
Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Outline

1 Motivation

2 Linear-time temporal logic

3 Branching-time temporal logic

4 AsmetaSMV model checker

5 Model-checking algorithms

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Outline

TESTO DI RIFERIMENTO: M.R.A. Ruth, M.D. Ryan Logic in
Computer Science Modelling and Reasoning about systems -
Capitolo 3 - allegato a questi appunti

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Motivation

▶ There is a great advantage in being able to verify the
correctness of computer systems, whether they are hardware,
software, or a combination. This is most obvious in the case of
safety-critical systems, but also applies to those that are
commercially critical, such as mass-produced chips, mission
critical, etc.
▶ Formal veri�cation methods have quite recently become usable

by industry and there is a growing demand for professionals
able to apply them.

▶ We study a fully automatic way to perform formal veri�cation
▶ not rule-based
▶ called model checking

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Formal veri�cation by model checking

▶ Le tecniche di veri�ca formale sono generalmente viste come la
somma di tre componenti:
▶ Un framework in cui modellare il sistema che vogliamo

analizzare
▶ Un linguaggio di speci�ca delle proprietà da veri�care
▶ Un metodo per veri�care che il sistema soddis� le proprietà

speci�cate.

▶ Solitamente il Model Checking si basa sull'utilizzo di una
logica temporale. Quindi, le tre componenti possono essere
costituite come segue:

▶ Si costruisce un modello M che descrive il comportamento del
sistema

▶ Si codi�ca la proprietà da veri�care in una formula temporale
ϕ

▶ Si chiede al model checker di veri�care che M |= ϕ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Formal veri�cation by model checking

▶ Le tecniche di veri�ca formale sono generalmente viste come la
somma di tre componenti:
▶ Un framework in cui modellare il sistema che vogliamo

analizzare
▶ Un linguaggio di speci�ca delle proprietà da veri�care
▶ Un metodo per veri�care che il sistema soddis� le proprietà

speci�cate.

▶ Solitamente il Model Checking si basa sull'utilizzo di una
logica temporale. Quindi, le tre componenti possono essere
costituite come segue:

▶ Si costruisce un modello M che descrive il comportamento del
sistema

▶ Si codi�ca la proprietà da veri�care in una formula temporale
ϕ

▶ Si chiede al model checker di veri�care che M |= ϕ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Logiche temporali

▶ Esistono diverse logiche temporali che possono essere divise in
due clasi fondamentali:
▶ le linear-time logics (LTL) e le branching-time logics (CTL).
▶ LTL considera il tempo come un insieme di cammini, dove

cammino é una sequenza di istanti di tempo
▶ CTL rappresenta il tempo come un albero, con radice l'istante

corrente
▶ Un'altra classi�cazione divide tra tempo continuo e discreto.

Noi studieremo solo logiche discrete e senza metrica.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

LTL sintassi

▶ La logica è costruita su di un insieme di formule atomiche AP
{p, q, r, ...} che rappresentano descrizioni atomiche del
sistema
▶ De�niamo in maniera ricorsiva le formule LTL:
▶ come la logica proposizionale (1) (| signi�ca �oppure�) - in

stile come grammatica BNF

ϕ ::= ⊤|⊥|p ∈ AP| ¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ → ϕ|

▶ ⊤,⊥ sono vero e falso
▶ ¬,∧,∨,→ sono connettivi logici classici

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

LTL sintassi - (2) operatori temporali

▶ Inseriamo operatori temporali (2):

ϕ ::=
⊤|⊥|p ∈ AP| ¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ → ϕ|
Xϕ|Fϕ|Gϕ| ϕUϕ|ϕWϕ|ϕRϕ

▶ X, F, G, U,W, R sono connettivi temporali
▶ In particolare: X,F,G sono unari:

▶ X means `neXt state,'
▶ F means `some Future state,' and
▶ G means `all future states (Globally).'

▶ The next three, U, R and W sono binari e sono `Until,'
`Release' and `Weak-until' respectively.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Precedenza degli operatori

The unary connectives (consisting of ¬ and the temporal
connectives X, F and G) bind most tightly. Next in the order come
U, R and W; then come

∧
and

∨
; and after that comes �.

▶ Esercizio: alcuni esempi di LTL con e senza parentesi

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Semantica per LTL

▶ The kinds of systems we are interested in verifying using LTL
may be modeled as transition systems. A transition system
models a system by means of states (static structure) and
transitions (dynamic structure).
A transition system M = (S, s0,�, L) is
▶ a set of states S endowed
▶ a state is the initial state s0
▶ with a transition relation � (a binary relation on S), such that

every s ∈ S has some s' ∈ S with s � s', and
▶ a labelling function L : S � P (AP)

I transition system sono i nostri modelli.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Labelling function

▶ a labelling function L : S � P (AP)
P (AP) è il powerset � l'insieme delle parti � di proposizioni
atomiche (AP)
▶ L is that it is just an assignment of truth values to all the

propositional atoms, as it was the case for propositional logic
(we called that a valution)

▶ The di�erence now is that we have more than one state, so
this assignment depends on which state s the system is in:
L(s) contains all atoms which are true in state s.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Graphical representation

▶ all the information about a (�nite) transition system M can be
expressed using directed graphs whose nodes (which we call states)
contain all propositional atoms that are true in that state.

Example: M has only three states A, B, and C. The atomic
propositions AP = {p,q,r}. The only possible transitions are A
� B, A � C, B � A, B � C and C � C; and if L(A) = {p,
q}, L(B) = {q, r} and L(C) = {r}:

p, qstart

A

q, r

B

r

C

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

No deadlock

▶ The requirement in De�nition that for every s ∈ S there is at
least one s' ∈ S such that s � s' means that no state of the
system can `deadlock.'
▶ This is a technical convenience, and in fact it does not

represent any real restriction on the systems we can model. If
a system did deadlock, we could always add an extra state sd
representing deadlock,

▶ un esempio di deadlock

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Path

▶ A path in a model M = (S, �, L) is an in�nite sequence of
states s1, s2 , s3 , . . . in S such that, for each i ≥ 1, si �
si+1.
▶ We write the path as s1 � s2 �
▶ We write πi for the su�x starting at si , e.g., π

3 is s3 � s4 � .
. . .

▶ Esempio

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Esempio

▶ A -> B ->A -> B -> C ...
▶ altri esempi

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Validità di una formula LTL su un path (prop)

De�nition

Let M = (S, �, L) be a model and π = s1 � . . . be a path in
M. Whether π satis�es an LTL formula is de�ned by the
satisfaction relation |= as follows:

1. π|=⊤
2. π̸|=⊥
3. π|=p i� p ∈ L(s1)

4. π|=¬φ i� π ̸|=φ
5. π|=φ1

∧
φ2 i� π |=φ1 and π |=φ2

6. π|=φ1
∨
φ2 i� π |=φ1 or π |=φ2

7. π|=φ1 � φ2 i� π |=φ2 whenever π |=φ1

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Validità di una formula LTL su un path (time)

De�nition

Let M = (S, �, L) be a model and π = s1 � . . . be a path in M.
Whether π satis�es an LTL formula is de�ned by the satisfaction
relation |= as follows:

8. π|=X φ i� π2 |=φ
9. π|=G φ i�, for all i ≥ 1, πi |=φ
10. π|=F φ i� there is some i ≥ 1 such that πi |= φ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Validità di una formula LTL (time 2)

11. (Until) π|=a U b i� there is some i ≥ 1 such that πi |= b and
for all j = 1, . . . , i = 1 we have πj |= a

12. (Weak Until) π|=a W b i� either there is some i ≥ 1 such
that πi |=b and for all j = 1, . . . , i = 1 we have πj |= a; or
for all k ≥ 1 we have πk |=a

▶ U, which stands for `Until,' is the most commonly encountered
one of these. The formula a U b holds on a path if it is the
case that a holds continuously until b holds. Moreover, a U b
actually demands that b does hold in some future state.
▶ Weak-until is just like U, except that aW b does not require

that b is eventually satis�ed along the path in question, which
is required by a U b.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Validità di una formula LTL (time 3)

13. (Release) π|=a R b i� either there is some i ≥ 1 such that
πi |= a and for all j = 1, . . . , i we have πj |=b, or for all k ≥
1 we have πk |=b.

▶ It is called `Release' because its de�nition determines that b
must remain true up to and including the moment when a
becomes true (if there is one); a `releases' b.
▶ Release R is the dual of U; that is, a R b is equivalent to ¬(¬a

U ¬b).

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Rappresentazione gra�ca

▶ Until: a is true until b become true, a U b

a a a a a b

▶ Release: a releases b: a R b

b b b b b b b
a

aggiungere gra�ca per weak until

Temporal logics

garganti
Line

garganti
Line

garganti
Line

garganti
Typewriter
time

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Formula valida

▶ Quando una formula è valida per una macchina M (e non solo
per un path) ?

De�nition

Suppose M =(S, � ,L) is a model, s ∈ S ,and φ an LTL formula.
We write M ,s |=φ if, for every execution path π of M starting at s,
we have π |= φ

Example

Figura 3.3 e �gura 3.5, alcune formule

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Formula valida con stato iniziale

▶ Se la macchina M ha uno stato iniziale s0
▶ Quando una formula è valida per una macchina M (e non solo

per un path da uno stato) ?

De�nition

Suppose M =(S, s0,� ,L) is a model, s0 ∈ S lo stato iniziale, and
φ an LTL formula. We write M |=φ if, for every execution path π
of M starting at s0, we have π |= φ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Formula valida con stati iniziali

▶ Se la macchina M ha un insieme di stati iniziali S0
▶ Quando una formula è valida per una macchina M (e non solo

per un path) ?

De�nition

Suppose M =(S, S0,� ,L) is a model, S0 ⊆ S gli stati iniziali, and
φ an LTL formula. We write M |=φ if per ogni s0 ∈ S0 vale
M, s0 |= φ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Practical Pattern of speci�cations

▶ Safety properties:
▶ something is always true Gϕ

▶ something bad never happens G¬ϕ,
▶ Liveness properties:

▶ something will happen Fϕ
▶ something good keeps happening (GFψ or G(ϕ→ Fψ))

▶ Esempi più complessi - 3.2

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Important equivalences between LTL formulas

We say that two LTL formulas φ and ψ are semantically equivalent,
or simply equivalent, writing φ ≡ ψ, if for all models M and all
paths π in M: π |=φ i� π |=ψ.
▶ solite equivalenze di and, or, not

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Until e weak until

A weak until binary operator, denoted W, with semantics similar to
that of the until operator but the stop condition is not required to
occur (similar to release).

▶ φ W ψ ≡ (φ U ψ)
∨

G φ
Both U and R can be de�ned in terms of the weak until:
▶ Until and Weak until: φ U ψ ≡ φ W ψ

∧
F ψ

Also R can be de�ned in terms of W
▶ φ W ψ ≡ (φ U ψ)

∨
G φ ≡ φ U (ψ

∨
G φ) ≡ ψ R (ψ

∨
φ) φ

U ψ ≡ Fψ
∧

(φ W ψ) φ R ψ ≡ ψ W (ψ
∧
φ)

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Until e weak until

A weak until binary operator, denoted W, with semantics similar to
that of the until operator but the stop condition is not required to
occur (similar to release).

▶ φ W ψ ≡ (φ U ψ)
∨

G φ
Both U and R can be de�ned in terms of the weak until:
▶ Until and Weak until: φ U ψ ≡ φ W ψ

∧
F ψ

Also R can be de�ned in terms of W
▶ φ W ψ ≡ (φ U ψ)

∨
G φ ≡ φ U (ψ

∨
G φ) ≡ ψ R (ψ

∨
φ) φ

U ψ ≡ Fψ
∧

(φ W ψ) φ R ψ ≡ ψ W (ψ
∧
φ)

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

F and G duality

▶ F and G are duals:
▶ ¬ G φ ≡ F ¬ φ ¬ F φ ≡ G ¬ φ
▶ X is dual of itself: ¬ X φ ≡ X ¬ φ
▶ U and R are duals of each other:

▶
¬ (φ U ψ) ≡¬ φ R ¬ ψ ¬ (φ R ψ) ≡¬ φ U ¬ ψ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

F and G duality

▶ F and G are duals:
▶ ¬ G φ ≡ F ¬ φ ¬ F φ ≡ G ¬ φ
▶ X is dual of itself: ¬ X φ ≡ X ¬ φ
▶ U and R are duals of each other:

▶
¬ (φ U ψ) ≡¬ φ R ¬ ψ ¬ (φ R ψ) ≡¬ φ U ¬ ψ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

F and G duality

▶ F and G are duals:
▶ ¬ G φ ≡ F ¬ φ ¬ F φ ≡ G ¬ φ
▶ X is dual of itself: ¬ X φ ≡ X ¬ φ
▶ U and R are duals of each other:

▶
¬ (φ U ψ) ≡¬ φ R ¬ ψ ¬ (φ R ψ) ≡¬ φ U ¬ ψ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Distributive

▶ It's also the case that F distributes over
∨

and G over
∧

, i.e.,
▶ F(φ

∨
ψ) ≡ F φ

∨
F ψ G(φ

∧
ψ) ≡ G φ

∧
G ψ

▶ But F does not distribute over
∧

and G does not over
∨
.

▶ F and G can be written as follows using U
▶ F φ ≡ ⊤U φ G φ ≡⊥ R φ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Distributive

▶ It's also the case that F distributes over
∨

and G over
∧

, i.e.,
▶ F(φ

∨
ψ) ≡ F φ

∨
F ψ G(φ

∧
ψ) ≡ G φ

∧
G ψ

▶ But F does not distribute over
∧

and G does not over
∨
.

▶ F and G can be written as follows using U
▶ F φ ≡ ⊤U φ G φ ≡⊥ R φ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Distributive

▶ It's also the case that F distributes over
∨

and G over
∧

, i.e.,
▶ F(φ

∨
ψ) ≡ F φ

∨
F ψ G(φ

∧
ψ) ≡ G φ

∧
G ψ

▶ But F does not distribute over
∧

and G does not over
∨
.

▶ F and G can be written as follows using U
▶ F φ ≡ ⊤U φ G φ ≡⊥ R φ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Adequate sets of connectives for LTL

Non tutti i connettivi sono necessari. Basterebbero di meno, ma
per facilità nelle scritture delle formule li usiamo tutti.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Pattern of LTL properties

Esistono dei pattern pratici per la speci�ca mediante LTL di
proprietà comuni:
http://patterns.projects.cis.ksu.edu/documentation/

patterns/ltl.shtml

Alcune volte gli operatori si indicano così: G anche [] □, F anche
<>♢
Absence � P is false:

Globally G (!P)

Before R F R -> (!P U R)

After Q G (Q -> G (!P))

Between Q and R G ((Q & !R & F R) -> (!P U R))

Temporal logics

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Pattern (Existence)

Existence P becomes true :

Globally F (P)

(*) Before R !R W (P & !R)

After Q G (!Q) | F (Q & F P))

(*) Between Q and R G (Q & !R -> (!R W (P & !R)))

(*) After Q until R G (Q & !R -> (!R U (P & !R)))

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Pattern (Universality)

Universality P is true :

Globally G (P)

Before R F R -> (P U R)

After Q G (Q -> G (P))

Between Q and R G ((Q & !R & F R) -> (P U R))

(*) After Q until R G (Q & !R -> (P W R))

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Altri Pattern

▶ Precedence S precedes P
▶ Response S responds to P :
▶ Precedence Chain ...

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Example: mutual exclusion

When concurrent processes share a resource (such as a �le on a
disk or a database entry), it may be necessary to ensure that they
do not have access to it at the same time. Several processes
simultaneously editing the same �le would not be desirable
a process to access a critical resource must be in critical section

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter
its critical section, it will eventually be
permitted to do so.

Non-blocking: A process can always request to enter
its critical section.

No strict sequencing: Processes need not enter their
critical section in strict sequence.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter
its critical section, it will eventually be
permitted to do so.

Non-blocking: A process can always request to enter
its critical section.

No strict sequencing: Processes need not enter their
critical section in strict sequence.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter
its critical section, it will eventually be
permitted to do so.

Non-blocking: A process can always request to enter
its critical section.

No strict sequencing: Processes need not enter their
critical section in strict sequence.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter
its critical section, it will eventually be
permitted to do so.

Non-blocking: A process can always request to enter
its critical section.

No strict sequencing: Processes need not enter their
critical section in strict sequence.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter
its critical section, it will eventually be
permitted to do so.

Non-blocking: A process can always request to enter
its critical section.

No strict sequencing: Processes need not enter their
critical section in strict sequence.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion �rst model

n1n2start

s0

t1n2

s1

c1n2

s2

t1t2

s3

c1t2

s4

n1t2

s5

n1c2

s6

t1c2

s7

Every process can be in
state: {non critical (n),

trying to enter (t), critical
state (c)}.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion properties

Safety G ¬ (c1
∧

c2). OK

Liveness: G (t1 � F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion properties

Safety G ¬ (c1
∧

c2). OK

Liveness: G (t1 � F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion properties

Safety G ¬ (c1
∧

c2). OK

Liveness: G (t1 � F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion properties

Safety G ¬ (c1
∧

c2). OK

Liveness: G (t1 � F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

mutual exclusion properties

Safety G ¬ (c1
∧

c2). OK

Liveness: G (t1 � F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Limiti LTL

Ricorda la de�nizione:

De�nition

Suppose M is a model, s ∈ S ,and φ an LTL formula. We write M,s
|=φ if, for every execution path π of M starting at s, we have
π |= φ

▶ Qundi M,s |=Fa vuol dire per ogni path a partire da s a accade
▶ Come faccio a dire che non sempre accade in futuro ma

potrebbe accadere?

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

CTL

COMPUTATION TREE LOGIC - CTL La CTL è una logica con
connettivi che ci permette di speci�care proprietà temporali.

▶ Essendo una logica branching-time, i suoi modelli sono
rappresentabili mediante una struttura ad albero in cui il
futuro non è deterministico: esistono di�erenti computazioni o
paths nel futuro e uno di questi sarà il percorso realizzato.

Cosa è un modello per una logica proposizionale ???

▶ Un assegnamento di un valore di verità ad ogni proposizione
▶ che rende vera la formula

▶ a ∨ b ∧ c : trova un modello

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

CTL sintassi

▶ La logica è costruita su di un insieme di formule atomiche AP
{p, q, r, ...} che rappresentano descrizioni atomiche del
sistema
▶ De�niamo in maniera induttiva le formule CTL:

ϕ ::= ⊤|⊥|p ∈ AP|¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ → ϕ|

▶ ⊤,⊥,¬,∧,∨,→ sono connettivi logici classici

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

CTL sintassi

▶ Operatori temporali:

ϕ ::=
AXϕ|EXϕ AFϕ|EFϕ

|A[ϕUϕ]|E [ϕUϕ] AGϕ|EGϕ|

▶ ⊤,⊥,¬,∧,∨,→ sono connettivi logici classici
▶ AX, EX, AG, EG, AU, EU, AF e EF sono connettivi temporali
▶ In particolare: A sta per "along All paths" (inevitably) E sta

per "along at least (there Exists) one path" (possibly)
▶ X, F, G e U sono gli operatori della logica temporale lineare

▶ Nota Bene: AU e EU sono operatori binari e i simboli X, F, G
e U non possono occorrere se non preceduti da A o E e
viceversa.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Priorità degli operatori

▶ Convenzione sull' ordinamento: gli operatori unary (AG, EG,
AF, EF, AX, EX) legano con priorità più elevata, seguono gli
operatori binary A, V, e dopo ancora �>, AU ed EU.
▶ Esempi di formule CTL ben-formate

▶ AG (q �> EG r)
▶ EF E(r U q)
▶ A[p U EF r]
▶ EF EG p �> AF r

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Attenzione

▶ Esempi di formule CTL non ben-formate
▶ EF G r

▶ A!G!p
▶ F[r U q]
▶ EF(r U q)
▶ AEF r
▶ A[(r U q) /\ (p U r)]

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Semantica per CTL (brief)

De�nition

Let M = (S, �, L) be a model for CTL, s in S, φ a CTL formula.
The relation M, s |= φ is de�ned by structural induction on φ.

▶ If φ is atomic, satisfaction is determined by L.
▶ If the top-level connective of φ is a boolean connective (

∧
,∨

, ¬ , etc.) then the satisfaction question is answered by the
usual truth-table de�nition and further recursion down φ.

▶ If the top level connective is an operator beginning A, then
satisfaction holds if all paths from s satisfy the `LTL formula'
resulting from removing the A symbol.

▶ Similarly, if the top level connective begins with E, then
satisfaction holds if some path from s satisfy the `LTL formula'
resulting from removing the E.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Semantic of CTL

Non temporal formula are treated as usual

1. M, s |= ⊤
2. M, s ̸|=⊥
3. M, s |=p i� p ∈ L(s)

4. M, s |=¬φ i� π M, s ̸|=φ
5. M, s |=φ1

∧
φ2 i� M, s |=φ1 and M, s |=φ2

6. M, s |=φ1
∨
φ2 i� M, s |=φ1 or M, s |=φ2

7. M, s |=φ1 � φ2 i� M, s |=φ2 whenever M, s |=φ1

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Validità di una formula CTL (time)

8. M, s |=AX φ i� forall s1such that s → s1 we have M, s1 |=φ
9. M, s |=EX φ i� some s1such that s → s1 we have M, s1 |=φ
10. M, s |=AG φ i�, for all paths s → s1 → s2 . . . and all si along

the path, we have M, s |=φ
11. M, s |=EG φ i�, there is a path s → s1 → s2 . . . and all si

along the path, we have M, s |=φ
▶ AX: `in every next state.'

▶ EX: `in some next state.'
▶ AG: for All computation paths beginning in s the property φ

holds Globally
▶ EG: there Exists a path beginning in s such that φ holds

Globally along the path.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Validità di una formula CTL (time 2)

12. M, s |=AF φ i�, for all paths s → s1 → s2 . . . there exists
some si along the path, we have M, s |=φ

13. M, s |=EF φ i�, there is a path s → s1 → s2 . . . and for some
si along the path, we have M, s |=φ

▶ AF: for All computation paths beginning in s there will be
some Future state where φ holds.
▶ EF: there Exists a computation path beginning in s such that φ

holds in some Future state;

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Validità di una formula CTL

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Validità di una formula CTL (time 3)

11. M, s |= A[ϕ1Uϕ2] i�, for all paths s → s1 → s2 . . . , that path
satis�es ϕ1Uϕ2i.e., there is some si along the path, such that
M, s |= ϕ2, and, for each j < i, we have M, s |= ϕ1.

12. M, s |= E [ϕ1Uϕ2] i�, there exists a path s → s1 → s2 . . . ,
that path satis�es ϕ1Uϕ2.

▶ A U All computation paths beginning in s satisfy that φ1 Until
φ2 holds on it.
▶ E U there Exists a computation path beginning in s such that
φ1 Until φ2 holds on it.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Esempio

Figura 3.3 e computation tree 3.5

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Formula valida con stato iniziale

▶ Se la macchina M ha un insieme di stati iniziali S0
▶ Quando una formula è valida per una macchina M (e non solo

per un path) ?

De�nition

Suppose M =(S, S0,� ,L) is a model, S0 ⊆ S gli stati iniziali, and
φ an CTL formula. We write M |=φ if per ogni s0 ∈ S0 vale
M, s0 |= φ

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Pattern of CTL properties

Esistono dei pattern pratici per la speci�ca mediante CTL di
proprietà comuni:
http://patterns.projects.cis.ksu.edu/documentation/

patterns/ctl.shtml

Absence � P is false:

Globally AG(!P)

Before R A[(!P | AG(!R)) W R]

After Q AG(Q -> AG(!P))
Many of the mappings use the weak until operator (W) which is
related to the strong until operator (U) by the following
equivalences:
A[x W y] = !E[!y U (!x & !y)]
E[x U y] = !A[!y W (!x & !y)]

Temporal logics

http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Pattern (Existence)

Existence P becomes true :

Globally AF(P)

(*) Before R A[!R W (P & !R)]

After Q A[!Q W (Q & AF(P))]

(*) Between Q and R AG(Q & !R -> A[!R W (P & !R)])

(*) After Q until R AG(Q & !R -> A[!R U (P & !R)])

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Pattern (Universality)

Universality P is true :

Globally AG(P)

(*) Before R A[(P | AG(!R)) W R]

After Q AG(Q -> AG(P))

(*) Between Q and R AG(Q & !R -> A[(P | AG(!R)) W R])

(*) After Q until R AG(Q & !R -> A[P W R])

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Practical patterns of speci�cations

▶ It is possible to get to a state where started holds, but ready
doesn't: EF (started

∧
¬ready). To express impossibility,

we simply negate the formula.
▶ For any state, if a request (of some resource) occurs, then it

will eventually be acknowledged: AG (requested � AF
acknowledged).

▶ A certain process is enabled in�nitely often on every
computation path: AG (AF enabled).

▶ From any state it is possible to get to a restart state: AG (EF
restart).

▶ Altri esempi

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Practical patterns of speci�cations

▶ It is possible to get to a state where started holds, but ready
doesn't: EF (started

∧
¬ready). To express impossibility,

we simply negate the formula.
▶ For any state, if a request (of some resource) occurs, then it

will eventually be acknowledged: AG (requested � AF
acknowledged).

▶ A certain process is enabled in�nitely often on every
computation path: AG (AF enabled).

▶ From any state it is possible to get to a restart state: AG (EF
restart).

▶ Altri esempi

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Practical patterns of speci�cations

▶ It is possible to get to a state where started holds, but ready
doesn't: EF (started

∧
¬ready). To express impossibility,

we simply negate the formula.
▶ For any state, if a request (of some resource) occurs, then it

will eventually be acknowledged: AG (requested � AF
acknowledged).

▶ A certain process is enabled in�nitely often on every
computation path: AG (AF enabled).

▶ From any state it is possible to get to a restart state: AG (EF
restart).

▶ Altri esempi

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Practical patterns of speci�cations

▶ It is possible to get to a state where started holds, but ready
doesn't: EF (started

∧
¬ready). To express impossibility,

we simply negate the formula.
▶ For any state, if a request (of some resource) occurs, then it

will eventually be acknowledged: AG (requested � AF
acknowledged).

▶ A certain process is enabled in�nitely often on every
computation path: AG (AF enabled).

▶ From any state it is possible to get to a restart state: AG (EF
restart).

▶ Altri esempi

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Practical patterns of speci�cations

▶ It is possible to get to a state where started holds, but ready
doesn't: EF (started

∧
¬ready). To express impossibility,

we simply negate the formula.
▶ For any state, if a request (of some resource) occurs, then it

will eventually be acknowledged: AG (requested � AF
acknowledged).

▶ A certain process is enabled in�nitely often on every
computation path: AG (AF enabled).

▶ From any state it is possible to get to a restart state: AG (EF
restart).

▶ Altri esempi

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Important equivalences between CTL formulas

▶ We have already noticed that A is a universal quanti�er on
paths and E is the corresponding existential quanti�er.
Moreover, G and F are also universal and existential
quanti�ers, ranging over the states along a particular path.

▶ We can derive the following equivalences:
▶ ¬ AF φ ≡ EG ¬φ and EG φ ≡ ¬ AF ¬φ
▶ ¬ EF φ ≡ AG ¬φ and AG φ ≡ ¬ EF ¬φ
▶ ¬ AX φ ≡ EX ¬φ.
▶ We also have the equivalences AF φ ≡ A[⊤U φ] and

▶ EF φ ≡ E[⊤U φ] which are similar to the corresponding
equivalences in LTL.

▶ Adequate sets of CTL connectives: not all the connectives are
necessary.

▶ We could (and will) use only AF, EU, EX

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

CTL* and the expressive powers of LTL and CTL

▶ CTL allows explicit quanti�cation over paths, and in this
respect it is more expressive than LTL, as we have seen.
▶ However, it does not allow one to select a range of paths by

describing them with a formula, as LTL does. In that respect,
LTL is more expressive. For example, in LTL we can say `all
paths which have a p along them also have a q along them,'
by writing F p � F q . It is not possible to write this in CTL
because of the constraint that every F has an associated A or
E.

▶ CTL* is a logic which combines the expressive powers of LTL
and CTL, by dropping the CTL constraint that every temporal
operator (X, U, F, G) has to be associated with a unique path
quanti�er (A, E).

▶ Past operators in LTL can be added.

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Macchina M

Impariamo come descrivere la macchina M =(S, S0,� ,L)
mediante le ASM

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Abstract State Machines

Vedremo

Temporal logics

Motivation
Linear-time temporal logic

Branching-time temporal logic
AsmetaSMV model checker
Model-checking algorithms

Model checking algorithms

vedi lucidi

Temporal logics

	Motivation
	Linear-time temporal logic
	Branching-time temporal logic
	AsmetaSMV model checker
	Model-checking algorithms

