future state where
φ holds.

� EF: there Exists a computation path beginning in s such that φ holds in some
Future state;

Validità di una formula CTL

Validità di una formula CTL (time 3)

11. M, s |= A[ϕ1Uϕ2] i�, for all paths s → s1 → s2 . . . , that path satis�es ϕ1Uϕ2i.e.,
there is some si along the path, such that M, s |= ϕ2, and, for each j < i, we have
M, s |= ϕ1.

12. M, s |= E[ϕ1Uϕ2] i�, there exists a path s → s1 → s2 . . . , that path satis�es
ϕ1Uϕ2.

� A U All computation paths beginning in s satisfy that φ1 Until φ2 holds on it.

� E U there Exists a computation path beginning in s such that φ1 Until φ2
holds on it.

Esempio
Figura 3.3 e computation tree 3.5

17

Formula valida con stato iniziale

� Se la macchina M ha un insieme di stati iniziali S0

� Quando una formula è valida per una macchina M (e non solo per un path)
?

De�nition 9. Suppose M =(S, S0,� ,L) is a model, S0 ⊆ S gli stati iniziali, and
φ an CTL formula. We write M |=φ if per ogni s0 ∈ S0 vale M, s0 |= φ

Pattern of CTL properties
Esistono dei pattern pratici per la speci�ca mediante CTL di proprietà comuni:
http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml

Absence � P is false:

Globally AG(!P)

Before R A[(!P | AG(!R)) W R]

After Q AG(Q -> AG(!P))
Many of the mappings use the weak until operator (W) which is related to the strong

until operator (U) by the following equivalences:
A[x W y] = !E[!y U (!x & !y)]
E[x U y] = !A[!y W (!x & !y)]

Pattern (Existence)
Existence P becomes true :

Globally AF(P)

(*) Before R A[!R W (P & !R)]

After Q A[!Q W (Q & AF(P))]

(*) Between Q and R AG(Q & !R -> A[!R W (P & !R)])

(*) After Q until R AG(Q & !R -> A[!R U (P & !R)])

Pattern (Universality)
Universality P is true :

Globally AG(P)

(*) Before R A[(P | AG(!R)) W R]

After Q AG(Q -> AG(P))

(*) Between Q and R AG(Q & !R -> A[(P | AG(!R)) W R])

(*) After Q until R AG(Q & !R -> A[P W R])

Practical patterns of speci�cations

� It is possible to get to a state where started holds, but ready doesn't: EF (
started ∧ ¬ready). To express impossibility, we simply negate the formula.

18

� For any state, if a request (of some resource) occurs, then it will eventually
be acknowledged: AG (requested � AF acknowledged).

� A certain process is enabled in�nitely often on every computation path: AG
(AF enabled).

� From any state it is possible to get to a restart state: AG (EF restart).

� Altri esempi

Important equivalences between CTL formulas

� We have already noticed that A is a universal quanti�er on paths and E is the
corresponding existential quanti�er. Moreover, G and F are also universal and
existential quanti�ers, ranging over the states along a particular path.

� We can derive the following equivalences:

� ¬ AF φ ≡ EG ¬φ and EG φ ≡ ¬ AF ¬φ

� ¬ EF φ ≡ AG ¬φ and AG φ ≡ ¬ EF ¬φ

� ¬ AX φ ≡ EX ¬φ.

� We also have the equivalences AF φ ≡ A[⊤U φ] and
* EF φ ≡ E[⊤U φ] which are similar to the corresponding equivalences in
LTL.

� Adequate sets of CTL connectives: not all the connectives are necessary.

� We could (and will) use only AF, EU, EX

CTL* and the expressive powers of LTL and CTL

� CTL allows explicit quanti�cation over paths, and in this respect it is more expres-
sive than LTL, as we have seen.

� However, it does not allow one to select a range of paths by describing them
with a formula, as LTL does. In that respect, LTL is more expressive. For
example, in LTL we can say `all paths which have a p along them also have a
q along them,' by writing F p � F q . It is not possible to write this in CTL
because of the constraint that every F has an associated A or E.

� CTL* is a logic which combines the expressive powers of LTL and CTL, by
dropping the CTL constraint that every temporal operator (X, U, F, G) has
to be associated with a unique path quanti�er (A, E).

� Past operators in LTL can be added.

19

