ASMETA tool set for rigorous system design*

Andrea Bombarda, (5<)10000-0003-4244-9319] " Gj]/jq
110000-0001-9679-4551] ' Apgelo Gargantini![0000—0002-4035-0131]

0000-0002-1400-1026] ' 41\ Patrizia Scandurra

, Elvinia
1[0000—0002—9209—3624]

Bonfanti
Riccobene?!

! University of Bergamo, Bergamo, Italy

Arri'f\gci {andrea.bombarda, silvia.bonfanti, ArtFilf\gcl
Evolugig angelo.gargantini,patrizia.scandurra}@unibg.it Evaluglign
* * %

2 Universita degli Studi di Milano, Milan, Italy

elvinia.riccobene@unimi.it

Abstract. This tutorial paper introduces ASMETA, a comprehensive
suite of integrated tools around the formal method Abstract State Ma-
chines to specify and analyze the executable behavior of discrete event
systems. ASMETA supports the entire system development life-cycle,
from the specification of the functional requirements to the implemen-
tation of the code, in a systematic and incremental way. This tutorial
provides an overview of ASMETA through an illustrative case study, the
Pill-Box, related to the design of a smart pillbox device. It illustrates the
practical use of the range of modeling and V&V techniques available in
ASMETA and C++ code generation from models, to increase the quality
and reliability of behavioral system models and source code.

1 Introduction

It is widely recognized that formal methods need to be supported by auto-
mated tools to be of practical use and promote their adoption, especially when
they are required by critical application areas (such as security and safety) and
standards for software certification and accreditation [23,22,7,6]. This tutorial
presents ASMETA?, an open-source framework defining modeling notations and
tools inspired by the well-known formal method of the Abstract State Machines
(ASMs) [15,14]. ASMETA supports model editing, visualization, simulation, an-
imation, validation, verification, as well as code generation from formal models.

In the wide range of existing formal methods [17,21], and more specifically
of state-based formal methods?, the ASM-based formal method supported by
ASMETA offers several advantages: (1) models have a pseudo-code format, so
practitioners can easily understand them as high-level programs; (2) systems can
be specified at any desired level of abstraction, depending on the level of details

* The work of Andrea Bombarda is supported by PNRR - ANTHEM (AdvaNced Technologies for
Human-centrEd Medicine) - Grant PNC0000003 — CUP: B53C22006700001 - Spoke 1 - Pilot 1.4.
The work of Silvia Bonfanti, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra was
partially supported by project SERICS (PE00000014) under the MUR National Recovery and
Resilience Plan funded by the European Union - NextGenerationEU.

3 https://asmeta.github.io/

4 https://abz-conf .org/methods/

https://asmeta.github.io/
https://abz-conf.org/methods/

2 A. Bombarda et al.

one wants to achieve; (3) models are executable, so they are suitable also for
lighter forms of model analysis such as simple simulation to check model con-
sistency w.r.t. system requirements; (4) techniques for mapping models to code
(e.g., to C++ or Java) are supported, so correct-by-construction development
is possible; (5) multi-agents modeling is supported, making possible the specifi-
cation of distributed systems. Moreover, the ASMETA framework allows for the
integrated use of tools for different forms of model analysis, it is maintained and
under continuous features improvement.

Through an illustrative case study from the healthcare domain, the Pill-Box
system, this tutorial shows how to model in ASMETA the executable behavior
of a system with a discrete state space. Then, the tutorial guides the readers
through the use of the ASMETA tools to apply several model validation and
verification (V&V) techniques, such as simulation, scenario-based validation,
and formal verification of user-defined properties and meta-properties. A model
refinement process supported by ASMETA is also presented by means of the
running case study and by explaining how in formalizing the system behavior it
is possible to evolve a partial specification (ground model) into a more complete
model. Finally, the tutorial showcases the automatic generation of executable
C++ code from the Pill-Box model, developed and verified in ASMETA.

This tutorial is intended to be a resource for software engineers and re-
searchers that want to leverage lightweight formal methods in their projects.
The hands-on approach, adopting the Pill-Box system as running example, en-
dows the readers with the necessary skills to start adopting ASMETA for a
more rigorous system design that increases the quality and reliability of behav-
ioral system models and source code. ASMETA is distributed as an open-source
solution so that other researchers can contribute to its extension.

The remainder of this tutorial is organized as follows. Sect. 2 introduces
the ASMs, while Sect. 3 introduces the ASMETA framework together with a
modeling process, and provides all useful references. Sect. 4 presents the running
case study. Sect. 5 describes the user-facing modeling language Asmetal. to define
ASM models. Sections from 6 to 9 explain the ASMETA tooling supporting all
model analysis techniques for a rigorous system design. Sect. 10 presents model
refinement applied to the running case study. Sect. 11 explains how to generate
C++ code from the verified Pill-Box model. Finally, Sect. 12 concludes.

2 Abstract State Machines

Before introducing ASMETA, here we provide a basic introduction of the state-
based formal method of ASMs [15,14]. States are mathematical algebras speci-
fying a system configuration by means of arbitrarily complex data, i.e., domains
of elements with functions defined on them. State transitions are expressed by
named and parameterized transition rules describing how the data (function
values saved into locations) change from one state to the next one.

The functions of the algebra are classified into dynamic and static depending
on whether they are updated or not by transition rules. The dynamic functions
are further distinguished in monitored (read by the machine and modified by the
environment), controlled (read and written by the machine), out (only written

ASMETA tool set for rigorous system design 3

. Transition rules .

Fig. 1: An ASM run with a sequence of states and state-transitions (steps)

Transition rules

by the machine and read by the environment), and shared (read and written
by the machine and its environment). In addition, functions that are defined in
terms of other (dynamic) functions are called derived.

Dynamic functions are updated by firing transition rules. The basic transition

rule is the update rule for function update; it has form f(¢;,...,%,) := v, where
f is an n-ary function, t; with ¢ = 1..n are terms, and v the new value to be
associated with the location f (¢, ..., t,) in the next state. As in structured pro-

gramming, constructs for structured control flow can be used to form transition
rules depending on the type of update structure they express. The main rule con-
structors include: guarded updates (if-then, switch-case), simultaneous parallel
updates (par), non-determinism (choose), unrestricted synchronous parallelism
(for-all), abbreviation on terms of rules (let), etc.

ASMs can be read as pseudocode over abstract data with a well-defined
execution semantics. An ASM run (see Fig. 1) is a (finite or infinite) sequence
So, S1, -+, Sn, ... of states. Starting from the initial state Sy, in a computation
step (run step) from S,, to S,41, all enabled transition rules are executed in
parallel, leading to simultaneous updates of a number of locations. In case of an
inconsistent update (i.e., the same location is updated to two different values)
or invariant violations (i.e., some property that must be true in every state is
violated), the model execution stops with error.

3 Overview of the ASMETA Toolset

The ASMETA project started in 2004 with the aim of addressing the defi-
ciency in tools that support ASMs. Although the formal approach had demon-
strated widespread application in specifying and verifying various software sys-
tems across diverse domains (as evidenced by the ASM research summary in [15]),
the absence of supportive tools for the ASM method was deemed a limitation,
leading to skepticism regarding its practical utility.

To address this issue, ASMETA has been developed by exploiting the Model-
Driven Engineering (MDE) approach [5] for software development starting from
the definition of a meta-model for an abstract notation able to capture the
working definition (see [15, pag. 32]) of an ASM. From the metamodel, a textual
notation for encoding ASM models has been derived, and has been enriched,
during the years, to support many V&V activities in the rigorous design of soft-
ware systems. These analysis techniques have been proven to be beneficial for the
safety assurance of safety-critical systems with event-based behavior and discrete
state spaces. See [1] for further details on the case studies and application do-
mains (including medical software, software control systems, and service-based
systems, to name a few) to which ASMETA has been applied.

4 A. Bombarda et al.

| DESIGN |
| DEVELOPMENT
Modelling
ediatey Code Generator Cr+ Code
Modelling Language Editor Compiler LGl C++ Unit test
Asmetal AsmetaXt AsmetaC

Abstract Unit Test Generator
ATGT

Refinement prover
AsmRefProver

VD Behaviour-Driven Development
A 'Sui 'f]e" ASM O ASM 1 ASM (T scenario generator
smetaVis |na| AsmetaBDD

Validation -
Model Reviewer Simulator AsmetaA
AsmetaMA Benetad Runtime Monitor
Metamodel
q - CoMA
Validator S o AsmM
AsmetaV cenarios’ Java API Runtime Simulator
e e L)

Avalla

Verification Model Checker
AsmetaSMV

Fig. 2: ASMETA-based development process

3.1 Getting and Using ASMETA

Most ASMETA tools are integrated with the Eclipse IDE. An Eclipse package
containing the ASMETA toolset is available and released periodically at https:
//github.com/asmeta/asmeta. In the same location, the source code of all the
ASMETA tools, together with examples of ASMETA specifications, is available.

Tooling. ASMETA tools support the main activities of the software develop-
ment process from formal requirement specification to code generation. Fig. 2
shows the tools usage in the various stages [1]. At design time, ASMETA pro-
vides tools for model editing and visualization (the modeling language AsmetalL’
and its editor and compiler, plus the model visualizer AsmetaVis for graphical
visualization of ASMETA models), model validation (e.g., interactive or random
simulation by the simulator AsmetaS”, animation by the animator Asmetal, sce-
nario construction and validation by the validator AsmetaV, and static analysis
by the model reviewer AsmetaMA), and verification (proof of temporal properties
by the model checker AsmetaSMV, and proof of correct model refinement by Asm—
RefProver). During software development, ASMETA supports automatic code
and test case generation from models (the code generator Asmeta2C++, the unit
test generator ATGT, and the acceptance test generator AsmetaBDD for complex

5 An Eclipse package including all tools and models useful for this tutorial is available
at https://doi.org/10.5281/zenodo.12770854

5 Tt is a concrete notation for the abstract one defined by the metamodel reflecting
the working definition of an ASM.

” The ASMETA model simulator implements the computational paradigm (concepts
and semantics) of an ASM run as defined in the previous section.

https://github.com/asmeta/asmeta
https://github.com/asmeta/asmeta
https://doi.org/10.5281/zenodo.12770854

ASMETA tool set for rigorous system design 5

system scenarios). If the system is available, during its operation, ASMETA can
be used for runtime monitoring (by the tool CoMA) and runtime simulation (by
AsmetaS@run.time).

Remark. Due to lack of space and to keep this tutorial simple and understand-
able to new and unfamiliar users, in the following sections we explain and show
the application of a selected number of tools, those supporting the initial and
fundamental steps of system modeling, analysis (V&V) and encoding. Focusing
more on pedagogical rather than technical aspects of our modeling approach,
we also skip advanced modeling features (e.g, the concepts of multi-agent ASMs
or I/O ASMs, suitable to model distributed and composable systems) which re-
quire understanding the basic and preliminary concepts around ASMETA; this
is what this tutorial intends to cover.

Modeling process. ASMETA derives its foundation from the ASM theory, thus,
akin to ASMs, its modeling methodology follows an iterative approach with
a focus on model refinement. Concretely, ASMETA employs stuttering refine-
ment [4], a specialized variant of the broader ASM refinement [13]. This refinement-
based process allows users to tackle the complexity of the requirements and to
bridge, in a seamless manner, specification to code. Requirements modeling be-
gins with the creation of a high-level ASMETA model, akin to the ASM ground
model [15]. This model is delineated through the analysis of informal require-
ments typically presented in natural language. Model signature and rule naming
are set by using terms of the application domain and derived from textual re-
quirements, thereby simplifying the process of connecting requirements to the
model. This high-level model (see model ASMy in Fig. 2) should be correct and
consistent, i.e., it should represent the intended requirements (at the desired
abstraction level) and no ambiguities of initial requirements should be left. Tt
is not necessary for ASMg to be complete, i.e., it may not specify some given
requirements that are later captured during the refinement process. Indeed, the
modeling process supported by ASMETA is a refinement-based one: starting
from the model ASMy, through a sequence of refined models ASMy, ASMa,. ..,
other functional requirements are specified and modeled, till the desired level of
completeness is reached. At the end of this process, ASMg,,.1 captures all intended
requirements at the desired level of abstraction. When performing refinements,
it is important to prove that each refined model is a correct (stuttering) refine-
ment of the previous one. The ASMETA framework includes the AsmRefProver
tool [4] which supports the user in this activity and automatically performs the
correctness check of refinement steps.

Starting from the very first model, the ASMy, during the modeling process
the user should perform validation and verification (V&V) activities to assure
requirements satisfaction and property validity.

4 The Pill-Box Case Study

In this section, we introduce the Pill-Box case study [8] with its informal re-
quirements, which will be used throughout the paper as a running example to
describe the modeling and analysis activities supported by the ASMETA tools.

6 A. Bombarda et al.

The Pill-Box device is a medicine/pill dispenser that has a certain number
of drawers (e.g., three drawers). Each drawer contains multiple slots (one for
each pill) that are emptied in sequence. In each drawer, only one specific type
of medicine can be placed. So, each drawer can contain multiple pills (one per
slot) but all pills must be of the same drug type.

Each Pill-Box drawer has a switch and a LED. The former is used to notify
whether the pill in the drawer has been taken, and the latter is used to signal
relevant information to the user. When the LED is OFF, it is not time to take
the corresponding pill, while when the LED is ON, it means that the patient
should assume that pill. When it is time to take a pill, the LED stays ON for
10 minutes after the scheduled time of the pill.

For each pill type, it is possible to set several deadlines throughout the day,
meaning that the same drawer might be opened multiple times. However, if two
or more pills have to be taken at the same time, the Pill-Box turns on only a
single LED per time, by randomly choosing the order in which to assume them.
Here we introduce three models for the ASMETA specification of the Pill-Box,
where each one introduces new elements for refining time and pill management:

— Ground model (pillbox_ground): here we abstract the requirement that a
drawer contains multiple slots and consider only a single pill per drawer.
Moreover, time is not explicitly modeled, and information on the time passed
is given by an external event (a monitored Boolean-valued function).

— Model with time (pillbox_time): this specification models time passing by a
timer. We still keep the abstraction of having a single pill per drawer.

— Final model (pillbox_final): it captures all requirements of the Pill-Box sys-
tem, and it thus specifies multiple pills (and multiple deadlines) per drawer.

These ASMETA models and all the other related artifacts are presented in part
in this paper; their complete version can be found in Models.zip file at https:
//doi.org/10.5281/zenodo.12770854.

5 Asmetal: The ASMETA Language

This section introduces the textual language Asmetal, the user-facing language
to define ASMETA models. The main modeling constructs of AsmetaL are here
illustrated using the ground model pillbox_ground introduced in Sect. 4.

An ASMETA specification is described in a text file with extension .asm and
structured as shown in Listing 1. It has five main sections:

- The section import allows us to include all or some of the declarations and
definitions given in another ASMETA model.

- The section signature is where domains and functions are declared.

- The section definitions contains the definition of static concrete domains, static
or derived functions, all transition rules, and possible state invariants, i.e., first-
order formulas that must be true in all states.

- The section main rule defines the rule that is the starting point of the compu-
tation at each state; it may, in turn, call the other transition rules (defined as

https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.5281/zenodo.12770854

ASMETA tool set for rigorous system design 7

asm pillbox_ground definitions:

// FUNCTIONS DEFINITIONS
import ../STDL /StandardLibrary function isOn($d in Drawer) =
(drawerLed($d) = ON)
signature:

// DOMAINS // RULE DEFINITIONS
abstract domain Drawer rule r_reset($drawer in Drawer) = ...

enum domain LedLights = {OFF | ON}
// INVARIANTS AND PROPERTIES
invariant inv_drawerl over Drawer = ...

// FUNCTIONS

dynamic monitored isPillTaken: Drawer —> Boolean // MAIN Rule

main rule r_Main = ...

dynamic controlled drawerlLed: Drawer —> LedLights // INITIAL STATE

default init sO:

derived isOn: Drawer —> Boolean // Turn—off all the LEDs for the Drawers
function drawerLed($drawer in Drawer) = OFF
static drawerl: Drawer

Listing 1: Structure of an ASMETA specification

macro call rules®). A run step of an ASMETA model is the execution of all
transition rules, which are directly or indirectly called from the main rule and
are enabled to fire.

- The section default init introduces the initial values for dynamic concrete do-
mains and dynamic functions declared in the signature.

Here we provide a more detailed look at each part of an ASMETA specification.

Specification name. The first line of the specification contains the keyword
asm followed by the name of the specification, which must be the same as the
file. For instance:

asm pillbox_ground

indicates that the specification name is pillbox_ground and it must be defined in
the file pillbox_ground.asm.

A model without the main rule is called a module®. It consists of declarations
and definitions of domains, functions, invariants, macro call rules, and it can be
imported by other ASMETA models. Note that an ASMETA model (the model
that starts with the keyword asm) can be imported as well, except for the initial
state and the main rule.

Import. An Asmetal specification can import modules, by using the file name
with its relative or absolute path. For instance, the following line imports the
StandardLibrary:

import ../STDL /StandardLibrary

8 Note that to define a macro call rule in the definitions section we use the syntax macro
r_rule(params), while the macro rule is invoked from another rule as r_rule[params].
9 A module name corresponds to the first word used in the .asm file.

8 A. Bombarda et al.

The StandardLibrary is a user-ready module that defines names for basic do-
mains and functions. This library is mandatory to import since it includes pre-
defined names for primitive domains (like Boolean, Natural, Integer, etc.) and
functions for the main operations over these domains and structured domains
(for tuples, sequences, sets, bags, and maps). Other libraries are available!? as
explained in the following sections.

Signature - Domains. The Asmetal. language allows the user to specify do-
mains of different type:

— Basic domains: represent primitive data values and are denoted by ready-
to-use domain symbols of the standard library (Boolean, Natural, Integer,
Complex, Char, and String).

— Enum domains: finite enumeration of elements defined by the user.

— Abstract domains: (non-enumerable) user-defined domain to describe ab-
stract entities of the real word.

— Concrete domains: user-named domain defined as sub-domain of another
domain.

— Structured domains: representing structured data (like finite sets, tuples,
maps) over other domains; examples are the Cartesian Product of two or
more domains, and the mathematical Powerset of a domain.

Examples of user-defined domains from the ground model of the Pill-Box are:

abstract domain Drawer
enum domain LedLights = {OFF | ON }
enum domain Drugs = {TYLENOL | ASPIRINE | MOMENT}

Drawer is an abstract domain representing the drawer objects; such objects
typically do not have a precise structure and the user further characterizes them
by introducing functions over them (see next paragraph). LedLights is the enu-
meration for the light status of the LEDs; Drugs is the enumeration of three
different types of drugs (Tylenol, Aspirine, and Moment).

Signature - Functions. Basic functions form the basic signature of the ma-
chine and are classified into static, which never change during any run of the ma-
chine, and dynamic, that may be changed by the environment or by the machine
updates. Dynamic functions are further divided into monitored, controlled, shared,
and out. Asmetal adopts appropriate keywords for declaring all these kinds of
functions. Examples of declarations of static functions are the constants!! rep-
resenting the three drawers (elements of the abstract domain Drawer):

static drawerl: Drawer
static drawer2: Drawer
static drawer3: Drawer

Examples of dynamic functions declaration in the ground model are'?:

!0 https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/

"1 The domain is optional. Functions of arity 0 are common variables of programming;
0-ary static functions are constants.

2 The keyword dynamic is optional.

https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/

ASMETA tool set for rigorous system design 9

dynamic monitored isPill Taken: Drawer —> Boolean
dynamic monitored pillDeadlineHit: Drawer —> Boolean
dynamic controlled drawerlLed: Drawer —> LedLights
dynamic controlled drug: Drawer —> Drugs

dynamic controlled isPill TobeTaken: Drawer —> Boolean

The function isPillTaken is a monitored function, and it is true when the user
confirms he/she has taken the pill. Similarly, the monitored function pillDead-
lineHit signals that the deadline for the pill contained in a specific drawer has
come. A drawer contains a drug and has a drawerLed which is ON when it is time
to take the pill. In addition, the Pill-Box uses the characteristic or indicator
function isPillTobeTaken to store the drawers for which the deadline has been
hit. These functions are controlled since their value is set by the machine.

In addition to basic functions, the modeler can introduce derived functions,
i.e., those coming with a specification or computation mechanism defined in
terms of other basic functions. Examples of declarations of derived functions are
as follows:

derived isOn: Drawer —> Boolean
derived isOff: Drawer —> Boolean
derived areOthersOn: Drawer —> Boolean

These functions are used as guards in the transition rules and are defined (see
below) in terms of the drawerlLed controlled function.

Definitions - Functions. Once declared, static and derived functions must also
be defined explicitly in the definitions section. The notation to define functions
is as in the following examples:

function isOn($d in Drawer) = (drawerLed($d) = ON)
function isOff($d in Drawer) = (drawerLed($d) = OFF)
function areOthersOn($d in Drawer) = switch($d)

case drawerl : isOn(drawer2) or isOn(drawer3)

case drawer2 : isOn(drawerl) or isOn(drawer3)

case drawer3 : isOn(drawer2) or isOn(drawerl)
endswitch

The right-hand term specifies the function law. In the case of the derived function
areOthersOn, the right-end term is a logical map that associates domain elements
to codomain elements. The target domains of the formal parameters are to be
the same as those specified in the function declaration, and the domain type
of the right-end term must be compatible with the function codomain. Note
that, as exception to this explanation, static 0-ary functions (constants) over an
abstract domain (such as drawerl) do not need to be defined.

Definitions - Rules. An update rule is the basic form of a transition rule.
Typically, an ASM transition system appears as a set of guarded updates or
conditional rules of form if cond then updates, where function updates are si-
multaneously executed when the condition cond (also called “guard”) evaluates
to true. An example of a conditional rule is as follows:

if pillDeadlineHit($drawer) then isPillTobeTaken($drawer) := true endif

10 A. Bombarda et al.

It sets to true the value of the function isPillTobeTaken for a given drawer
$drawer'® when it is time to take the drug of that drawer (denoted by the mon-
itored function pillDeadlineHit).

In AsmetalL, the transition rules can be defined after the definition of concrete
domains (if any) and functions. A rule definition starts with the keywords macro
(it is optional) and rule, followed by the name of the rule with the fixed prefix r_,
the list of free variables and their typing domains, and the rule body (containing
occurrences of the free variables). As an example of rule definition, consider the
rule r_reset that uses a par rule to reset the status of a given drawer (in parallel
it sets the led to OFF and isPillTobeTaken to false):

rule r_reset($drawer in Drawer) = par
drawerLed($drawer) := OFF
isPillTobeTaken($drawer):= false endpar

Once defined, a named rule can be invoked (like in structured programming)
within the rule body of another rule by using the rule name followed by the
list of actual arguments (if any)'* surrounded within square brackets (e.g.,
r_reset[$drawer]). When the rule is invoked, it is expanded by replacing every
variable freely occurring within the rule body with the actual argument of the
invocation (the association is positional).

The par rule and the forall rule are rule constructors realizing synchronous
parallelism since both allow the synchronous parallel execution of multiple tran-
sition rules. The only difference is that the par rule expresses bounded parallelism,
while the forall rule expresses potentially unbounded parallelism. An example of
a forall rule in the Pill-Box ground model is in the rule definition:

rule r_setOtherDrawers = forall $drawer in Drawer do par
if pillDeadlineHit($drawer) and isOff($drawer) then isPillTobeTaken($drawer) := true endif
if isOn($drawer) and isPillTaken($drawer) then r_reset[$drawer] endif endpar

Such a rule, in parallel for all potential drawers, sets the status of a drawer if
it is time to take the drawer’s pill (pillDeadlineHit is true), or resets it in case
the drawer’s LED is on and the drawer’s pill has already been taken. ASMETA
supports non-deterministic operations, which are implemented by selecting a
domain and picking a random element from it. This concept is realized by means
of the choose rule. An example of rule definition that uses the choose rule is for
the non-deterministic choice of one pill to take when there are more to take at
a certain time.

rule r_choosePillToTake = choose $drawer in Drawer with
isPillTobeTaken($drawer) and isOff($drawer) and not areOthersOn($drawer) do drawerLed($drawer) := ON

Since only a single red LED is to be on at a time, at each step the Pill-Box
chooses randomly one still off among those of the drawers containing a pill to be
taken, but only if all the other drawers’ LEDs are off, and turns it (if any) on.

13 In Asmetal the name of a variable freely occurring in a rule starts with the prefix $.

14 The number of actual parameters must be equal to the number of the formal pa-
rameters of the rule to invoke and be domain-compatible with them. Invocations of
rules of arity 0 is also allowed; in this case the list of parameters is empty.

ASMETA tool set for rigorous system design 11

Definitions - Invariants. Invariants allow users to specify first-order logic
formulas that must be true in each computational state during model execution.
In Asmetal, invariants are defined after rule definitions but precede the main
rule definition (see Sect. 6 for further details).

Definitions - Properties. After the invariants, Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL) properties can be defined in an ASMETA
model (see Sect. 9 for further details).

Main rule. The main rule designates the initial transition rule to execute (the
entry point of the machine’s program) at each computational step. Its definition
follows those of invariants and properties, and has no formal parameters (its
arity is 0). The main rule for the Pill-Box ground model is:

main rule r_Main = par
r_choosePill ToTake[]
r_setOtherDrawers[| endpar

It is in charge of simultaneously (i) choosing one drawer with a pill to take (if
any) and (ii) managing the state of the other drawers.

Initial State. An ASMETA specification may contain the initialization of con-
trolled functions to the value that they must assume when the execution of the
model starts. The syntax and rules to assign an initial value to a controlled
function is the same for defining static/derived functions. For instance, in the
following model fragment, the drawerLed function, for all drawers, is set to OFF,
as well as the isPillTobeTaken function, which is set to false. Finally, the drug
function associates a different type of drug to each drawer.

function drawerLed($drawer in Drawer) = OFF
function isPillTobeTaken($drawer in Drawer) = false
function drug($drawer in Drawer) = switch($drawer)
case drawerl : TYLENOL
case drawer2 : ASPIRINE
case drawer3 : MOMENT
endswitch

If a function is not initialized, all its locations take the special value undef'®.

6 Model Simulation

Simulation is the first validation activity usually performed to check an AS-
META model’s behavior during its development, and it is supported by the
Asmetas$ tool [5]. Given a model, at every step, the simulator builds the update
set according to the theoretical definitions given in [15] to construct the model
run. The simulator supports two types of simulation: random and interactive.
In random mode, the simulator automatically assigns values to monitored func-
tions, choosing them from their codomains. In interactive mode, instead, the
user inserts the value of monitored functions and, in case of input errors, a mes-
sage is shown inviting the user to insert again the function value. Asmeta$S can

15 Although the parser does not force you to initialize all the controlled functions, it is
strongly suggested to avoid run-time errors due to a missing initialization.

12 A. Bombarda et al.

Simulator (R g
MMl T TEE AL 0 O s~ (
Preferences for asmeta simulator
= =
B [pillbox_ground.asm 8 shuffle choose rule
s T | & 3 1 asm pillbox_ d Check invariants CHECK_STOP v
- 8 stop simulation if the update set is empty
™ 2 . N
- :!.mpoﬂ_: ’ "l.l "'{S LH%EaTdardL 8 Stop simulation if the update set is trivial

Fig. 4: AsmetaS commands and options panel

be executed from the command line ' and from the Eclipse interface. By using
the Eclipse UI, the AsmetaS toolbar has three buttons (see Fig. 4) with three
actions:

Parse the model and type check it

o Execute the model in interactive mode
Execute the model with random inputs

In the simulator option panel (see Fig. 4), the user can set the preferences
regarding the choose rule, when to stop the random simulation (until the update
set becomes empty or trivial), and how to handle invariants and axioms.

In Fig. 5, we show the result of the interactive simulation for the Pill-Box
when the pill in drawer 1 hits the deadline (in State 0 - line 10), so the pill
becomes to be taken (State 1 - line 21), the led becomes ON (State 2 - line 33),
the user takes the pill, and the led becomes OFF (State 3 - line 50). Note that
the update set is computed in the current state and is applied only in the next
one. For instance, when the monitored location pillDeadlineHit(drawerl) is set
true by the user in the initial state:

State 0 (monitored): pillDeadlineHit(drawerl)=true

the following rule:

if pillDeadlineHit($d) and isOff($d) then isPillTobeTaken($d) := true endif

checks the current state (State 0) and since the deadline is hit and the LED is off,
the update set will contain the update of the location isPillTobeTaken(drawerl),
which is updated only in the next state (State 1):

<UpdateSet — 0>
isPillTobeTaken(drawerl)=true
</UpdateSet>

<State 1 (controlled)>

isPill TobeTaken(drawerl)=true

< /State 1 (controlled)>

Invariant checking. AsmetaS implements an invariant checker, which (option-
ally) checks in every state reached during the computation if the invariants (if
any) declared in the specification are satisfied or not. If an invariant is not sat-
isfied, AsmetaS throws an InvalidInvariantException, which keeps track of

16 More details are available in the Appendices file at https://doi.org/10.5281/
zenodo.12770854.

https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.5281/zenodo.12770854

OO~ Uk WN -

ASMETA tool set for rigorous system design

13

Running interactively pillbox_ground.asm

INITIAL STATE:Drawer={drawerl,drawer2,drawer3}
Insert a boolean constant for pillDeadlineHit(drawerl):
true

Insert a boolean constant for pillDeadlineHit(drawer2):
false

Insert a boolean constant for pillDeadlineHit(drawer3):
false

<State 0 (monitored)>
pillDeadlineHit(drawerl)=true
pillDeadlineHit(drawer2)=false
pillDeadlineHit(drawer3)=false

< /State 0 (monitored)>

<UpdateSet — 0>

isPill TobeTaken(drawerl)=true

</UpdateSet>

<State 1 (controlled)>

drawerLed(drawerl)=OFF

drawerLed(drawer2)=0OFF

drawerLed(drawer3)=0FF
isPillTobeTaken(drawerl)=true
isPillTobeTaken(drawer2)=false
isPillTobeTaken(drawer3)=false

< /State 1 (controlled)>

Insert a boolean constant for isPillTaken(drawerl): false
<State 1 (monitored)>

isPill Taken(drawerl)=false

< /State 1 (monitored)>

<UpdateSet — 1>
drawerLed(drawer1)=ON
</UpdateSet>

<State 2 (controlled)>
drawerLed(drawerl)=ON
drawerLed(drawer2)=0OFF
drawerLed(drawer3)=0OFF
isPillTobeTaken(drawerl)=true
isPill TobeTaken(drawer2)=false
isPill TobeTaken(drawer3)=false
< /State 2 (controlled)>

Insert a boolean constant for isPillTaken(drawerl):

true

<State 2 (monitored)>

isPill Taken(drawerl)=true

< /State 2 (monitored)>
<UpdateSet — 2>
drawerlLed(drawerl)=OFF

isPill TobeTaken(drawerl)=false
</UpdateSet>

<State 3 (controlled)>
drawerLed(drawerl)=OFF
drawerLed(drawer2)=0OFF
drawerLed(drawer3)=0FF

isPill TobeTaken(drawerl)=false
isPillTobeTaken(drawer2)=false
isPill TobeTaken(drawer3)=false
< /State 3 (controlled)>

Fig. 5: Output of the interactive Simulation of the Pill-Box using AsmetaS

the violated invariants and of the update set which has caused such violation.
The invariant checker is particularly useful during the first phase of the model
development to validate the specification. The designer adds model invariants,
activates the invariant checker from the simulator options, and runs the model

with some critical inputs. For example, with the following invariant:

invariant inv_drawerl over Drawer: (forall $d in Drawer with isOff($d))

As soon as a led becomes ON, the computation stops:

<State 2 (controlled)>
drawerled(drawer2)=0ON

< /State 2 (controlled)>
INVARIANT violations
FINAL STATE:

run terminated

Consistent Updates checking. AsmetasS is able to reveal inconsistent updates
by throwing an UpdateClashException. The UpdateClashException records the
location being inconsistently updated and the two different values assigned to
it. The user, analyzing this error, can detect the fault in the specification. As
the invariant checker, this feature is useful for model validation. For example,
suppose to modify the r_setOtherDrawers rule by removing the strike-through

condition in the first conditional term as shown in the following code:

rule r_setOtherDrawers = forall $drawer in Drawer do par

14 A. Bombarda et al.

" T Functions State 0 State 1 State 2 State 3
Do one interactive step P | { e e ot e
Do random slep,v"z I Type Functions State 0 State 1 State 2 State 3
~ C drawerled(drawer1) OFF OFF ON OFF
Insert random step number A € drawerled(drawer2) OFF OFF OFF OFF
1 ~ C drawerled(drawer3) OFF OFF OFF OFF
~ M PillTaken(d 1 te
Inviariant violation / exceptions fs ‘ LA e
N C isPillTobeTaken(drawer1) false true true false
A C isPillTobeTaken(drawer2) false false false false
~ C isPillTobeTaken(drawer3) false false false false
= i A~ M pil DeadlineHit{drawer1) true false false
t ctions
| A M pilDeadlinetitidrawer2) | false false false
Controlled Functions 0 A M pilDeadlineHitidrawer3) | false false false
ve Monitored Functions
Moanitored Functions C
export to Avalla

Fig.6: AsmetaA Animation of the Pill-Box

if pillDeadlineHit($drawer) and isOff($drawer) then isPillTobeTaken($drawer) := true endif
if isOn($drawer) and isPillTaken($drawer) then r_reset[$drawer] endif endpar

The simulator signals an inconsistent update on the isPillTobeTaken(drawerl)
location with the following message:

INCONSISTENT UPDATE FOUND !!! : location isPillTobeTaken(drawerl) updated to true != false

Indeed, if the isOff($drawer) condition is removed and the deadline of the pill in
the first drawer has passed, the first conditional rule sets isPill TobeTaken(drawerl)
to true for all the following execution steps. However, if the LED for the drawer is
ON and the user signals that the pill has been taken, the rule r_reset is executed
and the location isPillTobeTaken(drawerl) is set to false. Thus, in the same step,
the location is updated to two different values, leading to an inconsistent update.

6.1 Model Animation

The main disadvantage of the simulator is that it is textual, and this some-
times makes it difficult to follow the computation of the model. For this reason,
ASMETA has a model animator, AsmetaA [11], which provides the user with
complete information about all state locations, and uses colors, tables, and fig-
ures over simple text to convey information about states and their evolution. The
animator helps the user follow the model computation and understand how the
model state changes at every step. A screenshot of Asmetal is shown in Fig. 6.
To execute the animator, the user clicks on the A icon in Eclipse.

Similarly to the simulator, the animator supports random and interactive an-
imation. In the interactive animation, the insertion of input functions is achieved
through different dialog boxes depending on the type of function to be inserted
(e.g., in the case of a Boolean function, the box has two buttons: one if the value
is true and one if the value is false). If the function value is not in its codomain,
the animator keeps asking until an accepted value is inserted. In random anima-
tion, the monitored function values are automatically assigned. With complex
models, running one random step each time is tedious; for this reason, the user
can also specify the number of steps to be performed and the tool performs the

ASMETA tool set for rigorous system design 15

DHL LW uEgune Uil f el RSILL RO mons Voo g
milhe = | = vV M Eme i T
E =| scenario_ground.avalla

+5 1 bcenario scenario ground

Fig. 7: AsmetaV commands

random simulation accordingly. In the case of invariant violation, a message is
shown in a dedicated text box and the animation is interrupted (as it also hap-
pens in case of inconsistent updates). Once the user has animated the model,
the tool allows exporting the model run as a scenario (see Sect. 7), so that it
can be re-executed whenever desired. Fig. 6 shows the animation of the Pill-Box
model using the same input sequence of the simulator. The result is the same,
but the tabular view makes it easier to follow the state evolution.

7 Scenario-based Validation

The AsmetaS and Asmetal tools presented in the previous section require that
the user executes the ASMETA model step by step or, at least, inserts some
value to start the model simulation. In this section, we present the AsmetaV
tool, which allows for performing scenario-based validation. Each scenario is a
description of external actor actions and reactions of the system [18], which can
be used to check the correct behavior of the model. Scenarios can be launched
by using the button V shown in Fig. 7. Additionally, if the button V¢ is pressed,
AsmetaV keeps track of the rules covered by the scenario.

Scenarios are written in the Avalla language, and saved as .avalla files,
as for the example reported in Listing 2 for the ASMETA ground model of the
Pill-Box reported in Listing 1. The scenario models a simple assumption cycle
for the pill in the first drawer. Initially, the Pill-Box has all the LEDs OFF, so no
pill has to be taken (line 8-10). In the second step, we set the deadline for the pill
in the first drawer as hit (line 17) and, after the execution of a step, the scenario
checks whether the pill has been marked as one of those to be taken (line 20).
Then, after a new execution step, we check that the LED corresponding to the
first drawer is ON (line 25). Finally, after the patient has taken the pill, the
scenario verifies whether all the LEDs have been turned OFF (line 35-37).

Scenario name. The first line of the scenario defines its name. For instance:

scenario scenario_ground

Unlike the ASMETA specification, the scenario name is not required to match
the file name.

Loading Asmetal specifications. Each Avalla scenario is executed against an
ASMETA spec. Thus, after having defined the scenario name it is essential to
specify which ASMETA model to load. This is done by using the load command,
followed by the relative or absolute path of the .asm file (including its extension):

load pillbox_ground.asm

OO~ Uk WN -

16 A. Bombarda et al.

scenario scenario_ground check isPillTobeTaken(drawer2) = false; 21
load pillbox_ground.asm check isPillTobeTaken(drawer3) = false; 22

step 23
// Initially all deadlines are not hit // Check that the led for the drawer 1 is on 24
set pillDeadlineHit(drawerl) := false; check drawerlLed(drawerl) = ON; 25
set pillDeadlineHit(drawer2) := false; check drawerLed(drawer2) = OFF; 26
set pillDeadlineHit(drawer3) := false; check drawerlLed(drawer3) = OFF; 27
set isPillTaken(drawer3) := false; check isPillTobeTaken(drawerl) = true; 28
set isPillTaken(drawerl) := false; check isPillTobeTaken(drawer2) = false; 29
set isPill Taken(drawer2) := false; check isPillTobeTaken(drawer3) = false; 30
step // Now, take the pill 31
// Check that all leds are off set isPillTaken(drawerl) := true; 32
check drawerLed(drawerl) = OFF; step 33
check drawerLed(drawer2) = OFF; // Check that the led is reset 34
check drawerlLed(drawer3) = OFF; check drawerlLed(drawerl) = OFF; 35
// Now, the time for the pill in the drawer 1 comes check drawerLed(drawer2) = OFF; 36
set pillDeadlineHit(drawerl) := true; check drawerLed(drawer3) = OFF; 37
step check isPillTobeTaken(drawerl) = false; 38
// Check that pill is ready to be taken check isPillTobeTaken(drawer2) = false; 39
check isPillTobeTaken(drawerl) = true; check isPillTobeTaken(drawer3) = false; 40

Listing 2: Example of Avalla scenario

Setting monitored functions. Monitored functions are read by the machine
from the environment. When performing scenario-based validation, the user may
supply the values for monitored or shared functions through the set command.
These functions are then used as input signals to the system. For instance:

set pillDeadlineHit(drawerl) := false;

is used to set the monitored function pillDeadlineHit for the drawerl to false.

Step execution. After having set the value for the monitored functions of in-
terest, an ASMETA computation step (i.e., the reaction of the system) can be
launched by using the step command. Additionally, Avalla supports the exe-
cution of multiple steps using the stepUntil command, until a specified Boolean
condition becomes true.

Checking controlled functions. Executing an ASMETA specification step
will lead to the update of the internal state of the ASMETA model. The check
command is used to inspect property values in the current state of the underlying
model. For instance:

check drawerLed(drawerl) = OFF;

checks that the controlled function drawerlLed for the drawerl is OFF. When exe-
cuting an Avalla scenario, the AsmetaV validator captures any check violation,
and, if none occurs, it finishes with a “PASS” verdict (“FAIL” otherwise).

Asmetal code in Avalla scenarios. Avalla scenarios support basic set com-
mands. However, users may want to set ASMETA functions by using a more
complex set of instructions, e.g., rules previously defined in the ASMETA specifi-
cation or by parallelizing the update. Thus, scenarios allow for including Asmetal.
commands with the exec keyword. For instance, the following Avalla code

ASMETA tool set for rigorous system design 17

File Edit Navigate Search Project AsmEE Run Asmeta Window Help
S~

| CiRiw| X ey sy VL “"T
5 [2 pillbox_ground.asm
45 1 bsm pillbox_ground

Fig.9: AsmetaMA command

set pillDeadlineHit(drawerl) := false;
set pillDeadlineHit(drawer2) := false;
set pillDeadlineHit(drawer3) := false;

can be replaced by

exec forall $drawer in Drawer do pillDeadlineHit($drawer) := false;

Note that this command would have been wrong if written in an Asmetal speci-
fication, as pillDeadlineHit is a monitored function and it should not be set by the
system. However, when AsmetaV simulates the scenario, a new ASMETA spec
is created, and the monitored functions are converted to controlled ones, whose
value is set to that specified in the Avalla scenario (either with a set command
or with the exec command).

Scenario modularization. The user can exploit modularization also during
scenario building. Indeed, it is possible to define blocks, i.e., sequences of set,
step, and check, that can be recalled using the execblock command when writing
other scenarios that foresee the same sequence of Avalla commands.

Exporting and animating scenarios. Avalla scenarios can be exported from
the AsmetaA tool, so that an animation session can automatically be repeated
multiple times (see the “export to Avalla” button in Fig. 6). Similarly, AsmetaV
supports the execution of scenarios through animation, by using the button V,
shown in Fig. 7. This allows users to control execution, enabling step-by-step
scenario execution.

8 Model Review

ASMETA supports a form of static analysis of a model to automatically capture
typical modeling errors such as inconsistent updates or dead specification parts
(transition rules that are never triggered) due to overspecification. We called
such a kind of static analysis about model quality automatic model review and
it is carried out by the AsmetaMA tool [3], which can be executed by clicking on
the button shown in Fig. 9. This tool checks the presence of seven types of errors
by using suitable meta-properties specified in CTL and verified using the model
checker AsmetaSMV (see Sect. 9). Fig. 10a shows the selection of the seven meta-
properties in AsmetaMA. An example of meta-property is MP1, which checks the
presence of inconsistent updates. Fig. 10b reports an example of inconsistent
update revealed by AsmetaMA on the same example reported in Sect. 6.

18 A. Bombarda et al.

AsmetaMA <P v

Preferences for AsmetaMA MP1: No inconsistent update is ever performed

MP1: No inconsistent update Is ever performed Location isPillTobeTaken(DRAWER1) is updated
MP2: Every conditional rule must be complete to values TRUE and FALSE when are satisfied
MP3: Every rule can eventually fire simultaneously the conditions
MP4: No assignment is always trivial (TRUE & pillDeadlineHit(DRAWER1)) and

MP5: For every domain element e there exists a location which hasvaluee (TRUE & (isOn(DRAWER1) & isPillTaken(DRAWER1)))
MP6: Every controlled function can take any value in its co-domain

MP7: Every controlled location is updated and every location is read

(b) Violation of MP1
(a) Meta-properties

Fig. 10: AsmetaMA usage

File Edit Navigate Scarch Project AsmEE Run Asmcte Windew Help

[milh IBidiw|) SRV ALY Y STV nm
= B pillbox_ground.asm X
S 1 hsm pillbox_ground

Fig. 11: AsmetaSMV command

9 Formal Verification Through Model Checking

Besides validation, the ASMETA toolset supports the user in the properties’
verification activity by the tool AsmetaSMV [2]. Properties are written in terms
of propositional formulas over the machine’s signature, preceded by the key-
word ctlspec or Itlspec. For this purpose the libraries CTLLibrary.asm and LTL-
Library.asm must be imported, so for each CTL/LTL operator an equivalent
AsmetalL Boolean-valued function is defined. The following example shows a CTL
property (with the temporal operator AG @ - globally @) for the Pill-Box ground
model, i.e. a propositional formula that must hold in all reachable states:

ctlspec ag((forall $d in Drawer with isOn($d) implies (not areOthersOn($d))))

These properties are then automatically translated into a model of the sym-
bolic model checker NuSMV [20], used to perform the verification. If the AS-
META model contains infinite or time domains, the NuXmv [19] model checker
is preferred. The choice of the model checker is performed in Eclipse from the
ASMETA — AsmetaSMV preferences. The buttons shown in Fig. 11 are used
to verify the specification: the first button translates the specification into a
model for the model checker without executing it, and the second translates and
executes the specification using the selected model checker. The output of the
model checker is pretty printed in terms of elements of the ASMETA signature.
If the property is positively verified, the AsmetaSMV tool prints out on the Eclipse
console that the property is true:

—— specification AG (((drawerLed(DRAWER1) = ON —> lareOthersOn(DRAWERI1)) &
(drawerLed(DRAWER2) = ON —> lareOthersOn(DRAWER?2))) & (drawerLed(DRAWER3) = ON
—> lareOthersOn(DRAWERS3))) is true

Otherwise, assuming the property is false, it returns a counterexample. If we
want to verify that a pill in drawerl is always taken when the pill deadline hits,
we can write the following property:

ASMETA tool set for rigorous system design 19

—— specification AG (pillDeadlineHit(DRAWER1) —> —> State: 1.3 <—
AF drawerLed(DRAWER1) = ON) is false pillDeadlineHit(DRAWER1) = false
—— as demonstrated by the following execution sequence isPillTobeTaken(DRAWER?2) = true
Trace Description: CTL Counterexample isPillTobeTaken(DRAWER1) = true
Trace Type: Counterexample pillDeadlineHit(DRAWER?2) = false
—> State: 1.1 <— —> State: 1.4 <—
pillDeadlineHit(DRAWER1) = false
drawerLed(DRAWER1) = OFF pillDeadlineHit(DRAWER?2) = true
drawerLed(DRAWER2) = OFF areOthersOn(DRAWER3) = true
isPillTobeTaken(DRAWER?2) = false areOthersOn(DRAWERL) = true
drawerLed(DRAWER3) = OFF —> State: 1.5 <—
isPillTobeTaken(DRAWER3) = false drawerLed(DRAWER?2) = OFF
isPillTaken(DRAWER?2) = false
—> State: 1.2 <— pillDeadlineHit(DRAWER?2) = false
pillDeadlineHit(DRAWER1) = true areOthersOn(DRAWER3) = false
pillDeadlineHit(DRAWER?2) = true areOthersOn(DRAWER1) = false

Listing 3: Counterexample generated by AsmetaSMV

ctlspec ag(pillDeadlineHit(drawerl) implies af(isOn(drawerl)))

When running the model checker, the property is false because it can happen
that the pill in drawerl will never be taken (the function isPillTaken(drawerl) is
never set to true), and the counterexample in Listings 3 is printed.

10 Model Refinement

After having performed the activities presented in the previous sections, the
model can be refined and the desired level of detail can be achieved. Here we
report details of the two model refinements introduced in Sect.4, and we highlight
the differences between the ground model and the refined models.

10.1 Time Handling: pillbox_time

Modeling The first model refinement we propose consists in explicitly modeling
time passing, which is left abstract in the pillbox_ground model, by introducing
the timer tenMinutes to capture the requirement stating that the LED stays on
for 10 minutes after the scheduled time to take the pill. Dealing with timers
requires importing the predefined time library and setting a suitable timer as an
element of the abstract domain Timer:

import ../STDL/TimeLibrarySimple
static tenMinutes: Timer

The time library provides the user with several features to check whether a
timer is expired (see the use of the predicate expired(tenMinutes) in rule r_take
in the pillbox_time model to control the expiration of timer tenMinutes) and to
reset a timer (see the use of the predefined rule r_reset_timer[tenMinutes] in rule
r_pill ToBeTaken of pillbox_time model). Using a timer always requires initializing
the timer’s duration and its starting time; in the pillbox_time model, the duration
of the timer tenMinutes is set to 600 time unit (seconds, in this case) and its
starting time is equal to the current time (e.g., taken as monitored value from
the Java virtual machine).

20 A. Bombarda et al.

Time mechanism:

® use java time (D ask user () auto increment

Delta if auto increment | 1

Preferred time unit auto ~

Fig.13: AsmetasS time simulation preferences

function duration($t in Timer) = 600 // Timer initialization
function start($t in Timer) = currentTime($t)

// From the Time library

function currentTime($t in Timer) = mCurrTimeSecs

This model is an example of vertical model refinement, where concepts or behav-
iors previously left abstract are modeled in detail. Here the monitored function
pillDeadlineHit is refined by the homonymous derived function that relates the
time of a pill consumption with the current time. The value of the function
time_consumption is set, for each pill/drawer, in the initialization section of the
pillbox_time model, as follows:

function time_consumption($drawer in Drawer) = switch($drawer) // Initialization of the time consumption
case drawerl : 60

case drawer2 : 2400

case drawer3 : 180

endswitch

The behavior of the rule r_choosePillToTake is refined by adding the new rule
r_pillToBeTaken to turn on the led and reset the timer tenMinutes if the led is
off. The behavior of rule r_setOtherDrawers is also refined by marking a pill to
be taken if its time of consumption is reached and by resetting the timer (of
a drawer with red led) if the pill has been taken or the timer of ten minutes
waiting has expired.

Validation & Verification As explained in the previous sections, V&V ac-
tivities can be performed on this refinement level. Since this refinement step
considers also the time during the simulation, the simulator (as well as the
animator) handles the time using three different approaches for setting the mon-
itored mCurrTimeSecs [10] (see Fig. 13): 1. time is read from the machine us-
ing the Java TimeAPI; 2. the user enters the value for time (like for moni-
tored functions); 3. time is automatically increased at each step by a predefined
value. Additionally, ASMETA allows the user to set the preferred time unit.

Regarding property verification, the NuSMV model checker does not support
infinite domains (such as in the case of times), so the NuXmv [19] model checker
must be used. However, its integration with ASMETA is still under development
and not stable, thus, here we do not discuss its use.

10.2 Managing multiple pills: pillbox_final

Modeling A further (and the last that we propose) vertical model refinement
specifies the complete Pill-Box functionalities, allowing modeling the require-
ment that Fach drawer contains multiple slots (one for each pill) that are emp-

ASMETA tool set for rigorous system design 21

tied in sequence. To model this requirement we introduce the following controlled
functions time_consumption and druglndex:

dynamic controlled time_consumption: Drawer —> Seq(Integer)
dynamic controlled drugindex: Drawer —> Natural

The former maps each drawer into a sequence of integers, containing the time
deadlines expressed in seconds. The latter associates with each drawer an integer
indicating the next slot to be emptied in the corresponding drawer. The two
functions are initialized accordingly:

function time_consumption($drawer in Drawer) = switch($drawer) // Initialization of the time consumption
case drawerl : [60, 1200, 1800]

case drawer2 : [2400, 3000, 3600]

case drawer3 : [180, 1200, 1800]

endswitch

function druglindex($drawer in Drawer) = On // Every drawer has an index starting from 0

The derived function pillDeadlineHit is refined to check the pill’s deadline in
the drawer’s current slot to be emptied'”. The newly derived function isThere-
AnyOtherDeadline indicates if there is any other pill in the drawer to be taken.
This information is used to refine the rule r_setOtherDrawers, which leads to
suitably updating the drawer state (led status and drug index) by invoking the
(nested and refined) macro call rule r_reset.

Remark. Model refinement must be proved to be correct, i.e., at each refinement
step, a refined model must be proved to be a correct refinement of the abstract
one. Due to lack of space and to keep this presentation easy to follow, here we
skip the proof of correct refinement of models and the application of the Asm—
RefProver supporting automatic proof of a particular form of model refinement.

11 From an ASMETA Model to Code

As requested by the best practices of model-driven engineering [16], the im-
plementation of a system should be obtained from its model through a system-
atic model-to-code transformation. ASMETA features a set of tools allowing the
automatic generation of C++ code [12] and C++ unit tests, and Java code [9].

In the following, we focus on using the Asmeta2C++ tool. It generates C++
code (which is meant to be integrated with other artifacts or directly embedded
in the final device) starting from an ASMETA model and, in particular, it pro-
duces two files: header (.h) and source (.cpp). The former contains the interface
of the source file and the translation of model domain declarations and defini-
tions, function and rule declarations. The latter includes rules implementation,
the functions and domain initialization, and the definitions of the functions.
Asmeta2C++ is only available as a command line tool and can be executed, in the
case of the last refinement, with the following command:

java —jar Asmeta2Cpp.jar pillbox_final.asm

Additional options for the previous command are available in the Appendices
file at https://doi.org/10.5281/zenodo.12770854.

7 The function at(sequence,i) yield the value of the ith element of the sequence.

https://doi.org/10.5281/zenodo.12770854

22 A. Bombarda et al.

Listing 4: Header file Listing 5: Cpp file
##define ANY String #include " pillbox_final.h"”
#include <string.h> using pillbox_final pace;
#include <iostream> /% Conversion of ASM rules in C++ methods %/
#include <vector> void pillbox_final::r_reset (Drawers _drawer){
#include <set> drawerLed[1][-drawer] = OFF;
#tinclude <map> druglndex[1][-drawer] = (drugindex[0][-drawer] + 1);
#include <list> isPill TobeTaken[1][-drawer] = false;
#include <chrono> }
#tinclude " ../../STDL/TimeLibrarySimple.h” void pillboxfinal::r_pillToBeTaken (Drawer* _drawer){ ... }

using namespace std; void pillbox-fin N (Drawer* _drawer){ ... }
/* DOMAIN DEFINITIONS »/ void pillbox_fin. hoosePillToTake() { ... }
e pillbox_final { void pillbox_final::r_setOtherDrawers(){ ... }
class Drawer; void pillbox_finalz:r_Main() {
enum LedLights {OFF, ON}; r_choosePill ToTake();
enum Drugs { TYLENOL, ASPIRINE, MOMENT }; r_setOtherDrawers();
using namespace pillbox_finalnamespace; /* Static function definition %/
class pillbox-finalnamespace::Drawer { bool pillbox-final::isOn(Drawer .d){
public: return (drawerLed[0][-d] == ON);
static set<<Drawers > elems; }
Drawer() { elems.insert(this); } bool pillboxfinal::isOff(Drawer* d){ ... }
; bool pillbox-final::areOthersOn(Drawers d){ ... }
class pillbox_final : public virtual TimeLibrarySimple{ bool pillbox_final::pillDeadlineHit(Drawers d){ ... }
/% DOMAIN CONTAINERS */ bool pillbox_final::isThereAnyOtherDeadline(Drawers _d){ ... }
const set<<LedLights> LedLights_elems; /# Function and domain initialization »/
const set<Drugs> Drugs._elems; pillbox_final::pillbox_final(): LedLights_elems({OFF,ON}),
public: Drugs.elems({ TYLENOL ASPIRINE, MOMENT}) {
/% FUNCTIONS / / Init static functions Abstract domain %/
map < Drawer#, bool > isPill Taken; tenMinutes = new Timer;
map< Drawer#, LedLights> drawerlLed[2];
map < Drawer, vector <int> > time_consumption[2]; /* Function initialization */
for(const auto& _drawer : Drawer::elems) {
static Timers tenMinutes; drawerLed[0].insert({ _drawer,OFF });
bool isOn (Drawer param0.isOn); drawerLed|1].insert({ -drawer,OFF });
bool isOff (Drawers param0_isOff);
static Drawers drawerl; /# Apply the update set /
void pillbox_final::fireUpdateSet() {
/% RULE DEFINITION »/ drawerLed[0] = drawerLed[1];
void r_reset (Drawerx _drawer); time_consumption[0] = time_consumption[1];
void r_pillToBeTaken (Drawer _drawer); drug[0] = drug[1];
druglndex[0] = drugindex[1];
void r-Main();
pillbox_final();
void initControlledWithMonitored(); /# init static functions and elements of abstract domains %/
void getlnputs(); set< Drawerx> Drawer::elems;
void setOutputs(); Timer* pillbox_final::tenMinutes;

void fireUpdateSet(); Drawerx pillbox_final::drawerl;

An excerpt of the translation of the Pill-Box case study in C++ is shown in
Listings 4 and 5, while the complete version of the source code is available in
the replication package. An ASM run step involves executing the main rule and
updating the locations. In C++, this is realized through two methods: main-
Rule() for translating the ASMETA main rule and fireUpdateSet() for updating
locations to their next state values. Asmeta2C++ can generate two additional files
allowing to embedding the generated class into an Arduino program. Further in-
sights into the translation of ASMETA rules and constructs into corresponding
C++ instructions are given in [12].

12 Conclusion

This tutorial provides an overview of ASMETA, an integrated set of tools to
describe the behavior of discrete event systems using the ASM formalism. The
hands-on approach adopted in this tutorial shows how to combine all the model
analysis techniques offered by ASMETA in order to start from a ground or partial
specification of the system behavior, and then refine it incrementally into more
complete models till leading to transformation to other external analysis models
or code. Thanks to the adoption of a set of integrated and easy-to-use tools, like

ASMETA tool set for rigorous system design 23

ASMETA, the effort for modeling and analysis with a formal method, like ASM,
may be reduced and more software engineers may be convinced of applying the
formal method for richer system design and more reliable systems.

Data availability

The artifacts for the tutorial paper are available at https://doi.org/10.5281/
zenodo.12770854.

References

1.

10.

Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra,
P.: The ASMETA Approach to Safety Assurance of Software Systems, pp. 215—
238. Springer International Publishing, Cham (2021). https://doi.org/10.1007/
978-3-030-76020-5_13

. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: A way to link high-level

ASM models to low-level NuSMV specifications. In: Proceedings of the Second
International Conference on Abstract State Machines, Alloy, B and Z. pp. 61-74.
ABZ’10, Springer-Verlag, Berlin, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-11811-1_6

Arcaini, P., Gargantini, A., Riccobene, E.: Automatic review of Abstract State
Machines by meta property verification. In: Mutioz, C. (ed.) Proceedings of the
Second NASA Formal Methods Symposium (NFM 2010), NASA /CP-2010-216215.
pp. 4-13. NASA, Langley Research Center, Hampton VA 23681-2199, USA (April
2010)

Arcaini, P.; Gargantini, A., Riccobene, E.: SMT-based automatic proof of asm
model refinement. In: De Nicola, R., Kiithn, E. (eds.) Software Engineering and
Formal Methods. pp. 253-269. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-41591-8_17

Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience
41, 155-166 (2011). https://doi.org/10.1002/spe.1019

ter Beek, M.H.: Formal methods and tools applied in the railway domain. In: Bon-
fanti, S., Gargantini, A., Leuschel, M., Riccobene, E., Scandurra, P. (eds.) Rigorous
State-Based Methods - 10th International Conference, ABZ 2024, Bergamo, Italy,
June 25-28, 2024, Proceedings. Lecture Notes in Computer Science, vol. 14759, pp.
3-21. Springer (2024). https://doi.org/10.1007/978-3-031-63790-2_1

ter Beek, M.H., Chapman, R., Cleaveland, R., Garavel, H., Gu, R., ter Horst, I.,
Keiren, J.J., Lecomte, T., Leuschel, M., Rozier, K.Y., et al.: Formal methods in
industry. Form. Asp. Comput (2024)

Bombarda, A., Bonfanti, S., Gargantini, A.: Developing medical devices from ab-
stract state machines to embedded systems: A smart pill box case study. In:
Mazzara, M., Bruel, J.M., Meyer, B., Petrenko, A. (eds.) Software Technology:
Methods and Tools. pp. 89-103. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-29852-4_7

Bombarda, A., Bonfanti, S., Gargantini, A.: From Concept to Code: Unveiling a
Tool for Translating Abstract State Machines into Java Code. In: Rigorous State-
Based Methods 10th International Conference, ABZ 2024, Bergamo, Italy, June
25- 28, 2024, Proceedings, Lecture Notes in Computer Science, vol. 14759. Springer
(2024)

Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E.: Extending asmeta with
time features. In: Raschke, A., Méry, D. (eds.) Rigorous State-Based Methods. pp.

https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-642-11811-1_6
https://doi.org/10.1007/978-3-642-11811-1_6
https://doi.org/10.1007/978-3-642-11811-1_6
https://doi.org/10.1007/978-3-642-11811-1_6
https://doi.org/10.1007/978-3-319-41591-8_17
https://doi.org/10.1007/978-3-319-41591-8_17
https://doi.org/10.1002/spe.1019
https://doi.org/10.1002/spe.1019
https://doi.org/10.1007/978-3-031-63790-2_1
https://doi.org/10.1007/978-3-031-63790-2_1
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-030-29852-4_7

24

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A. Bombarda et al.

105-111. Springer International Publishing, Cham (2021). https://doi.org/10.
1007/978-3-030-77543-8_8

Bonfanti, S., Gargantini, A., Mashkoor, A.: Asmetaa: Animator for abstract state
machines. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) Abstract
State Machines, Alloy, B, TLA, VDM, and Z. pp. 369-373. Springer International
Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_25
Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code
generator from Abstract State Machines specifications. Journal of Software: Evolu-
tion and Process 32(2), 2205 (2020). https://doi.org/10.1002/smr.2205, 2205
smr.2205

Borger, E.: The ASM refinement method. Formal Aspects of Computing 15, 237—
257 (2003)

Bérger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Berlin, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1
Borger, E., Stark, R.: Abstract State Machines. Springer Berlin Heidelberg
(2003). https://doi.org/10.1007/978-3-642-18216-7, http://dx.doi.org/10.
1007/978-3-642-18216-7

Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Springer International Publishing (2017). https://doi.org/10.1007/
978-3-031-02549-5, http://dx.doi.org/10.1007/978-3-031-02549-5

Broy, M., Brucker, A., Fantechi, A., Gleirscher, M., Havelund, K., Kuppe, M.A.,
Mendes, A., Platzer, A., Ringert, J., Sullivan, A.: Does every computer scientist
need to know formal methods? Form. Asp. Comput. (2024). https://doi.org/10.
1145/3670795, https://doi.org/10.1145/3670795

Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for asms. In: Borger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
Abstract State Machines, B and Z. pp. 71-84. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87603-8_7

Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The NUXMV symbolic model checker. In: Biere,
A., Bloem, R. (eds.) Computer Aided Verification. pp. 334—342. Springer Interna-
tional Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_
22

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification. pp.
359-364. Springer Berlin Heidelberg, Berlin, Heidelberg (2002). https://doi.org/
10.1007/3-540-45657-0_29

Garavel, H., Beek, M.H.t., Pol, J.v.d.: The 2020 expert survey on formal
methods. In: Formal Methods for Industrial Critical Systems: 25th Interna-
tional Conference, FMICS 2020, Vienna, Austria, September 2-3, 2020, Proceed-
ings 25. pp. 3-69. Springer (2020). https://doi.org/https://doi.org/10.1007/
978-3-030-58298-2_1

Gleirscher, M., Marmsoler, D.: Formal methods in dependable systems engi-
neering: a survey of professionals from europe and north america. Empirical
Software Engineering 25(6), 4473-4546 (Sep 2020). https://doi.org/10.1007/
510664-020-09836-5

Gleirscher, M., van de Pol, J., Woodcock, J.: A manifesto for applicable formal
methods. Software and Systems Modeling 22(6), 1737-1749 (2023). https://doi.
org/https://doi.org/10.1007/s10270-023-01124-2

https://doi.org/10.1007/978-3-030-77543-8_8
https://doi.org/10.1007/978-3-030-77543-8_8
https://doi.org/10.1007/978-3-030-77543-8_8
https://doi.org/10.1007/978-3-030-77543-8_8
https://doi.org/10.1007/978-3-319-91271-4_25
https://doi.org/10.1007/978-3-319-91271-4_25
https://doi.org/10.1002/smr.2205
https://doi.org/10.1002/smr.2205
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
http://dx.doi.org/10.1007/978-3-642-18216-7
http://dx.doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/978-3-031-02549-5
http://dx.doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1145/3670795
https://doi.org/10.1145/3670795
https://doi.org/10.1145/3670795
https://doi.org/10.1145/3670795
https://doi.org/10.1145/3670795
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/s10664-020-09836-5
https://doi.org/10.1007/s10664-020-09836-5
https://doi.org/10.1007/s10664-020-09836-5
https://doi.org/10.1007/s10664-020-09836-5
https://doi.org/https://doi.org/10.1007/s10270-023-01124-2
https://doi.org/https://doi.org/10.1007/s10270-023-01124-2
https://doi.org/https://doi.org/10.1007/s10270-023-01124-2
https://doi.org/https://doi.org/10.1007/s10270-023-01124-2

	ASMETA tool set for rigorous system design

