11 Mutation testing

11.1 Mutation testing in brief
Mutation testing in brief

1. Mutation testing, also known as fault-based testing targets explictly the software
faults

2. To evalute the tests, their quality is NOT measured in terms of coverage of struc-
tural elements

3. Instead, faults are injected in the code and tests are evaluated in terms of how
many injected faults are detected

Mutation testing, also known as fault-based testing, was independently introduced by
Acree (1980) in his PhD thesis and by DeMillo et al. (1978). The idea is to use the
ability to detect seeded artificial faults in the system under test as a means to guide and
evaluate testing, rather than relying on structural properties. The overall approach is
summarized in Fig. 11.1: the starting point of mutation testing is a program and a set of
tests, which all pass on the program. The first step is to generate artificial faults, which
are called mutants.

Each mutant differs from the original system in only one small syntactical change.
Mutants are generated systematically and automatically using mutation operators, which
represent standard types of mutations and apply these changes at all possible locations in
the source code. Many different mutation operators have been proposed in the literature
for various different programming languages, and a convention is to give these operators
three-letter acronyms.

mutation process
Overview of the mutation testing process:

e Mutation operators are applied to the program under test to produce mutants.

e Tests are executed on all mutants; if a test fails on a mutant but passes on the
original program, then the mutant is killed.

o [f there is no test that kills the mutant, the mutant is alive, and likely reveals a
weakness in the test suite



0 3 O T W N+~

Ne}

11
12
13
14

11 Mutation testing

i

}

int power(int b, int a) { int power(int b, int a) { int power(int b, int a) {

if(b==0 && e > 0) {

}...

if(b==0 &8 e==0) {

if(true 88 e==0) {
;

)

power(0, 0) power(0, 0)

power(0, 0)

power(1, 0) power(1, 0)

power(1, 0)

2 Killed mutant « Live mutant

Figure 11.1: Mutation process

nt power(int b, int e){

if (e < 0) throw new Exception("Negative_exponent");

if ((b==0) && (e = 0)) throw new Exception (" Undefined");
int r = 1;

while (e

r =1 %
}

return r;

> 0){
b; e =e¢ — 1;

@QTest

public void testPowerOf

}

2() A
int result = power(2, 2);
assertEquals (4, result);

)



© 00 J O T i W N~

—_
o

11 Mutation testing

An example - power method

Figure shows an example of a java code that computes the power.

Figure 7 shows an example mutant for the power function of Fig. 1 in detail; this
mutant is the result of applying the COR (conditional operator replacement) mutation
operator to line number 4 of the original version of the program. Once a collection
of mutants has been produced, every test in the test suite under evaluation (i.e., both
tests in Fig. 6) is executed on the original system and on each of the mutants. Since a
prerequisite for mutation analysis is that all tests pass on the original program, a mutant
is “killed” when the test suite contains at least one test that fails when executed on the
mutant. To inform the testing process, the mutation score is computed to indicate how
many of the mutants can be detected (read killed) by the test suite.

11.2 Mutant example

mutant example

int power(int b, int e){

if (e < 0) throw new Exception("Negative_exponent");

if ((true) && (e = 0)) throw new Exception("Undefined");
int r =1
while (e

r = I x*

0){

)

— o V-

e = ¢ —

}

return r;

}

)

e Mutant by applying the COR operator (Conditional Operator Replacement) to line
number 4

e The original test case assertEquals(4,power(2, 2)); won’t fail - the mutant is NOT
killed - the faults is not found

11.2.1 Survived mutants

While a mutant that is killed may increase confidence in the test suite and increase the
mutation score, the true value may lie in the live mutants,i.e., those that were not detected
by any test: live mutants can guide the developers toward insufficiently tested parts of the
system. Depending on the number of mutation operators applied and the program under
test, the number of mutants generated can be substantial, making mutation analysis a
computationally expensive process. Several different optimizations have been proposed in
order to reduce the computational costs, and Offutt and Untch (2001) nicely summarize
some of the main ideas. For example, rather than compiling each mutant individually
to a distinct binary, meta-mutants (Untch et al. 1993) merge all mutants into a single



ST W N~

=W N

11 Mutation testing

program, where individual mutants can be activated/de- activated programmatically;
as a result, compilation only needs to be done once. Selective mutation is a further
optimization, where the insight that many mutants are killed by the same tests is used
to reduce the number of mutants that is considered, either by randomly sampling mutants
or by using fewer mutation operators. In particular, work has been done to determine
which operators are sufficient, such that if all the resulting mutants are killed, then also
(almost) all mutants of the remaining operators are killed (Offutt et al. 1993).

Survived mutants

1. Survived mutants are a sign of weakness of the test suiste (a fault that cannot be
found)

2. New tests must be added

3. Note 1: (survived) mutants can be very many ...

mutant example

int power(int b, int e){
//... as before
if ((true) && (e = 0))
throw new Exception ("Undefined");
//... as before
}

e To detect this fault we need a test in which we call power with e = 0 and b != 0.
something like:

@QTest public void testOPowerOf2() {
int result = power (2, 0);
assertEquals (1, result);

}

o testOPowerOf2 will pass on the original code but it will fail with the mutant ->
mutant is killed

11.3 Equivalent mutants

A limitation of mutation testing lies in the existence of equivalent mutants. A mutant
is equivalent when, although syntactically different, it is semantically equivalent to the
original program. The problem of determining if a mutant is equivalent or not is undecid-
able in general; hence, human effort is needed to decide when a mutant is equivalent and
should not be considered or when a mutant is actually not equivalent and a test should



11 Mutation testing

be created to detect it. It is commonly assumed that equivalent mutants are among the
reasons why mutation testing has not been adopted by most practitioners yet. Figure 8
presents an example of equivalent mutant for the power function. The mutation applied
is the ROR (relational operator replacement) operator; the condition of the while loop
is changed from > to !=. The resulting mutant is equivalent because the evaluations
of e>0 and e!=0 are identical, given that the first if condition already handles the case
e<0, and therefore e will never be less than 0 when the mutated expression is evaluated.
Two theoretical assumptions are the foundation of mutation testing: the cou- pling ef-
fect and the competent programmer hypothesis. The coupling effect states that small
faults are coupled with more complex ones. The implications of this assumption are that
by explicitly testing for simple faults, mutation testing implicitly tackles more complex
ones as well. Furthermore, according to the competent programmer hypothesis, software
developers tend to write almost-correct programs, i.e., programs whose faults are due to
small syntactical mistakes, which can in practice be simulated during mutation testing.
There are two influential empirical studies suggesting that mutants are indeed coupled
and thus representative of real faults: The first one is by Andrews et al. (2005), and
more recently Just et al. (2014) empirically validated the coupling effect by showing that
a strong correlation exists between mutant detection and real fault detection. There is
now a substantial body of literature on mutation testing, which has been comprehensively
surveyed by Jia and Harman (2011).

Equivalent mutants
1. A limitation of mutation testing lies in the existence of equivalent mutants.

2. A mutant is equivalent when, although syntactically different, it is semantically
equivalent to the original program.

3. There is NO test that kills an equivalent mutant - they will always survive

4. It is very difficult to say if a mutant has survived beacuase a test is missing or
because it is equivalent

equivalent mutants
int power(int b, int e){
if (e < 0)
throw new Exception("Negative_exponent");
if ((b=0) && (e =— 0))

throw new Exception (" Undefined");

int r = 1;
while (e != 0){
r =1 % b; e =¢e¢ — 1;
¥
return r;



11 Mutation testing

e This mutant cannot be killed by any test since it is equivalent.

11.4 Tools for mutation testing
Tools for mutation testing

e There are many tools that perform mutation testing

e DEMO with PIT test: https://pitest.org/



