Abstract State Machines
Model Checking

AsmetaSMV
2024
Angelo Gargantini

Model checking

@ Formal verification technique of properties defined in a temporal
logic.
@ A model checker works in three steps:

1. definition of a model M using the Kripke structures,

2. definition of a temporal formula ¢, that describes a property that we
want to verify;

3. the model checker verifies that M E ¢.

@ Exhaustive verification of all the state space.

@ Finite domains.

Gargantini TVSW 2023

Kripke structure

A Kripke structure is define by the 4-uple
M = (S? A: 50:' L)

where:
@ S is a finite set of states:

@ A (or —) is a transition total relation, that is

VseS 3" € S suchthat s — ¢

@ So C S is the set of initial states;

o L: S— 27 is a labelling function that links each state with a
label; the label lists the atomic propositions that are true in that
state. AP is a set of atomic propositions.

Temporal logics

Temporal logics are divided into:

@ Linear Time Logics (LTL) represent time as infinite sequences of
instant; you can declare properties that must be true over all

sequences,

@ Branching Time Logics (BTL) represent time as a tree, where the
root is the initial instant and its children the possible evolutions of

the system; you can declare properties concerning all the paths or
just some of them.
Temporal logics, moreover, can be classified in continuous time logics
and discrete time logics.

Gargantini TVSW 2023

Computation Tree Logic (CTL)

o Computation Tree Logic (CTL), is a discrete time BTL.

@ CTL permits to express logic formulas concerning paths, that is
sequences of state transitions.

@ Each CTL formula has a path quantifier that says if the formula
must be true in all paths (A, along All paths) or if must be true in
at least one path (E, Exists at least one path). Moreover can be
used the temporal operators:

X p: the property p must be verified in the next state;

F p: the property p must be verified in a future state;

G p: the property p must be verified in all the states;
p U g: the property p must be true until the g property becomes

true.

Gargantini TVSW 2023

Computation Tree Logic (CTL) - Allowed
formulas

Allowed formulas

It's AP{p.q.r,...} aset of atomic formulas; CTL formulas can be
expressed in the following way:

6 =T |LIpeAP|=¢|dAd| OV | d|AXS|EXS | AlpUd]
E[oUd] | AGo | EGo | AFo | EF¢

where T, 1, =, A, V and — are the connectives of propositional logic

and AX, EX, AG, EG, AU, EU, AF and EF are temporal connectives .

y

Operators priority

The unary operators have the highest priority; then there are the binary
operators V and A and, at last, the binary operators —, AU and EU.

NuSMV

e NuSMV! is a symbolic model checker derived from CMU SMV:

@ permits to verify properties written both in Computation Tree Logic
(CTL) and in Linear Temporal Logic (LTL);

@ the internal representation of the model uses the Binary Decision
Diagrams (BDDs);
@ states are determined by the variables values;

@ transitions between states are determined by the updates of the
variables.

Gargantini TVSW 2023

AsmetaSMV

@ Exploit the capabilities of NuSMV in ASMETA;
@ to be able to define CTL and LTL properties directly in the Asmetal
model:

@ the user could ignore the NuSMV syntax, he must only knows the
temporal operators.

@ Writing of an Asmetal code;
@ translation of the Asmetal code into a NuSMV code;

@ execution of the NuSMV code with the model checker.

Gargantini TVSW 2023

AsmetaSMV architecture

Asmetal. model
AsmetaSMV
example.asm
1 Check of the Asmeta model Translation into NuSMV
Domains check Domains translation
Parsing of the NuSMV model
Functions check Functions translation —)
e = example.smv
1 Rules check Rules translation
CTL properties
Asmeta mode] |=—) translation

Gargantini TVSW 2023

Mapping overview

@ AsmetaSMV cannot translate any Asmetal element into
NuSMV; we say that an Asmetal element is supported if it can be
translated into NuSMV, otherwise that it's not supported;

@ an Asmetal element is not supported because:

e it requires conditions that cannot be satisfied in NuSMV. For
example, type domains Real, Integer, Char, don’'t have a
corresponding type in NuSMV and so they cannot be used as
domains or codomains of functions in Amsetal models that must be

translated:;
e the translation would be too complicated; it's the case of many

turbo rules.

Gargantini TVSW 2023

Domains

Classification of Asmetal. domains

@ type domains:
e basic type domains: Complex, Real, Integer, Natural, String, Char,
Boolean, Rule and Undef:

e structured type domains: ProductDomain, SequenceDomain,
PowersetDomain, BagDomain and MapDomain;

e abstract type-domains: are generic domains;

e enum domains.

@ concrete domains: subset of concrete domains.

Mapping of Asmetal domains

Are supported only finite domains and whose type is available in

NuSMV:
@ Boolean:
@ enum domain:;

@ concrete domains of Integer and Natural.

Mapping functions

Asmetal Model NuSMV Model

asm arity2and3 MODULE main
import ./StandardLibrary VAR
foo2_ FALSE.AA: {—2147483647, 1, 2};
signature: foo2_.FALSE_BB: { —2147483647, 1, 2};
domain SubDom subsetof Integer foo2. TRUE-AA: { —2147483647, 1, 2};
enum domain EnumDom = {AA | BB} foo2_TRUE_BB: { —2147483647, 1, 2};
dynamic controlled foo2: foo3_.1_AA_1: boolean;
Prod (Boolean, EnumDom) —> SubDom foo3_1_AA_2: boolean;
dynamic controlled foo3: foo3-1-BB-1: boolean;
Prod (SubDom, EnumDom, SubDom) —> Boolean foo3_1_BB_2: boolean;
foo3_-2_AA_1: boolean;
definitions: foo3.2_.AA.2: boolean;
domain SubDom = {1..2} foo3.2_.BB_.1: boolean;

foo3-2.BB.2: boolean;
main rule r-Main =
skip v

Gargantini TVSW 2023

Limitations

Limited domains

No equivalence between ASM and NuSVM model due to
the Boolean undef

All functions mapped to variables
= Too many variables may compromise the NuSMV performance

Gargantini TVSW 2023

CTL/LTL library

SPEC pc1s LTLSPEC pi7s

where pc1p is a CTL formula. where p;7; is a LTL formula.

In order to write CTL and LTL formulas in Asmetal, we have created the
libraries CTLlibrary.asm and LTLlibrary.asm where, for each CTL and LTL
operator, an equivalent function is declared.

Gargantini TVSW 2023

CTLlibrary.asm

Mapping of CTL operators into CTL functions

NuSMV CTL operator

Asmetal CTL function

EG p static eg: Boolean — Boolean
EX p static ex: Boolean — Boolean
EF p static ef: Boolean — Boolean
AG p static ag: Boolean — Boolean
AX p static ax: Boolean — Boolean
AF p static af: Boolean — Boolean
E[p U d] static e: Prod(Boolean, Boolean) — Boolean
Alp U q] static a: Prod(Boolean, Boolean) — Boolean

Gargantini TVSW 2023

LTLlibrary.asm

Mapping of LTL operators into LTL functions

NuSMV LTL operator

Asmetal LTL function

Xp static x: Boolean — Boolean
Gp static g: Boolean — Boolean
Fp static f: Boolean — Boolean
pUg static u: Prod(Boolean, Boolean) — Boolean
pVq static v: Prod(Boolean, Boolean) — Boolean
Yp static y: Boolean — Boolean
Zp static z: Boolean — Boolean
Hp static h: Boolean — Boolean
Op static o: Boolean — Boolean
pSq static s: Prod(Boolean, Boolean) — Boolean
pTgq static t: Prod(Boolean, Boolean) — Boolean

Gargantini TVSW 2023

Mapping example

asm ctlExample MODULE main
import ./StandardLibrary VAR
import ./CTLlibrary fooA: boolean; —controlled
fooB: boolean; —controlled
signature: mon: boolean; —monitored
dynamic controlled fooA: Boolean ASSIGN
dynamic controlled fooB: Boolean init(fooA) := TRUE;
dynamic monitored mon: Boolean init (fooB) := TRUE;
next(fooA) = [(fooA);
definitions: next(fooB) :=
CTLSPEC ag(fooA iff ax(not(fooA))) //true case
CTLSPEC ag(not(fooA) iff ax(fooA)) //true (mon): !(fooB);
//false. Gives counterexample. TRUE: fooB;
CTLSPEC not(ef(fooA != fooB)) esac;
main rule r_Main = —CTL properties
par CTLSPEC AG(fooA <> AX(!(fooA)));
fooA := not(fooA) CTLSPEC AG(!(fooA) <—> AX(fooA));
if (mon) then CTLSPEC I'(EF(fooA != fooB));
fooB := not(fooB)
endif
endpar

default init sO:
function fooA true
function fooB = true

w

Gargantini TVSW 2023

Execution

[user@localhost asmetasmv]$ NuSMV ctlExample.smv

*x% This is NuSMV 2.5.2 (compiled on Sat Oct 30 12:18:33 UTC 2010)
**x* Enabled addons are: compass

*** For more information on NuSMV see <http://nusmv.fbk.eu>

***%x or email to <nusmv-users@list.fbk.eu>.

*** Please report bugs to <nusmv-users@fbk.eu>

-- specification AG (fooA <-> AX !'fooA) is true

-- specification AG ('fooA <-> AX fooA) is true

-- specification !(EF fooA !'= fooB) is false

-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

fooA = TRUE
fooB = TRUE
mon = FALSE

-> State: 1.2 <-
fooA = FALSE

Gargantini TVSW 2023

Mapping invariants

Asmetal Model

asm ag
import ./StandardLibrary
import ./ CTLlibrary

signature:
dynamic controlled fooA: Boolean
dynamic controlled fooB: Boolean

definitions :

//invariant for simulation with Asmeta$S
invariant over fooA, fooB: fooA != fooB

//property for NuSMV
CTLSPEC ag(fooA != fooB)

main rule r_Main =

par
fooA := not(fooA)
fooB := not(fooB)
endpar

default init sO:
function fooA = true
function fooB false

NuSMV Model

MODULE main

VAR
fooA: boolean; —controlled
fooB: boolean; —controlled

ASSIGN
init (fooA) := TRUE;
init(fooB) := FALSE;
next(fooA) := !(fooA);
next(fooB) := !(fooB);

—CTL properties
CTLSPEC AG(fooA != fooB);

Execution of the NuSMV Model

[user@localhost code]l$ NuSMV ag.smv

*#** This is NuSMV 2.4.1 (compiled on Sat Jun 13 10:57:42 UTC 2009)
% For more information on NuSMV see <http://nusmv.irst.itc.it>
*¥*x or email to <nusmv-users@irst.itc.it>.

*%** Please report bugs to <nusmv@irst.itc.it>.

| A\

-- specification AG fooA !'= fooB is true

Gargantini TVSW 2023

Verification properties

Reachability property
Safety property
Liveness property

Absence of deadlock
Other property to guarantee correctness of specification

They have precise specification patterns

Gargantini TVSW 2023

Reachability Property

Reachiability: “exists a future state satisfying a property
(P"

m ¢ is called “present tense formula” (no temporal operators inside)
m For instance, “A process will enter its critical section”

In CTL EFQ
m EF criticall

Gargantini TVSW 2023

Safety property

Safety: "Nothing bad will happen”.

m For instance, "Only one process is in its critical section at any
time”.

In CTL AG®

= (with 2 processes only):
= AG(—(criticall A critical2))

Gargantini TVSW 2023

Liveness property

Liveness: "Something good will eventually happen”.

m For instance: "Whenever any process requests to enter its critical
section, it will eventually be permitted to do so”.

In CTL AG + AF or AG + EF
= AG(request — AF(critical))

Gargantini TVSW 2023

Deadlock absence

In CTL AG EX true

o whatever the status reached (AG), there is a
status immediately successor (EX true)

o No deadlock

Gargantini TVSW 2023

Examples

Ferryman
= Counter example for the well-known path

Tic tac toe
Children
SwapBoard

Gargantini TVSW 2023

