
Continuous integration
Angelo Gargantini

Sw Testing e verification

testing 1

Continuous Integration

Commit code to shared repository frequently

• Purpose is to avoid big merge conflicts
i.e. (“integration hell”)

• A build server automatically builds software and runs unit tests and integration
tests to identify regressions

• Code does not have to be production ready when committed- e.g. use good
branching practices (feature branches) to separate development and release code

testing 2

Continuous Delivery

Publishable increments are “delivered” frequently, possibly automatically, as unit
tests and acceptance tests pass

• Purpose is to shorten release cycles while ensuring that production code is always
shippable

• “Delivery” is whatever mechanism is used to release code- could be as simple as
a merge to the official release branch
• Important part is the customer can test and accept code

testing 3

Continuous Deployment

Features that pass customer’s acceptance tests are automatically deployed to
production

• Reduces software development latency to production

• Minimizes changes released in each version of software

• Example: Gitlab allows automatic merging of a branch to master when automated
test suite completes successfully

testing 4

testing 5

devops

testing 6

Gitlab CI/CD

Basic feature: allows shell commands to run in response to commits

You can define and run your own:
• Build process

• Test suite

• Packaging/deployment/merge process

• Etc.

testing 7

CI/CD Execution

• Defined in root of repository in hidden file
.gitlab-ci.yml

• A commit action results in running a pipeline

• A pipeline has one or more stages

• A stage has one or more jobs

• Each job is farmed out to a runner, which executes the desired commands

• If all jobs succeed, the pipeline stage succeeds and the next stage starts.
Otherwise the stage fails and the whole pipeline stops

• Pipeline results are logged and email is sent in the case of failure

testing 8

Gitlab Notes

• Using CI/CD requires a runner to be enabled, SLU’s Gitlab installation currently does not have any
runners, but a free account at gitlab.com allows 2000 minutes of execution time per month (as of
fall 2019)

• yml files stand for “Yet Another Markup Language,” yes it’s redundant, but there are plenty of
tutorials

• The top-level elements are usually jobs

• Each job must define a script element that defines what commands are run as a part of that job

• The stages top level element can define a set of pipeline stages. By default, the stages build, test, and deploy exist. By
default, jobs belong to the test stage unless specified

• Lots of other features, see reference for details:
https://docs.gitlab.com/ee/ci/yaml/README.html

testing 9

https://docs.gitlab.com/ee/ci/yaml/README.html

Usando GITHUB

• https://github.com/garganti/esempio_ci_maven

• Configurazione nel file

• .github\workflows\maven.yml

• run: mvn --batch-mode --update-snapshots verify

testing 10

https://github.com/garganti/esempio_ci_maven

Non solo tests

• Anche strumenti di analisi statica (che vedremo) possono essere
integrati in CI
• Esempio: violazioni di convenzioni del linguaggio

• Violazioni delle dipendenze ..

• …

testing 11

Technical debt e CI

• Technical debt (also known as tech debt or code debt) describes what
results when development teams take actions to expedite the
delivery of a piece of functionality or a project which later needs to
be refactored.
• In other words, it’s the result of prioritizing speedy delivery over perfect code.

• Technical debt is a phrase originally coined by software developer,
Ward Cunningham, who in addition to being one of 17 authors of the
Agile Manifesto, is also credited with inventing the wiki. He first used
the metaphor to explain to non-technical stakeholders at WyCash why
resources needed to be budgeted for refactoring.

• CI un modo per valutare/pagare il techinal dept

testing 12

https://www.productplan.com/refactoring/

Come introdurre CI in un processo

• Source control version management
• Probably the most important foundational pillar of continuous integration is source control version management. It is used

to communicate and resolve editing conflicts between multiple developers working in the same codebase. Source control
version management comes in a variety of tools, the most popular being Git and Subversion. CI-as-a-service products center
around the version control system.

• Automated testing
• Most serious software projects include an additional code base that is not explicitly responsible for the business product and

features. This secondary code base is a test suite and acts as a set of assertions that assures the primary code base is
working correctly without bugs. During development, these tests are run by developers to validate that new code has not
caused any regression on existing features. These test cases can also be run by extraneous tools to automate this validation
process. CI service products will automatically run the test cases for a project on user-specified events. Generally, when a
developer pushes code using the version control system an event will trigger the full test suite to run automatically.

• Build automation
• “Builds” are the artifacts created to snapshot the current release version of a software project. Builds are distributed to end

users through various networks. There is generally a set of scripted steps a project will take to create a build artifact. CI tools
help streamline this build process with the use of automatic triggers from the version control system. One example trigger
would be when new code is merged to the production branch of the codebase upload the build to a remote server for users
to download.

• Automated Deployments
• When builds are ready to be distributed they go through a deployment process. Depending on the project deployment can

have a variety of outcomes. For example, web projects are deployed to publicly accessible web servers. During this
deployment, the artifact that was generated in the build phase is copied onto the web servers. The deployment process for
mobile and desktop vary and may involve uploading to a ‘store’ so users may download the app.

testing 13

	Slide 1: Continuous integration
	Slide 2: Continuous Integration
	Slide 3: Continuous Delivery
	Slide 4: Continuous Deployment
	Slide 5
	Slide 6: devops
	Slide 7: Gitlab CI/CD
	Slide 8: CI/CD Execution
	Slide 9: Gitlab Notes
	Slide 10: Usando GITHUB
	Slide 11: Non solo tests
	Slide 12: Technical debt e CI
	Slide 13: Come introdurre CI in un processo

