
8 Code Inspection

Software inspections are manual, collaborative reviews that can be applied to any soft-
ware artifact from requirements documents to source code to test plans. Inspection
complements testing by helping check many properties that are hard or impossible to
verify dynamically. Their �exibility makes inspection particularly valuable when other,
more automated analyses are not applicable.

Software Inspection

� Examine representation of a software system with the aim of discovering anomalies
and defects

� �Check software artifacts for constructs that are known to be problematic from
past experience�

� Systematic & detailed review technique

� Peer review (not author or his boss but inspection team)

� Applicable to all kinds of software artifacts

� Requirement speci�cation, design documents, source code, ...

� De�ned in the 70's by Fagan (IBM)

� Several alternatives & extensions proposed that vary in rigorousness of the
review and focus on particular goals

� Pair programming can be seen as a light & informal instance

Software Inspection

� Can be applied to essentially any document

� requirements statements

� architectural and design documents

� test plans and test cases

� source code

� May also have secondary bene�ts

� spreading good practices, shared standards of quality

� pair-programming

1



8 Code Inspection

� Limitations

� takes a considerable amount of time

� re-inspecting a changed component can be expensive

� Used primarily in areas

� where other techniques are inapplicable or ine�ective

� where other techniques do not provide su�cient coverage

Formal code reviews

� A formal code review is the process under which inspection is performed.

� Can be a simple one-on-one meeting or a detailed rigorous code inspection.

� May be organized by the programming or the testing team.

Why have Code Inspections

� Several eyes are better than one pair

� Not all problems are detected by automated tools

� Tools cannot decide whether the problem is real.

� Tools cannot decide whether the problem is serious. [Worth �xing.]

Code Inspection

� Code Inspection is the most formal type of review, which is a kind of static abalysis
to avoid the defect multiplication at a later stage.

� The main purpose of code inspection is to �nd defects and it can also spot any
process improvement if any.

� An inspection report lists the �ndings, which include metrics that can be used to
aid improvements to the process as well as correcting defects in the document under
review.

� Preparation before the meeting is essential, which includes reading of any source
documents to ensure consistency.

� Inspections are often led by a trained moderator, who is not the author of the code.

2



8 Code Inspection

Code Inspection

� The inspection process is the most formal type of review based on rules and check-

lists and makes use of entry and exit criteria.

� It usually involves peer examination of the code and each one has a de�ned set of
roles.

� After the meeting, a formal follow-up process is used to ensure that corrective
action is completed in a timely manner.

Code review checklist

� Design and Architecture errors

� Computation errors

� Comparison errors

� Control �ow errors

� Subroutine parameter errors

� Input/Output errors

� Memory allocation errors

� Error discovered from previous code reviews

� Other checks

� Does your code pass the lint test? E.g., How about gcc compiler warnings?

� Is your code portable to other OS platforms?

� Does the code handle ASCII and Unicode?

Inspections vs. Testing

� What attributes are well-handled by inspections but not testing?

� �Fuzzy� non-functional properties

� Maintainability, evolvability, reusability

� Other properties tough to test

� Scalability, e�ciency Security, integrity Robustness, reliability, exception han-
dling Time sensitive, real-time actions

� Requirements, architecture, design documents

� Cannot �execute� these as a test

3



8 Code Inspection

Inspection team

� Inspections are characterized by roles, process, and reading techniques, i.e., who
the inspectors are, how they organize their work and synchronize their activities,
and how they examine the inspected artifacts.

� Inspection is not a full-time job: Many studies indicate that inspectors' produc-
tivity drops dramatically after two hours of work, and suggests no more than two
inspection sessions per day. Thus, inspectors are usually borrowed from other
roles: junior and senior software and test engineers, project and quality managers,
software analysts, software architects, and technical writers.

� The same studies highlight the delicate relation between inspectors and developers:
The e�cacy of inspection can vanish if developers feel they are being evaluated. In
classic approaches to inspection, managers and senior engineers who participate in
inspection sessions are often borrowed from other projects to avoid misinterpreting
the goals of inspection.

Inspectors must be selected in a way that balances perspectives, background knowledge,
and cost. A developer is most knowledgeable about his own work, and is an invaluable
resource in inspection, but he cannot forget days or weeks of hard development work
to see clearly all the details that are apparent to someone reading an artifact for the
�rst time. Inspection can bene�t from discussion among many inspectors with di�ering
perspectives and expertise, but the cost of inspection grows with the size of the inspection
team.
Classic inspection postulates groups from four to six inspectors, but recent studies

question the e�cacy advantages of large groups of inspectors over groups of two. Modern
approaches prescribe di�erent levels of inspection: simple checks performed by single
inspectors and complex check performed by groups of two inspectors, reserving larger
groups for inspections requiring special combinations of expertise.
Single inspectors are usually junior engineers not involved in development of the artifact

under inspection. They combine inspection with training, learning basic standards for
speci�cation and programming by checking compliance of artifacts with those standards.
Junior engineers are usually paired with senior engineers for checking complex properties.
The senior engineer acts as moderator; he or she is in charge of organizing the inspection
process and is responsible for the inspection results, while the junior engineer participates
in the inspection and the discussion.
Large groups of inspectors (from four to six) balance junior and senior engineers, and

may include the developer of the artifact under inspection. A senior engineer, usually a
manager borrowed from a di�erent project, plays the role of the moderator, organizing
the process and being responsible for the results. Other software and test engineers,
both senior and junior, are in charge of reading the inspected artifact, and of discussing
the possible problems connected to the relevant elements. The developer is present
when the inspection requires detailed knowledge that cannot be easily acquired without

4



8 Code Inspection

being involved in the development. This happens for example, when inspecting complex
modules looking for semantics or integration problems.
Developers must be motivated to collaborate constructively in inspection, rather than

hiding problems and sabotaging the process. Reward mechanisms can in�uence the de-
velopers' attitude and must be carefully designed to avoid perverse e�ects. For example,
fault density is sometimes used as a metric of developer performance. An assessment of
fault density that includes faults revealed by inspection may discourage developers from
constructive engagement in the inspection process and encourage them to hide faults
during inspection instead of highlighting them. At the very least, faults that escape in-
spection must carry a higher weight than those found during inspection. Naive incentives
that reward developers for �nding faults during inspection are apt to be counterproduc-
tive because they punish the careful developer for bringing a highquality code to the
inspection.

Checklists

� Checklists are a core element of classic inspection.

� A checklist contains a set of questions that help identify defects in the inspected
artifact, and verify that the artifact complies with company standards.

� A good checklist should be updated regularly to remove obsolete elements and to
add new checks suggested by the experience accumulated in new projects.

� Modern checklists are structured hierarchically and are used incrementally.

Checklists may be used to inspect a large variety of artifacts, including requirements
and design speci�cations, source code, test suites, reports, and manuals. The contents
of checklists may vary greatly to re�ect the di�erent properties of the various artifacts,
but all checklists share a common structure that facilitates their use in review sessions.
Review sessions must be completed within a relatively short time (no longer than two
hours) and may require teams of di�erent size and expertise (from a single junior pro-
grammer to teams of senior analysts). Length and complexity of checklists must re�ect
their expected use. We may have fairly long checklists with simple questions for simple
syntactic reviews, and short checklists with complex questions for semantic reviews.
Modern checklists are structured hierarchically and are used incrementally. Checklists

with simple checks are used by individual inspectors in the early stages of inspection,
while checklists with complex checks are used in group reviews in later inspection phases.
The preface of a checklist should indicate the type of artifact and inspection that can be
done with that checklist and the level of expertise required for the inspection.
Below there is an excerpt of a checklist for a simple Java code inspection.
A common checklist organization, used in the examples in this chapter, consists of a set

of features to be inspected and a set of items to be checked for each feature. Organizing
the list by features helps direct the reviewers' attention to the appropriate set of checks
during review. For example, the simple checklist on page 346 contains checks for �le

5



8 Code Inspection

headers, �le footers, import sections, class declarations, classes, and idiomatic methods.
Inspectors will scan the Java �le and select the appropriate checks for each feature.
The items to be checked ask whether certain properties hold. For example, the �le

header should indicate the identity of the author and the current maintainer, a cross
reference to the design entity corresponding to the code in the �le, and an overview
of the structure of the package. All checks are expressed so that a positive answer
indicates compliance. This helps the quality manager spot possible problems, which will
correspond to "no" answers in the inspection reports.

6


