
Making tests executable

Angelo Gargantini

Testing e veri�ca del software

AA 2021-22

Angelo Gargantini Making tests executable



Concretization

I how to take a suite of abstract tests, generated from an
abstract model, and make them executable on the real SUT?

I This concretization phase is an important part of the
model-based testing process, and it can take a signi�cant
amount of e�ort.
I molte volte fatto a mano - vedremo dei tool in laboratorio

I sometime, test execution require some human activities (like
using the system) and this makes necessary the human
intervention.

Angelo Gargantini Making tests executable



Section 1

Principles of test adaptation

Angelo Gargantini Making tests executable



Common abstractions

I Model only one aspect of the SUT, not all its behavior.

I Omit inputs and outputs that are not relevant to the test
goals.

I Take a simpli�ed view of complex data values, such as
enumerating a few typical values.

I Assume that the SUT has already been initialized to match a
particular testing scenario.

I De�ne a single model operation that corresponds to a sequence
of SUT operations, or to just one part of an SUT operation.

Angelo Gargantini Making tests executable



Online vs o�ine testing

Online testing is where tests are executed as they are
generated, so the model-based testing tool is tightly
coupled to the SUT.

O�ine testing decouples the generation and execution
phases, so the test execution can be completely inde-
pendent of the model-based test generation process.
This book contains several examples of each of these.
Online testing is

Angelo Gargantini Making tests executable



bridging the gap between abstract and concrete

I Three approaches to bridging the semantic gap between
abstract tests and the concrete SUT

Angelo Gargantini Making tests executable



Bridging the gap

I ADAPTATION: manually write some adapter code that
bridges the gap. This is essentially a wrapper around the SUT
that provides a more abstract view of the SUT to match the
abstraction level of the model.

I TRANSFORMATION: The transformation approach, (b), is to
transform the abstract tests into concrete test scripts.

I MIX: use an intermediate notation

Angelo Gargantini Making tests executable



Adaptation

Setup: Set up the SUT so that it is ready for testing. This
involves con�guring and initializing the SUT so that it
re�ects the test scenario assumed by the model.

Concretization: Translate each model-level abstract operation call
and its abstract input values into one or more
concrete SUT calls with and its the appropriate input
values.

Abstraction: Obtain the SUT results from those concrete calls, and
translate them back into abstract values, and then
pass them back to the model for comparison with the
expected results in order to produce the test verdict.

Teardown: Shut down the SUT at the end of each test sequence
or at the end of each batch of tests.

Angelo Gargantini Making tests executable



The Transformation Approach

The transformation approach involves transforming each abstract
test into an executable test script:

I A standard programming language, such as Java or C

I A scripting language, such as TCL, JavaScript, or VBScript

I A standard test notation, such as TTCN-3 [WDT+ 05]

I A proprietary test notation, such as the TSL (Test Script
Language) of Mercury WinRunner or some company-speci�c
test notation

Angelo Gargantini Making tests executable



The Transformation Approach

I Some concrete setup and teardown code will be needed.

I The template for each operation may be quite complex
because there is not necessarily a one-to-one mapping between
the signature of the abstract operation and the SUT
operations.

I The model uses abstract constants and values�these must
be translated into the concrete values used by the SUT.

I When testing nondeterministic SUTs, an abstract test may
have a tree structure rather than being a simple sequence.
This requires the transformation engine to be more
sophisticated to handle such structures. It must generate an
executable test script that includes conditional statements

to check the SUT outputs and then take the appropriate
branch through the tree to the next part of the test.

I Traceability between the concrete test scripts and the
abstract tests must be maintained

Angelo Gargantini Making tests executable



The Transformation Approach

I The structure of the transformed test suite is almost as
important as the code within each test script.

I In addition to generating the executable code of the test
scripts, it may be desirable to generate a test plan, which
describes, in English, the structure of the test suite, the
rationale for each test in the suite, the settings used to
generate the tests, who generated the tests, when they were
generated, and so on.

The transformation approach can produce test scripts that �t
smoothly into your existing test management practices, with similar
language, structure, and naming conventions as manually written
test scripts.

Angelo Gargantini Making tests executable



Which Approach Is Better?

I For online testing, it is almost always better to use the
adaptation approach because online testing requires a tightly
integrated, two-way connection between the model-based
testing tool and the SUT.

I For o�ine testing, we can choose between the adaptation
approach or the transformation approach, or use a mixture of
the two.
I If we use the transformation approach, then we obtain a suite

of executable test scripts that can be executed directly on the

SUT.
I If we use the adaptation approach, then our suite of abstract

tests e�ectively becomes executable because the adapter acts

as an interpreter, mapping each abstract call into SUT

operations and translating the SUT results back to the

abstract level.
I With the mixed approach, we transform the abstract tests into

executable test scripts that call an adapter layer to handle the

low-level details of SUT interaction.

Angelo Gargantini Making tests executable



Simple rule

For online testing, use the adaptation approach. For o�ine testing,
the transformation approach has some advantages (less disruption),
and it is often useful to combine it with the adaptation approach.

Angelo Gargantini Making tests executable


