
Abstract State
Machines

Angelo Gargantini

2023

Testing e verifica del sw

Scenario-based
validation

 Validation: investigating a model with respect
to its user perceptions, in order to ensure that
the it really satisfies the user needs

◼ detect faults as early as possible

◼ possible techniques: scenarios generation,
development of prototypes, animation, simulation,
and also testing

 Scenario: description of a possible behavior of
the system

◼ observable interactions between the system and its
environment in specific situations

Motivations

Gargantini & Riccobene - ASMETA - GSSI July 2022

A philosophical view

All men are mortal.

Socrates is a man implies
Socrates is mortal.

Find Socrates,
check he is a man,
and he is dead

MODEL

VERIFICATION

Scenario-
based
VALIDATION

Model checking and
similar techniques

testing

“the susceptibility of a formal specification to scenario-

based validation demonstrates its falsifiability, and

thus the scientific nature of software development.” Gargantini & Riccobene - ASMETA - GSSI July 2022

 From telecommunication systems
◼ Message Sequence Charts (MSCs) (graphical)

◼ Life Sequence Charts (LSCs)
 W. Damm and D. Harel. LCSs: Breathing life into

message sequence charts: extends the MSCs by
providing the "clear and usable syntax and a formal
semantics" MSCs lack of.

 UML Use cases
◼ black box view – graphical notation

 Temporal Logical/ formal methods
 Albert II formal language and scenarios are

represented by MSC

Related works 1

Gargantini & Riccobene - ASMETA - GSSI July 2022

 For ASM

◼ W. Grieskamp, N. Tillmann, and M. Veanes.
Instrumenting scenarios in a model-driven
development environment, 2004.

◼ Spec# specifications are instrumented to allow validation

 E.g. “to describe observations in scenarios, we extend
Spec# by the so-called expect statement”

 For a survey:
DANIEL AMYOT
An Evaluation of Scenario Notations and Construction
Approaches for Telecommunication Systems
Development

Related works 2

Gargantini & Riccobene - ASMETA - GSSI July 2022

Our proposal in ASMETA –
ABZ08

Gargantini & Riccobene - ASMETA - GSSI July 2022

Goals

 Textual notation

◼ Similar to programs (as Spec#)

 Clear semantics

◼ As LSC (e.g. clear definition of necessary and possible)

◼ defined by ASMs ?

 Able to describe internal details

◼ Not only black box as UML use cases

 Similar to testing notations?

◼ Like Use case maps similar to TTCN

 To validate ASM written in AsmetaL

◼ To be integrated within the ASMETA framework

Gargantini & Riccobene - ASMETA - GSSI July 2022

 UML USE CASE:
actor interacts with
the system.

 One or more scenarios
may be generated
from each use case

 BLACK BOX VIEW

From UML Actor to ASM Actor

SYSTEM

USE CASE
1

USE CASE
n

user
actor

set

chec
k

ASM Actor
•sets monitored and shared functions
(environment)
•checks out functions (machine
reaction)

Gargantini & Riccobene - ASMETA - GSSI July 2022

ASM observer

• checks machine
internal state
and invariants

• requires the
execution of
arbitrary rules

• GRAY BOX VIEW

ASM observer
SYSTEM

USE
CASEs

observer
actor

Internal
state

check

exec

Gargantini & Riccobene - ASMETA - GSSI July 2022

 Two kinds of external actors:

◼ user, who has a black box view of the
system

◼ observer, who has a gray box view

 Two goals for scenarios
◼ classical validation

user actions and machine reactions
◼ testing activity

observer inspection of the internal state of
the machine

Twofold use of scenarios

Gargantini & Riccobene - ASMETA - GSSI July 2022

 interaction sequence consisting of actions:

 by observer
1. set the environment (i.e. the values of

monitored/shared functions)

2. check for the machine outputs (i.e. the values of
out functions),

3. check the machine state and invariants

4. ask for the execution of given transition rules

 by machine
◼ makes one step as reaction of the actor actions

 written in

Asm Validation Language → AValLa

ASM scenario

Gargantini & Riccobene - ASMETA - GSSI July 2022

AValLa primitives

set A command to set the location of a (monitored) function to a
specific value: it simulates the environment

check To inspect external values and (only for the observer) to inspect
internal values in the current state

step To signal that the environment has finished to update the
monitored locations, hence the machine can perform a step

step until To signal that the machine can perform a step iteratively until a
specified condition becomes true

invariant To state critical specification properties that should always hold
for a scenario

exec To execute transition rule when required by the observer

Gargantini & Riccobene - ASMETA - GSSI July 2022

USING AVALLA

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Advanced Clock

 Advanced clock:

◼ A clock with seconds, minutes, and hours

◼ At every step the second is incremented by 1

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 1

 Check that at the beginning the clock is at
midnight (00:00:00);

 Perform a step of the machine

 Check now that the time is 00:00:01;

 Another step

 Check now that the time is 00:00:02;

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 1

Gargantini & Riccobene - ASMETA - GSSI
July 2022

scenario advancedClock1

load AdvancedClock.asm

check hours = 0 and minutes = 0 and
seconds = 0;

step

check hours = 0 and minutes = 0 and
seconds = 1;

step

check hours = 0 and minutes = 0 and
seconds = 2;

asm to validate

Check initially is
00:00:00

Check that now is
00:00:01

Perform a step

check again

Perform a step

How to execute the scenario

Gargantini & Riccobene - ASMETA - GSSI
July 2022

V: basic validator
Vc: with coverage
Va: with the
animator

Advanced Clock

 Scenario 1 can be very long

 Scenario 2:

◼ After one hour

◼ exec step by step until the hour is 1

◼ Check that now it is 01:00:00

◼ Step

◼ Check that now it is 01:00:01

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 2

Gargantini & Riccobene - ASMETA - GSSI
July 2022

// using step until
scenario advancedClock2

load AdvancedClock.asm

check hours = 0 and minutes = 0 and seconds = 0;

step until hours = 1;

check hours = 1 and minutes = 0 and seconds = 0;

Scenario 3 - invariants

 Invariants can be used to check

◼ Properties generic to the machine are always guaranteed

◼ Properties for the scenario are true:

 Scenario 2:

◼ Seconds are always lower than 60

 For every execution

◼ Hours are lower of equal 1

 Specific of the scenario

 Let’s execute the scenario

 Let’s check that if both invariants are actually checked

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 4 – using exec

 Sometimes we want to change the state of
the machine directly

◼ against information hiding

◼ improve the testability without changing the
visibility

 Scenario 4

◼ Set with a par rule 02:01:59;

◼ Perform a step of the clock

◼ Check now that now is 02:02:00;

Gargantini & Riccobene - ASMETA - GSSI July 2022

Introducing monitored functions

 Till now Advanced Clock is a closed system

◼ Its behavior does not depend on the environment

◼ Closed system

 Second version:

◼ The clock is connected to signal and the seconds
are incremented only if signal is true

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenarios

 Scenario 5:

◼ Set signal true and check that seconds is
incremented

◼ Set signal false and check that seconds is NOT
incremented

 Scenario 6:

◼ Using step until

Gargantini & Riccobene - ASMETA - GSSI July 2022

SEMANTICS

Gargantini & Riccobene - ASMETA - GSSI
July 2022

 Semantics of a metamodel-based language L can
be given by an ASM-based semantic framework

◼ some details in the paper

 Intuition

◼ every program written in L becomes an ASM

◼ definition of a mapping M from the elements of L to
elements of ASM

◼ M can be defined at the metamodel (abstract syntax)
level

 For AValLa

◼ Given a scenario, obtain an ASM (validating ASM)

AValLa sematics

Gargantini & Riccobene - ASMETA - GSSI July 2022

In practice …

scenario sc1

load clock.asm

set …

asm clock
…

M

asm clock_sc1
…

clock.asm

sc1.avalla

clock_sc1.asm

Gargantini & Riccobene - ASMETA - GSSI July 2022

Invariant expr Axiom expr

Exec Rule

M for AValLa elements

Step MacroDeclaration r_step_i

StepUntil Two macroDeclations
r_step_i and r_step_i_until

AValLa AsmM

Set l:=v UpdateRule l:=v

Check expr ConditionalRule with guard expr
and body allChecksOk := false

Gargantini & Riccobene - ASMETA - GSSI July 2022

AsmetaValidator

validating
AsmetaL

PASS/FAIL
COVERAGE

INSPECTION
WINDOW

scenario

AsmetaL
spec

Gargantini & Riccobene - ASMETA - GSSI July 2022

ADVANCED USE

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Two extensions

 Coverage

 Animating the scenarios

 demo

Gargantini & Riccobene - ASMETA - GSSI July 2022

Simulation <-> scenarios

From the animator to
avalla

Animate the avalla

Gargantini & Riccobene - ASMETA - GSSI July 2022

Building the scenarios from
animations

Gargantini & Riccobene - ASMETA - GSSI July 2022

 The scenario is
printed in the
console

Gargantini & Riccobene - ASMETA -
GSSI July 2022

Using blocks
 It is possible to define a scenario block:

◼ Sequence of commands to be reused

 Definition of a block primo_scenario.avalla:
scenario first_scenario

load ./mioModello.asm

begin blockname

…

end

the block will be executed

 Calling a block
scenario first_scenario

load ./mioModello.asm

execblock primo_scenario:nomeblocco

Gargantini & Riccobene - ASMETA - GSSI July 2022

Complex
example

Gargantini & Riccobene - ASMETA - GSSI
July 2022

HOW AVALLA IS
DEFINED

Gargantini & Riccobene - ASMETA - GSSI
July 2022

 AValLa is defined following the Model Driven
Engineering for language definition

 MDE for languages:

◼ Definition of the abstract syntax by an object-oriented
model (metamodel)

◼ Derivation of concrete syntaxes from the metamodel

◼ Supporting tools and technologies

 EMF: eclipse modelling framework

 MOF: OMG Meta Object Facility

 …

◼ …

 As done for the Asmeta Abstract State Machines

Model-driven language
engineering

Gargantini & Riccobene - ASMETA - GSSI July 2022

AValLa Metamodel

Gargantini & Riccobene - ASMETA - GSSI July 2022

.ecore
(metamod

el)

Language project

Avalla in XTEXT

Gargantini & Riccobene -
ASMETA - GSSI July 2022

.xtext
Grammar

Gener
ator

Antlr
Parser

Editor in eclipse
Syntax
coloring

Manual
(required)

Manual
(optional)

Editor Project

Generated

Java
API

Avalla

Outline

Content
Assist

Formatting

Web Editor Project

JS code

Editor features
 Syntax Coloring

 Content Assist

 Template Proposals

 Rich Hover

 Rename Refactoring

 Quick Fixes

 Outline

 Folding

 Hyperlinks for all Cross
References

 Find References

 Toggle Comment

 Mark Occurrences

 Formatting

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Lift case study

Lift Control : The Problem
Design the logic to move n lifts bw m floors, and prove it to be well
functioning, where

◼ Each lift has for each floor one button which, if pressed,
causes the lift to visit (i.e. move to and stop at) that floor.

◼ Each floor (except ground and top) has two buttons to request
an up-lift and a down-lift. They are cancelled when a lift visits
the floor and is either travelling in the desired direction, or
visits the floor with no requests outstanding. In the latter
case, if both floor request buttons are illuminated, only one
should be cancelled.

◼ A lift without requests should remain in its final destination
and await further requests.

◼ Each lift has an emergency button which, if pressed, causes a
warning to be sent to the site manager. The lift is then
deemed ‘out of service’. Each lift has a mechanism to cancel
its ‘out of service’ status. (sikip this part for now)

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift Example

scenario lift2_s0

load ./lift2.asm

// init monitored functions

set hasToDeliverAt(lift1, 0) := false;

set existsCallFromTo(0, UP) := false;

set existsCallFromTo(0, DOWN) := false;

…

check floor(lift1) = 0;

check ctlState(lift1) = HALTING;

check dir(lift1) = UP;

step

check floor(lift1) = 0;

check ctlState(lift1) = HALTING;

check dir(lift1) = UP;

validate lift2.asm

Set the button at
ground floor to off
Switch off all the

buttons

Check that the lift is
halted at ground floor,

direction UP

Make a step

Check again

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift Control : control state
ASM

halting moving

DEPART

C
O
N
T
I
N
U
E

STOP

C
H
A
N
G
E

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Esempio del Lift

Gargantini & Riccobene - ASMETA - GSSI July 2022

 existsCallFromTo(floor,dir): richiesta esterna
di selezione dir (=UP/DOWN) da piano floor

 hasToDeliverAt(lift,floor): richiesta interna
al piano floor

◼ se consumati, gli eventi diventano false

Lift model
asm lift3

import ../LIB/StandardLibrary

signature:
abstract domain Lift
domain Floor subsetof Integer
enum domain Dir = {UP | DOWN}
enum domain State = {HALTING | MOVING}

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift functions
// lift direction of travel
dynamic controlled dir: Lift -> Dir
// lift control state
dynamic controlled ctlState: Lift -> State
//lift current floor
dynamic controlled floor: Lift -> Floor
// internal request
dynamic monitored hasToDeliverAt: Prod(Lift, Floor) -> Boolean
// external request
dynamic monitored existsCallFromTo: Prod(Floor, Dir) -> Boolean

derived hasToVisit: Prod(Lift, Floor) -> Boolean
derived attracted: Prod(Dir, Lift) -> Boolean
derived canContinue: Lift -> Boolean
static opposite: Dir -> Dir

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift
// consts
static ground: Integer
static top: Integer
static lift1: Lift

definitions:

domain Floor = {0..4}
function ground = 0
function top = 4

function opposite ($d in Dir) =
if ($d = UP) then DOWN else UP endif

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift
function hasToVisit($l in Lift, $floor in Floor) =

hasToDeliverAt($l, $floor)
or existsCallFromTo($floor, UP)
or existsCallFromTo($floor, DOWN)

function attracted($dir in Dir, $l in Lift) =
$dir = UP and (exist $floor in Floor with $floor > floor($l)
and hasToVisit($l, $floor))
or
$dir = DOWN and (exist $floor2 in Floor with $floor2 <
floor($l) and hasToVisit($l, $floor2))

function canContinue($l in Lift) =
attracted(dir($l), $l)
and not hasToDeliverAt($l, floor($l))
and not existsCallFromTo(floor($l), dir($l))

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift
macro rule r_cancelRequest($dir in Dir, $l in Lift) =

par
hasToDeliverAt($l, floor($l)) := false
existsCallFromTo(floor($l), $dir) := false

endpar

macro rule r_moveLift($l in Lift) =
par

if dir($l) = UP then floor($l) := floor($l) + 1
endif
if dir($l) = DOWN then floor($l) := floor($l) - 1
endif

endpar

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift Control : control state
ASM

halting moving

DEPART

C
O
N
T
I
N
U
E

STOP

C
H
A
N
G
E

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Lift
macro rule r_depart($l in Lift) =

if ctlState($l) = HALTING and attracted(dir($l), $l) then
par

r_moveLift[$l]
r_cancelRequest[dir($l), $l]
ctlState($l) := MOVING

endpar
endif

macro rule r_continue($l in Lift) =
if ctlState($l) = MOVING and canContinue($l) then

r_moveLift[$l]
endif

Gargantini & Riccobene - ASMETA - GSSI July 2022

Modello per Lift
macro rule r_stop($l in Lift) =

if ctlState($l) = MOVING and not canContinue($l) then
par

r_cancelRequest[dir($l), $l]
ctlState($l) := HALTING

endpar
endif

macro rule r_change($l in Lift) =
let ($d = dir($l), $d2 = opposite($d)) in

if ctlState($l) = HALTING and not attracted($d, $l) and
attracted($d2, $l) then

par
dir($l) := $d2
r_cancelRequest[$d2, $l]

endpar
endif

endlet
Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift
macro rule r_lift($l in Lift) =

par
r_depart[$l]
r_continue[$l]
r_stop[$l]
r_change[$l]

endpar

invariant over existsCallFromTo:
not existsCallFromTo(ground, DOWN) and not existsCallFromTo(top,
UP)

main rule r_main = r_lift[lift1]

default init s0:

function floor($l in Lift) = ground
function dir($l in Lift) = UP
function ctlState($l in Lift)= HALTING Gargantini & Riccobene - ASMETA - GSSI July 2022

First scenario

 Description:

◼ The lift is at ground and there are no requests
(internal no external)

◼ The lift remains in the position

Gargantini & Riccobene - ASMETA - GSSI July 2022

Primo scenario per il Lift
scenario lift2_s1

load ./lift2.asm

// init monitored functions

set hasToDeliverAt(lift1, 0) := false;

set existsCallFromTo(0, UP) := false;

set existsCallFromTo(0, DOWN) := false;

.............

check floor(lift1) = 0;

check ctlState(lift1) = HALTING;

check dir(lift1) = UP;

step

check floor(lift1) = 0;

check ctlState(lift1) = HALTING;

check dir(lift1) = UP;

valida lift2.asm

All the requests
are off

Check that the
elevator is

halting

Perform a step

Check again

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 2

 Description:

◼ The list is at ground floor (0). An user calls the
elevator from floor 4 and wants to go to floor 2.
She enters the elevator and presses floor 2.

◼ Check that the elevator performs all the required
action

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 2 in Avalla

Gargantini & Riccobene - ASMETA - GSSI July 2022

scenario lift2_s2

load ./lift2.asm

//setting inizial state

// an external request to floor 4

set existsCallFromTo(4, DOWN) := true;

// lift goes to floor 4

step until ctlState(lift1) = HALTING and floor(lift1) = 4;

// request to floor 2

set hasToDeliverAt(lift1, 2) := true;

step

// must go down to floor 2, down dir

check dir(lift1) = DOWN;

// the request at floor 4 is cancelled

check not existsCallFromTo(4, DOWN);

// goes to floor 2

step until ctlState(lift1) = HALTING and floor(lift1) = 2;

// request to floor 2 is cancelled

check not hasToDeliverAt(lift1, 2);

Scenario 3

 Description:

◼ Lift at ground and all the external requests are ON
(up and down).

◼ The lift goes UP from floor 0 to the last one (4). All
the requests to go UP are cancelled.

◼ All the requests to go down are not cancelled

◼ Richiediamo l’invariante: l’ascensore non cambia
direzione mentre sale: dir(lift1) != DOWN

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 3 in Avalla

Gargantini & Riccobene - ASMETA - GSSI July 2022

scenario lift2_s3

load lift.asm

invariant neverDown: dir(lift1) != DOWN;

exec //set floor requests (all ext. buttons UP and DOWN pushed)

forall $i in {0..4} do

par

hasToDeliverAt(lift1, $i) := false

if $i != top then existsCallFromTo($i, UP) := true endif

if $i != ground then existsCallFromTo($i, DOWN) := true endif

endpar;

//the lift goes up to floor 4, then goes down

step until ctlState(lift1) = HALTING and floor(lift1) = 4;

// check that the UP-external requests have been satisfied, while

the DOWN-requests are still pending

check (forall $i in {0..4} with existsCallFromTo($i, DOWN) = true);

check (forall $i in {0..4} with existsCallFromTo($i, UP) = false);

Commands Coverage

S0 The lift is halted at ground floor,
no request, it should stay

18 6/8

S1 External request at the same
floor (ground) and direction,
internal request for floor 2. The
lift should reach floor 2

24 7/8

S2 External request at floor 4,
enters and ask for floor 2

22 8/8

s3 All external (UP and DOWN)
buttons have been pushed. The
lift reaches the top floor and UP
requests are canceled

4 – 1 invariant 8/8

Lift scenarios

Gargantini & Riccobene - ASMETA - GSSI July 2022

NEW IDEAS

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Scenarios and refinement
• Scenarios can be automatically refined
when a specification is refined

Paolo Arcaini, Elvinia
Riccobene,
Automatic Refinement of
ASM Abstract Test Cases
A-MOST workshop 2019
IEEE International
Conference on Software
Testing, Verification and
Validation

ASM level
i

ASM level
i +1

scenario

Model
checker

refined
scenario

• A way to check if:

• The refinement is correct

• It captures the desired behaviors
• Manual checking of scenarios Gargantini & Riccobene - ASMETA - GSSI July 2022

Automatic generation of
scenarios

 Using the model
checker and its
capability to generate
counter examples,

 Several coverage
criteria

 The user can inspect
and validate the
scenarios

ASM

scenarios

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenarios and traceability (ABZ
2021)

requirement
s

Asmeta spec

scenario

RQ1:
….

//RQ1: ….
rule r_rq1

scenario

Covers r_rq1

The validator links
scenarios and
rules

Establish a link
between
requirements and
rules

Gargantini & Riccobene - ASMETA - GSSI July 2022

From scenarios to unit tests for
code

 Scenarios can be translated to executable
Unit test code

Gargantini & Riccobene - ASMETA - GSSI July 2022

Use of scenarios

 Regression testing
◼ Scenario can be executed to check the modifications

do not introduce unintended behaviors
 Scenario-driven development?

 What about refinement?

 Coverage
◼ Scenario can give a measure of which rules are

covered
 When stopping writing scenarios?

 Or better use mutation testing?

◼ Traceability (later)
 Link between scenarios and rules is useful trace

requirements to scenarios

Gargantini & Riccobene - ASMETA - GSSI July 2022

Test generation and execution
process

AT
GT

Gargantini & Riccobene - ASMETA - GSSI July 2022

