3
Verification by model checking

3.1 Motivation for verification

There is a great advantage in being able to verify the correctness of computer
systems, whether they are hardware, software, or a combination. This is most
obvious in the case of safety-critical systems, but also applies to those that
are commercially critical, such as mass-produced chips, mission critical, etc.
Formal verification methods have quite recently become usable by industry
and there is a growing demand for professionals able to apply them. In this
chapter, and the next one, we examine two applications of logics to the
question of verifying the correctness of computer systems, or programs.

Formal verification techniques can be thought of as comprising three
parts:

* a framework for modelling systems, typically a description language of some sort;

* a specification language for describing the properties to be verified;

* a wverification method to establish whether the description of a system satisfies
the specification.

Approaches to verification can be classified according to the following
criteria:

Proof-based vs. model-based. In a proof-based approach, the system

description is a set of formulas I" (in a suitable logic) and the specification
is another formula ¢. The verification method consists of trying to find
a proof that I' |- ¢. This typically requires guidance and expertise from
the user.
In a model-based approach, the system is represented by a model M for
an appropriate logic. The specification is again represented by a formula
¢ and the verification method consists of computing whether a model
M satisfies ¢ (written M F ¢). This computation is usually automatic
for finite models.

172

3.1 Motivation for verification 173

In Chapters 1 and 2, we could see that logical proof systems are often
sound and complete, meaning that I" |- ¢ (provability) holds if, and only
if, I' F ¢ (semantic entailment) holds, where the latter is defined as fol-
lows: for all models M, if for all ¢» € I' we have M E v, then M E ¢.
Thus, we see that the model-based approach is potentially simpler than
the proof-based approach, for it is based on a single model M rather
than a possibly infinite class of them.

Degree of automation. Approaches differ on how automatic the
method is; the extremes are fully automatic and fully manual. Many
of the computer-assisted techniques are somewhere in the middle.

Full- vs. property-verification. The specification may describe a sin-
gle property of the system, or it may describe its full behaviour. The
latter is typically expensive to verify.

Intended domain of application, which may be hardware or software;
sequential or concurrent; reactive or terminating; etc. A reactive system
is one which reacts to its environment and is not meant to terminate
(e.g., operating systems, embedded systems and computer hardware).

Pre- vs. post-development. Verification is of greater advantage if in-
troduced early in the course of system development, because errors
caught earlier in the production cycle are less costly to rectify. (It is
alleged that Intel lost millions of dollars by releasing their Pentium chip
with the FDIV error.)

This chapter concerns a verification method called model checking. In
terms of the above classification, model checking is an automatic, model-
based, property-verification approach. It is intended to be used for concur-
rent, reactive systems and originated as a post-development methodology.
Concurrency bugs are among the most difficult to find by testing (the activ-
ity of running several simulations of important scenarios), since they tend to
be non-reproducible or not covered by test cases, so it is well worth having
a verification technique that can help one to find them.

The Alloy system described in Chapter 2 is also an automatic, model-
based, property-verification approach. The way models are used is slightly
different, however. Alloy finds models which form counterexamples to asser-
tions made by the user. Model checking starts with a model described by
the user, and discovers whether hypotheses asserted by the user are valid
on the model. If they are not, it can produce counterexamples, consisting of
execution traces. Another difference between Alloy and model checking is
that model checking (unlike Alloy) focuses explicitly on temporal properties
and the temporal evolution of systems.

174 3 Verification by model checking

By contrast, Chapter 4 describes a very different verification technique
which in terms of the above classification is a proof-based, computer-assisted,
property-verification approach. It is intended to be used for programs which
we expect to terminate and produce a result.

Model checking is based on temporal logic. The idea of temporal logic is
that a formula is not statically true or false in a model, as it is in propo-
sitional and predicate logic. Instead, the models of temporal logic contain
several states and a formula can be true in some states and false in others.
Thus, the static notion of truth is replaced by a dynamic one, in which the
formulas may change their truth values as the system evolves from state
to state. In model checking, the models M are transition systems and the
properties ¢ are formulas in temporal logic. To verify that a system satisfies
a property, we must do three things:

* model the system using the description language of a model checker, arriving at
a model M;

* code the property using the specification language of the model checker, resulting
in a temporal logic formula ¢;

* Run the model checker with inputs M and ¢.

The model checker outputs the answer ‘yes’ if M E ¢ and ‘no’ otherwise; in
the latter case, most model checkers also produce a trace of system behaviour
which causes this failure. This automatic generation of such ‘counter traces’
is an important tool in the design and debugging of systems.

Since model checking is a model-based approach, in terms of the classifica-
tion given earlier, it follows that in this chapter, unlike in the previous two,
we will not be concerned with semantic entailment (I' F ¢), or with proof
theory (I' F ¢), such as the development of a natural deduction calculus for
temporal logic. We will work solely with the notion of satisfaction, i.e. the
satisfaction relation between a model and a formula (M E ¢).

There is a whole zoo of temporal logics that people have proposed and
used for various things. The abundance of such formalisms may be organised
by classifying them according to their particular view of ‘time.” Linear-
time logics think of time as a set of paths, where a path is a sequence of
time instances. Branching-time logics represent time as a tree, rooted at the
present moment and branching out into the future. Branching time appears
to make the non-deterministic nature of the future more explicit. Another
quality of time is whether we think of it as being continuous or discrete.
The former would be suggested if we study an analogue computer, the latter
might be preferred for a synchronous network.

3.2 Linear-time temporal logic 175

Temporal logics have a dynamic aspect to them, since the truth of a
formula is not fixed in a model, as it is in predicate or propositional logic,
but depends on the time-point inside the model. In this chapter, we study
a logic where time is linear, called Linear-time Temporal Logic (LTL), and
another where time is branching, namely Computation Tree Logic (CTL).
These logics have proven to be extremely fruitful in verifying hardware and
communication protocols; and people are beginning to apply them to the
verification of software. Model checking is the process of computing an answer
to the question of whether M, s F ¢ holds, where ¢ is a formula of one of
these logics, M is an appropriate model of the system under consideration,
s is a state of that model and F is the underlying satisfaction relation.

Models like M should not be confused with an actual physical system.
Models are abstractions that omit lots of real features of a physical system,
which are irrelevant to the checking of ¢. This is similar to the abstractions
that one does in calculus or mechanics. There we talk about straight lines,
perfect circles, or an experiment without friction. These abstractions are
very powerful, for they allow us to focus on the essentials of our particular
concern.

3.2 Linear-time temporal logic

Linear-time temporal logic, or LTL for short, is a temporal logic, with con-
nectives that allow us to refer to the future. It models time as a sequence of
states, extending infinitely into the future. This sequence of states is some-
times called a computation path, or simply a path. In general, the future is
not determined, so we consider several paths, representing different possible
futures, any one of which might be the ‘actual’ path that is realised.

We work with a fixed set Atoms of atomic formulas (such as p,q,r,..., or
P1,P2,---). These atoms stand for atomic facts which may hold of a system,
like ‘Printer Q5 is busy,’” or ‘Process 3259 is suspended,” or ‘The content of
register R1 is the integer value 6.” The choice of atomic descriptions obvi-
ously depends on our particular interest in a system at hand.

3.2.1 Syntax of LTL
Definition 3.1 Linear-time temporal logic (LTL) has the following syntax
given in Backus Naur form:

pu=T[Llpl(=0)[(0NQ)|(0VE)][(P—9)
| (X¢)[(F)[(Go) | (¢ UP) [(9W)|(#R¢) (31)

where p is any propositional atom from some set Atoms.

176 3 Verification by model checking

- O @
ONONO

Figure 3.1. The parse tree of (F(p — Gr)V ((—q) U p)).

Thus, the symbols T and | are LTL formulas, as are all atoms from Atoms;
and —¢ is an LTL formula if ¢ is one, etc. The connectives X, F, G, U, R,
and W are called temporal connectives. X means ‘neXt state,” F means ‘some
Future state,” and G means ‘all future states (Globally).” The next three, U,
R and W are called ‘Until,” ‘Release’ and ‘Weak-until’ respectively. We will
look at the precise meaning of all these connectives in the next section; for
now, we concentrate on their syntax.

Here are some examples of LTL formulas:

* (Fp)A(Gq)) = (pWr))

e (F(p— (Gr))V((—q) Up)), the parse tree of this formula is illustrated in
Figure 3.1.

* pW(gWr))

* (G(Fp)) — (F(gVs))).

It’s boring to write all those brackets, and makes the formulas hard to read.
Many of them can be omitted without introducing ambiguities; for example,
(p — (Fq)) could be written p — F g without ambiguity. Others, however,
are required to resolve ambiguities. In order to omit some of those, we assume
similar binding priorities for the LTL connectives to those we assumed for
propositional and predicate logic.

3.2 Linear-time temporal logic 177

Figure 3.2. The parse tree of Fp — Gr V —¢ U p, assuming binding pri-
orities of Convention 3.2.

Convention 3.2 The unary connectives (consisting of = and the temporal
connectives X, F and G) bind most tightly. Next in the order come U, R
and W; then come A and V; and after that comes —.

These binding priorities allow us to drop some brackets without introduc-
ing ambiguity. The examples above can be written:

°

FpAhnGg—pWr
F(p—Gr)v-qUp
pW(qgWr)
GFp—F(qVs).

°

°

The brackets we retained were in order to override the priorities of Conven-
tion 3.2, or to disambiguate cases which the convention does not resolve.
For example, with no brackets at all, the second formula would become
Fp— GrV-qU p, corresponding to the parse tree of Figure 3.2, which is
quite different.

The following are not well-formed formulas:

e Ur —since U is binary, not unary
e p G g —since G is unary, not binary.

178 3 Verification by model checking

Definition 3.3 A subformula of an LTL formula ¢ is any formula) whose
parse tree is a subtree of ¢’s parse tree.

The subformulas of p W (¢ U), e.g., are p, ¢, 7, ¢ Ur and p W (¢ U r).

3.2.2 Semantics of LTL
The kinds of systems we are interested in verifying using LTL may be
modelled as transition systems. A transition system models a system by
means of states (static structure) and transitions (dynamic structure). More
formally:

Definition 3.4 A transition system M = (S,—,L) is a set of states S
endowed with a transition relation — (a binary relation on S), such
that every s € S has some s’ € S with s — s/, and a labelling function

L:S — P(Atoms).

Transition systems are also simply called models in this chapter. So a model
has a collection of states S, a relation —, saying how the system can move
from state to state, and, associated with each state s, one has the set of
atomic propositions L(s) which are true at that particular state. We write
P(Atoms) for the power set of Atoms, a collection of atomic descriptions.
For example, the power set of {p,q} is {0, {p},{q},{p,q}} A good way of
thinking about L is that it is just an assignment of truth values to all the
propositional atoms, as it was the case for propositional logic (we called
that a valuation). The difference now is that we have more than one state,
so this assignment depends on which state s the system is in: L(s) contains
all atoms which are true in state s.

We may conveniently express all the information about a (finite) tran-
sition system M using directed graphs whose nodes (which we call states)
contain all propositional atoms that are true in that state. For example, if
our system has only three states sg, s; and so; if the only possible transi-
tions between states are sg — s1, sg — S2, S1 — Sg, S1 — S2 and Sy — S9;
and if L(sg) = {p,q}, L(s1) = {q,r} and L(s2) = {r}, then we can condense
all this information into Figure 3.3. We prefer to present models by means
of such pictures whenever that is feasible.

The requirement in Definition 3.4 that for every s € S there is at least
one s’ € S such that s — s’ means that no state of the system can ‘dead-
lock.” This is a technical convenience, and in fact it does not represent any
real restriction on the systems we can model. If a system did deadlock, we
could always add an extra state sz representing deadlock, together with new

3.2 Linear-time temporal logic 179

N
@)
S1 °.

Figure 3.3. A concise representation of a transition system M =
(S,—,L) as a directed graph. We label state s with [iff [€ L(s).

S1 S1

S92 S92
S4 S4

Sd

Figure 3.4. On the left, we have a system with a state s, that does not
have any further transitions. On the right, we expand that system with a
‘deadlock’ state s; such that no state can deadlock; of course, it is then
our understanding that reaching the ‘deadlock’ state s; corresponds to
deadlock in the original system.

transitions s — sy for each s which was a deadlock in the old system, as well
as sqg — 8q. See Figure 3.4 for such an example.

Definition 3.5 A path in a model M = (S, —, L) is an infinite sequence of
states si, s9,83,... in S such that, for each i > 1, s; — s;1.1. We write the
path as s1 — s9 — ..

Consider the path m = s; — s9 — It represents a possible future of
our system: first it is in state sq, then it is in state so, and so on. We write

7 for the suffix starting at s;, e.g., 75 is s3 — s4 —

180 3 Verification by model checking

So

81

/
RN \ \
s 52 @32 .
AR K-

L] Ld
L] L) .

Y L]
L] L] ®

Figure 3.5. Unwinding the system of Figure 3.3 as an infinite tree of
all computation paths beginning in a particular state.

It is useful to visualise all possible computation paths from a given state
s by unwinding the transition system to obtain an infinite computation tree.
For example, if we unwind the state graph of Figure 3.3 for the designated
starting state sp, then we get the infinite tree in Figure 3.5. The execu-
tion paths of a model M are explicitly represented in the tree obtained by
unwinding the model.

Definition 3.6 Let M = (S, —, L) be a model and m = s; — ... be a path
in M. Whether 7w satisfies an LTL formula is defined by the satisfaction
relation F as follows:

TET

TH L

T Epiff p € L(s;)

mE ¢ iff 7 ¢

TE Q1 AN iff TE ¢ and m E ¢o

TE OV oo iff TE @1 or mE @9
TFE ¢1 — ¢ it TE ¢o whenever mF ¢
mEXgiff 2 F ¢
TEGoiff, foralli > 1, 7' E ¢

© NSO W=

3.2 Linear-time temporal logic 181

S0 S1 S2 83 S4 S5 S St S8 S9 S10
o o o o o o o o o o o

P
Figure 3.6. An illustration of the meaning of Until in the semantics of
LTL. Suppose p is satisfied at (and only at) s3, s4, s5, sg, S7, Ss and ¢ is
satisfied at (and only at) s9. Only the states s3 to sg each satisfy p U ¢
along the path shown.

q

10. 7 F F ¢ iff there is some i > 1 such that 7 F ¢

11. 7 F ¢ U4 iff there is some ¢ > 1 such that 7 F and for all j =1,...,i—1
we have 7/ F ¢

12. 7wk ¢ W o iff either there is some i > 1 such that 7¢ F 1) and for all j =
1,...,i—1 we have 7/ E ¢; or for all k > 1 we have 7% F ¢

13. 7 F ¢ R 4 iff either there is some i > 1 such that 7' F ¢ and for all j = 1,...,4
we have 7/ E 1), or for all k > 1 we have 7% E 1.

Clauses 1 and 2 reflect the facts that T is always true, and L is always false.
Clauses 3—7 are similar to the corresponding clauses we saw in propositional
logic. Clause 8 removes the first state from the path, in order to create a
path starting at the ‘next’ (second) state.

Notice that clause 3 means that atoms are evaluated in the first state along
the path in consideration. However, that doesn’t mean that all the atoms
occuring in an LTL formula refer to the first state of the path; if they are in
the scope of a temporal connective, e.g., in G (p — X g), then the calculation
of satisfaction involves taking suffices of the path in consideration, and the
atoms refer to the first state of those suffices.

Let’s now look at clauses 11-13, which deal with the binary temporal
connectives. U, which stands for ‘Until,” is the most commonly encountered
one of these. The formula ¢; U ¢2 holds on a path if it is the case that ¢;
holds continuously until ¢o holds. Moreover, ¢1 U ¢o actually demands that
@2 does hold in some future state. See Figure 3.6 for illustration: each of the
states s3 to sg satisfies p U ¢ along the path shown, but sy to so don’t.

The other binary connectives are W, standing for ‘Weak-until,” and R,
standing for ‘Release.” Weak-until is just like U, except that ¢ W 1 does not
require that 1 is eventually satisfied along the path in question, which is
required by ¢ U 1. Release R is the dual of U; that is, ¢ R v is equivalent to
—(=¢ U —). It is called ‘Release’ because clause 11 determines that ¢ must
remain true up to and including the moment when ¢ becomes true (if there
is one); ¢ ‘releases’ ¥. R and W are actually quite similar; the differences
are that they swap the roles of ¢ and 1, and the clause for W has an 7 — 1

182 3 Verification by model checking

where R has i. Since they are similar, why do we need both? We don’t; they
are interdefinable, as we will see later. However, it’s useful to have both. R
is useful because it is the dual of U, while W is useful because it is a weak
form of U.

Note that neither the strong version (U) or the weak version (W) of until
says anything about what happens after the until has been realised. This
is in contrast with some of the readings of ‘until’ in natural language. For
example, in the sentence ‘I smoked until I was 22’ it is not only expressed
that the person referred to continually smoked up until he or she was 22
years old, but we also would interpret such a sentence as saying that this
person gave up smoking from that point onwards. This is different from the
semantics of until in temporal logic. We could express the sentence about
smoking by combining U with other connectives; for example, by asserting
that it was once true that s U (¢t A G —s), where s represents ‘I smoke’ and
t represents ‘I am 22.

Remark 3.7 Notice that, in clauses 9-13 above, the future includes the
present. This means that, when we say ‘in all future states,” we are including
the present state as a future state. It is a matter of convention whether we
do this, or not. As an exercise, you may consider developing a version of
LTL in which the future excludes the present. A consequence of adopting
the convention that the future shall include the present is that the formulas
Gp—p,p—qUpand p— Fp are true in every state of every model.

So far we have defined a satisfaction relation between paths and LTL for-
mulas. However, to verify systems, we would like to say that a model as
a whole satisfies an LTL formula. This is defined to hold whenever every
possible execution path of the model satisfies the formula.

Definition 3.8 Suppose M = (5, —,L) is a model, s € S, and ¢ an LTL
formula. We write M, s E ¢ if, for every execution path 7 of M starting at
s, we have 7 F ¢.

If M is clear from the context, we may abbreviate M, s F ¢ by sF ¢.
It should be clear that we have outlined the formal foundations of a pro-
cedure that, given ¢, M and s, can check whether M, s F ¢ holds. Later
in this chapter, we will examine algorithms which implement this calcula-

tion. Let us now look at some example checks for the system in Figures 3.3
and 3.5.

1. M, sy E pA qholds since the atomic symbols p and ¢ are contained in the node
of sg: mFE p A q for every path 7 beginning in sg.

3.2 Linear-time temporal logic 183

2. M, sgp F —r holds since the atomic symbol r is not contained in node sy.
M., so E T holds by definition.
4. M, so E Xr holds since all paths from sy have either s; or s, as their next

b

state, and each of those states satisfies r.

5. M, soF X (g Ar) does not hold since we have the rightmost computation path
So — S2 — S — S9 — ... in Figure 3.5, whose second node s contains r, but
not q.

6. M,soF G—(pAr) holds since all computation paths beginning in s satisfy
G—(pAr), i.e. they satisfy =(p A r) in each state along the path. Notice that
G ¢ holds in a state if, and only if, ¢ holds in all states reachable from the
given state.

7. For similar reasons, M, sy E G r holds (note the sy instead of sg).

8. For any state s of M, we have M,sF F (—g Ar) — FGr. This says that if
any path 7 beginning in s gets to a state satisfying (—g A r), then the path
7 satisfies F Gr. Indeed this is true, since if the path has a state satisfying
(mg A1) then (since that state must be s5) the path does satisfy F G r. Notice
what F G r says about a path: eventually, you have continuously r.

9. The formula G F p expresses that p occurs along the path in question infinitely
often. Intuitively, it’s saying: no matter how far along the path you go (that’s
the G part) you will find you still have a p in front of you (that’s the F part).
For example, the path so — s; — sg — s; — ... satisfies GF p. But the path
Sg — S9 — S9 — S9 — ... doesn’t.

10. In our model, if a path from sy has infinitely many ps on it then it must be the
path sg — s1 — sp — s1 — ..., and in that case it also has infinitely many rs
on it. So, M, so F GFp — GFr. But it is not the case the other way around!
It is not the case that M, sg F GFr — GF p, because we can find a path from
sp which has infinitely many rs but only one p.

3.2.3 Practical patterns of specifications
What kind of practically relevant properties can we check with formulas of
LTL? We list a few of the common patterns. Suppose atomic descriptions
include some words such as busy and requested. We may require some of
the following properties of real systems:

* It is impossible to get to a state where started holds, but ready does not hold:
G—(started A —ready)
The negation of this formula expresses that it is possible to get to such a state,
but this is only so if interpreted on paths (7 F ¢). We cannot assert such a
possibility if interpreted on states (s F ¢) since we cannot express the existence
of paths; for that interpretation, the negation of the formula above asserts that
all paths will eventually get to such a state.

184 3 Verification by model checking

* For any state, if a request (of some resource) occurs, then it will eventually be
acknowledged:
G (requested — F acknowledged).

e A certain process is enabled infinitely often on every computation path:
G F enabled.

* Whatever happens, a certain process will eventually be permanently deadlocked:
F G deadlock.

e If the process is enabled infinitely often, then it runs infinitely often.
G F enabled — G F running.

* An upwards travelling lift at the second floor does not change its direction when
it has passengers wishing to go to the fifth floor:
G (floor2 A directionup A ButtonPressed5 — (directionup U floorb))
Here, our atomic descriptions are boolean expressions built from system vari-
ables, e.g., floor2.

There are some things which are not possible to say in LTL, however. One
big class of such things are statements which assert the existence of a path,
such as these ones:

* From any state it is possible to get to a restart state (i.e., there is a path from
all states to a state satisfying restart).

e The lift can remain idle on the third floor with its doors closed (i.e., from the
state in which it is on the third floor, there is a path along which it stays there).

LTL can’t express these because it cannot directly assert the existence of
paths. In Section 3.4, we look at Computation Tree Logic (CTL) which has
operators for quantifying over paths, and can express these properties.

3.2.4 Important equivalences between LTL formulas
Definition 3.9 We say that two LTL formulas ¢ and 1 are semantically

equivalent, or simply equivalent, writing ¢ =), if for all models M and all
paths min M: 7w E ¢ iff 7 E 4.

The equivalence of ¢ and ¥ means that ¢ and 1 are semantically inter-
changeable. If ¢ is a subformula of some bigger formula y, and) = ¢, then
we can make the substitution of ¢ for ¢ in x without changing the meaning
of x. In propositional logic, we saw that A and V are duals of each other,
meaning that if you push a — past a A, it becomes a V, and vice versa:

—(pAY) =0V (pVY) =9 A

(Because A and V are binary, pushing a negation downwards in the parse
tree past one of them also has the effect of duplicating that negation.)

3.2 Linear-time temporal logic 185
Similarly, F and G are duals of each other, and X is dual with itself:
-G¢p=F—¢ -Fop=G—¢ X=X
Also U and R are duals of each other:
~(pU)=-¢R—~ (R ¢)=-¢U~0.

We should give formal proofs of these equivalences. But they are easy, so we
leave them as an exercise to the reader. ‘Morally’ there ought to be a dual
for W, and you can invent one if you like. Work out what it might mean,
and then pick a symbol based on the first letter of the meaning. However, it
might not be very useful.

It’s also the case that F distributes over V and G over A, i.e.,

F(oviy)=F¢VFEFqy
GoNY)=GopAGa.

Compare this with the quantifier equivalences in Section 2.3.2. But F does
not distribute over A. What this means is that there is a model with a
path which distinguishes F (¢ A ¢) and F ¢ A F 1, for some ¢, 1. Take the
path sg — s1 — s9p — s1 — ... from the system of Figure 3.3, for example;
it satisfies Fp A Fr but it doesn’t satisfy F (p A r).

Here are two more equivalences in LTL:

Fo=TUG¢o Go=_LRo.

The first one exploits the fact that the clause for Until states two things:
the second formula ¢ must become true; and until then, the first formula T
must hold. So, if we put ‘no constraint’ for the first formula, it boils down
to asking that the second formula holds, which is what F asks. (The formula
T represent ‘no constraint.” If you ask me to bring it about that T holds,
I need do nothing, it enforces no constraint. In the same sense, L is ‘every
constraint.” If you ask me to bring it about that L holds, I'll have to meet
every constraint there is, which is impossible.)

The second formula, that G¢ = 1. R ¢, can be obtained from the first by
putting a = in front of each side, and applying the duality rules. Another
more intuitive way of seeing this is to recall the meaning of ‘release:” L
releases ¢, but L will never be true, so ¢ doesn’t get released.

Another pair of equivalences relates the strong and weak versions of Until,
U and W. Strong until may be seen as weak until plus the constraint that
the eventuality must actually occur:

dUY=¢d W AF1). (3.2)

186 3 Verification by model checking

To prove equivalence (3.2), suppose first that a path satisfies ¢ U 1. Then,
from clause 11, we have ¢ > 1 such that 7? E ¢ and for all j=1,...,i—1
we have 7/ E ¢. From clause 12, this proves ¢ W 1, and from clause 10 it
proves F 1. Thus for all paths 7w, if 71 E ¢ U1 then 7 E ¢ W) AF 1. As an
exercise, the reader can prove it the other way around.

Writing W in terms of U is also possible: W is like U but also allows the
possibility of the eventuality never occurring:

dWi=0UphVGao (3.3)

Inspection of clauses 12 and 13 reveals that R and W are rather similar. The
differences are that they swap the roles of their arguments ¢ and 1; and the
clause for W has an ¢ — 1 where R has . Therefore, it is not surprising that
they are expressible in terms of each other, as follows:

PWiY=9R(6VY) (3.4)
dRY=20 W (pAD). 3.5

3.2.5 Adequate sets of connectives for LTL

Recall that ¢ = v holds iff any path in any transition system which sat-
isfies ¢ also satisfies v, and vice versa. As in propositional logic, there is
some redundancy among the connectives. For example, in Chapter 1 we saw
that the set { L, A, =} forms an adequate set of connectives, since the other
connectives V, —, T, etc., can be written in terms of those three.

Small adequate sets of connectives also exist in LTL. Here is a summary
of the situation.

* X is completely orthogonal to the other connectives. That is to say, its presence
doesn’t help in defining any of the other ones in terms of each other. Moreover,
X cannot be derived from any combination of the others.
* Each of the sets {U, X}, {R, X}, {W,X} is adequate. To see this, we note that
— R and W may be defined from U, by the duality ¢ R ¢ = =(-¢ U =) and
equivalence (3.4) followed by the duality, respectively.
— U and W may be defined from R, by the duality ¢ U ¢ = =(—¢ R =) and
equivalence (3.4), respectively.
— R and U may be defined from W, by equivalence (3.5) and the duality ¢ U
Y = =(—¢ R) followed by equivalence (3.5).

Sometimes it is useful to look at adequate sets of connectives which do not
rely on the availability of negation. That’s because it is often convenient to
assume formulas are written in negation-normal form, where all the negation
symbols are applied to propositional atoms (i.e., they are near the leaves

3.3 Model checking: systems, tools, properties 187

of the parse tree). In this case, these sets are adequate for the fragment
without X, and no strict subset is: {U, R}, {U, W}, {U,G}, {R,F}, {W,F}.
But {R,G} and {W,G} are not adequate. Note that one cannot define G
with {U,F}, and one cannot define F with {R,G} or {W,G}.

We finally state and prove a useful equivalence about U.

Theorem 3.10 The equivalence ¢ U ¢p = —(—¢ U (=¢ A =) A F 1) holds
for all LTL formulas ¢ and 1.

ProoOF: Take any path s)g — s; — s3 — ... in any model.

First, suppose so F ¢ U ¢ holds. Let n be the smallest number such that
sn F 1); such a number has to exist since sg F ¢ U 1; then, for each k < n,
s E ¢. We immediately have sg F F), so it remains to show sg F —=(—¢ U
(—¢ A —p)), which, if we expand, means:

(%) for each i > 0, if s; F =¢ A =, then there is some j < i with s; F 1.
Take any ¢ > 0 with s; F ¢ A =9); © > n, so we can take j ' 1 and have
Sj F w

Conversely, suppose sg E =(— U (=¢ A =1))) A F 4 holds; we prove sg E ¢ U
Y. Since sg F F v, we have a minimal n as before. We show that, for any
1 <mn, s; F¢. Suppose s; F —¢; since n is minimal, we know s; E =), so
by (%) there is some j <7 < n with s; F ¢, contradicting the minimality
of n. O

3.3 Model checking: systems, tools, properties

3.3.1 Example: mutual exclusion
Let us now look at a larger example of verification using LTL, having to do
with mutual exclusion. When concurrent processes share a resource (such as
a file on a disk or a database entry), it may be necessary to ensure that they
do not have access to it at the same time. Several processes simultaneously
editing the same file would not be desirable.

We therefore identify certain critical sections of each process’ code and
arrange that only one process can be in its critical section at a time. The
critical section should include all the access to the shared resource (though it
should be as small as possible so that no unnecessary exclusion takes place).
The problem we are faced with is to find a protocol for determining which
process is allowed to enter its critical section at which time. Once we have
found one which we think works, we verify our solution by checking that it
has some expected properties, such as the following ones:

Safety: Only one process is in its critical section at any time.

188 3 Verification by model checking

SO

i
\@

Figure 3.7. A first-attempt model for mutual exclusion.

S6

) @
82
S4

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.
Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the

property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (¢),
or in its critical state (c¢). Each individual process undergoes transitions in
the cyclen —t — c— n — ..., but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write pip2...p, in a node s to denote that pi,po,...,pm
are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state sg). State sg is the only initial state,
indicated by the incoming edge with no source. Either of them may now

3.3 Model checking: systems, tools, properties 189

move to its trying state, but only one of them can ever make a transition at
a time (asynchronous interleaving). At each step, an (unspecified) scheduler
determines which process may run. So there is a transition arrow from sg to
s1 and s5. From s; (i.e., process 1 trying, process 2 non-critical) again two
things can happen: either process 1 moves again (we go to s9), or process 2
moves (we go to s3). Notice that not every process can move in every state.
For example, process 1 cannot move in state s7, since it cannot go into its
critical section until process 2 comes out of its critical section.

We would like to check the four properties by first describing them as
temporal logic formulas. Unfortunately, they are not all expressible as LTL
formulas. Let us look at them case-by-case.

Safety: This is expressible in LTL, as G —(c; A ¢2). Clearly, G =(c1 A ¢2)
is satisfied in the initial state (indeed, in every state).

Liveness: This is also expressible: G (t; — F¢;1). However, it is not sat-
isfied by the initial state, for we can find a path starting at the
initial state along which there is a state, namely s;, in which ¢; is
true but from there along the path c; is false. The path in question
is sg — s1 — S3 — §7 — S] — S3 — S7... on which ¢ is always false.

Non-blocking: Let’s just consider process 1. We would like to express the
property as: for every state satisfying ni, there is a successor satisfying
t1. Unfortunately, this existence quantifier on paths (‘there is a successor
satisfying...”) cannot be expressed in LTL. It can be expressed in the
logic CTL, which we will turn to in the next section (for the impatient,
see page 215).

No strict sequencing: We might consider expressing this as saying: there
is a path with two distinct states satisfying ¢; such that no state in
between them has that property. However, we cannot express ‘there
exists a path,” so let us consider the complement formula instead. The
complement says that all paths having a c¢; period which ends can-
not have a further ¢; state until a ¢y state occurs. We write this as:
G (c1 — 1 W (=1 A e W eg)). This says that anytime we get into a
c1 state, either that condition persists indefinitely, or it ends with a non-
c1 state and in that case there is no further ¢; state unless and until we
obtain a c¢9 state.

This formula is false, as exemplified by the path sg — s5 — s3 — s4 —
S5 — S3 — 84 Therefore the original condition expressing that strict
sequencing need not occur, is true.

Before further considering the mutual exclusion example, some comments
about expressing properties in LTL are appropriate. Notice that in the

190 3 Verification by model checking

no-strict-sequencing property, we overcame the problem of not being able to
express the existence of paths by instead expressing the complement prop-
erty, which of course talks about all paths. Then we can perform our check,
and simply reverse the answer; if the complement property is false, we de-
clare our property to be true, and vice versa.

Why was that tactic not available to us to express the non-blocking prop-
erty? The reason is that it says: every path to a n; state may be continued
by a one-step path to a t; state. The presence of both universal and exis-
tential quantifiers is the problem. In the no-strict-sequencing property, we
had only an existential quantifier; thus, taking the complement property
turned it into a universal path quantifier, which can be expressed in LTL.
But where we have alternating quantifiers, taking the complement property
doesn’t help in general.

Let’s go back to the mutual exclusion example. The reason liveness failed
in our first attempt at modelling mutual exclusion is that non-determinism
means it might continually favour one process over another. The problem is
that the state s3 does not distinguish between which of the processes first
went into its trying state. We can solve this by splitting s3 into two states.

The second modelling attempt The two states s3 and sg in Figure 3.8
both correspond to the state s3 in our first modelling attempt. They both
record that the two processes are in their trying states, but in sz it is im-
plicitly recorded that it is process 1’s turn, whereas in sg it is process 2’s
turn. Note that states s3 and sg both have the labelling ¢1t2; the definition of
transition systems does not preclude this. We can think of there being some
other, hidden, variables which are not part of the initial labelling, which
distinguish s3 and sg.

Remark 3.11 The four properties of safety, liveness, non-blocking and no-
strict-sequencing are satisfied by the model in Figure 3.8. (Since the non-
blocking property has not yet been written in temporal logic, we can only
check it informally.)

In this second modelling attempt, our transition system is still slightly
over-simplified, because we are assuming that it will move to a different
state on every tick of the clock (there are no transitions to the same state).
We may wish to model that a process can stay in its critical state for several
ticks, but if we include an arrow from s4, or s7, to itself, we will again violate
liveness. This problem will be solved later in this chapter when we consider
‘fairness constraints’ (Section 3.6.2).

3.3 Model checking: systems, tools, properties 191

Figure 3.8. A second-attempt model for mutual exclusion. There are
now two states representing t1ts, namely s3 and sg.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.” NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMYV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

192 3 Verification by model checking
The following input to SMV:

MODULE main
VAR
request : boolean;
status : {ready,busy};
ASSIGN
init (status)
next (status)

ready;

case
request : busy;
1 : {ready,busy};
esac;
LTLSPEC
G(request -> F status=busy)

consists of a program and a specification. The program has two variables,
request of type boolean and status of enumeration type {ready, busy}:
0 denotes ‘false’ and 1 represents ‘true.” The initial and subsequent values
of variable request are not determined within this program; this conserva-
tively models that these values are determined by an external environment.
This under-specification of request implies that the value of variable status
is partially determined: initially, it is ready; and it becomes busy whenever
request is true. If request is false, the next value of status is not deter-
mined.

Note that the case 1: signifies the default case, and that case statements
are evaluated from the top down: if several expressions to the left of a ‘:” are
true, then the command corresponding to the first, top-most true expression
will be executed. The program therefore denotes the transition system shown
in Figure 3.9; there are four states, each one corresponding to a possible value
of the two binary variables. Note that we wrote ‘busy’ as a shorthand for
‘status=busy’ and ‘req’ for ‘request is true.’

It takes a while to get used to the syntax of SMV and its meaning. Since
variable request functions as a genuine environment in this model, the
program and the transition system are non-deterministic: i.e., the ‘next
state’ is not uniquely defined. Any state transition based on the behaviour
of status comes in a pair: to a successor state where request is false, or
true, respectively. For example, the state ‘—req, busy’ has four states it can
move to (itself and three others).

LTL specifications are introduced by the keyword LTLSPEC and are sim-
ply LTL formulas. Notice that SMV uses &, |, => and ! for A, V, — and
-, respectively, since they are available on standard keyboards. We may

3.3 Model checking: systems, tools, properties 193

Figure 3.9. The model corresponding to the SMV program in the text.

easily verify that the specification of our module main holds of the model in
Figure 3.9.

Modules in SMV SMYV supports breaking a system description into sev-
eral modules, to aid readability and to verify interaction properties. A mod-
ule is instantiated when a variable having that module name as its type is
declared. This defines a set of variables, one for each one declared in the
module description. In the example below, which is one of the ones dis-
tributed with SMV, a counter which repeatedly counts from 000 through to
111 is described by three single-bit counters. The module counter _cell is
instantiated three times, with the names bit0, bit1 and bit2. The counter
module has one formal parameter, carry_in, which is given the actual value
1in bit0, and bit0.carry_out in the instance bit1l. Hence, the carry_in of
module bit1 is the carry_out of module bit0. Note that we use the period
“.7in m.v to access the variable v in module m. This notation is also used by
Alloy (see Chapter 2) and a host of programming languages to access fields
in record structures, or methods in objects. The keyword DEFINE is used
to assign the expression value & carry_in to the symbol carry out (such
definitions are just a means for referring to the current value of a certain
expression).

MODULE main
VAR
bit0 : counter_cell(1l);
bitl : counter_cell(bitO.carry_out);
bit2 : counter_cell(bitl.carry_out);
LTLSPEC
G F bit2.carry_out

194 3 Verification by model checking

MODULE counter_cell(carry_in)

VAR
value : boolean;

ASSIGN
init(value)
next (value)

DEFINE
carry_out := value & carry_in;

0;
(value + carry_in) mod 2;

The effect of the DEFINE statement could have been obtained by declaring
a new variable and assigning its value thus:

VAR
carry_out : boolean;
ASSIGN
carry_out := value & carry_in;

Notice that, in this assignment, the current value of the variable is assigned.
Defined symbols are usually preferable to variables, since they don’t increase
the state space by declaring new variables. However, they cannot be assigned
non-deterministically since they refer only to another expression.

Synchronous and asynchronous composition By default, modules
in SMV are composed synchronously: this means that there is a global clock
and, each time it ticks, each of the modules executes in parallel. By use of
the process keyword, it is possible to compose the modules asynchronously.
In that case, they run at different ‘speeds,” interleaving arbitrarily. At each
tick of the clock, one of them is non-deterministically chosen and executed
for one cycle. Asynchronous interleaving composition is useful for describing
communication protocols, asynchronous circuits and other systems whose
actions are not synchronised to a global clock.

The bit counter above is synchronous, whereas the examples below of
mutual exclusion and the alternating bit protocol are asynchronous.

3.3.3 Running NuSMV
The normal use of NuSMV is to run it in batch mode, from a Unix shell or
command prompt in Windows. The command line

NuSMV counter3.smv

3.3 Model checking: systems, tools, properties 195

will analyse the code in the file counter3.smv and report on the specifica-
tions it contains. One can also run NuSMYV interactively. In that case, the
command line

NuSMV -int counter3.smv

enters NuSMV’s command-line interpreter. From there, there is a variety
of commands you can use which allow you to compile the description and
run the specification checks, as well as inspect partial results and set various
parameters. See the NuSMYV user manual for more details.

NuSMYV also supports bounded model checking, invoked by the command-
line option -bmc. Bounded model checking looks for counterexamples in
order of size, starting with counterexamples of length 1, then 2, etc., up
to a given threshold (10 by default). Note that bounded model checking
is incomplete: failure to find a counterexample does not mean that there
is none, but only that there is none of length up to the threshold. For
related reasons, this incompleteness features also in Alloy and its constraint
analyzer. Thus, while a negative answer can be relied on (if NuSMYV finds a
counterexample, it is valid), a positive one cannot. References on bounded
model checking can be found in the bibliographic notes on page 254. Later
on, we use bounded model checking to prove the optimality of a scheduler.

3.3.4 Mutual exclusion revisited
Figure 3.10 gives the SMV code for a mutual exclusion protocol. This code
consists of two modules, main and prc. The module main has the variable
turn, which determines whose turn it is to enter the critical section if both
are trying to enter (recall the discussion about the states s3 and sg in Sec-
tion 3.3.1)