
Validation and Veri�cation
Degrees of Freedom

1. A Framework for Test and Analysis

Angelo Gargantini

March 7, 2023

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Goals of Software Testing and Veri�cation

to assess software qualities

examples of sw qualities

my program never crashes

my program works

my program is useful

to make it possible to improve the software by �nding defects

example of sw defects

the pointer is not null

when the user presses OK button, the application

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Goals of Software Testing and Veri�cation

to assess software qualities

examples of sw qualities

my program never crashes

my program works

my program is useful

to make it possible to improve the software by �nding defects

example of sw defects

the pointer is not null

when the user presses OK button, the application

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Standard de�nitions

Validation & Veri�cation

Validation

Does the software system meet the user's real needs? are we
building the right software?

Speci�cation

A statement (document) about a particular proposed solution to a
problem.

Veri�cation

Does the software system meet the requirements speci�cations? are
we building the software right?

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Standard de�nitions

Validation & Veri�cation

Validation

Does the software system meet the user's real needs? are we
building the right software?

Speci�cation

A statement (document) about a particular proposed solution to a
problem.

Veri�cation

Does the software system meet the requirements speci�cations? are
we building the software right?

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Standard de�nitions

Validation & Veri�cation

Validation

Does the software system meet the user's real needs? are we
building the right software?

Speci�cation

A statement (document) about a particular proposed solution to a
problem.

Veri�cation

Does the software system meet the requirements speci�cations? are
we building the software right?

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Standard de�nitions

Validation & Veri�cation

User needs
(actual requirements)

SW
specifications

system

VALIDATION

Includes
usability testing,
user feedback

VERIFICATION

Includes testing,
inspections,
static analysis

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Standard de�nitions

Validation & Veri�cation - standard de�nitions

IEEE standard in its 4th edition de�nes the two terms as follows:

Validation. The assurance that a product, service, or system
meets the needs of the customer and other identi�ed
stakeholders. It often involves acceptance and
suitability with external customers. Contrast with
veri�cation.

Veri�cation. The evaluation of whether or not a product, service,
or system complies with a regulation, requirement,
speci�cation, or imposed condition. It is often an
internal process. Contrast with validation.

ISO 9001 standard de�nes them this way :

Veri�cation is the conformation that a product meets identi�ed
speci�cations.

Validation is the conformation that a product appropriately
meets its design function or the intended use.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Standard de�nitions

Validation & Veri�cation - standard de�nitions

Capability Maturity Model (CMMI-SW v1.1):

Software Veri�cation: The process of evaluating software to
determine whether the products of a given
development phase satisfy the conditions imposed at
the start of that phase.

Software Validation: The process of evaluating software during or
at the end of the development process to determine
whether it satis�es speci�ed requirements.

Boehm succinctly expressed the di�erence between:

Software Veri�cation: Are we building the product right?

Software Validation: Are we building the right product?

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Standard de�nitions

Example

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Standard de�nitions

Validation & Veri�cation

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Standard de�nitions

Veri�cation

Veri�cation generally compares two or more artifacts

Veri�cation can consist in checking for self-consistency and
well-formedness one artifact.

For example, we can certainly determine that some programs
are "incorrect" because they are ill-formed.
We may likewise determine that a speci�cation itself is
ill-formed because it is inconsistent (requires two properties
that cannot both be true) or ambiguous (can be interpreted to
require some property or not),
or because it does not satisfy some other well-formedness
constraint that we impose, such as adherence to a standard
imposed by a regulatory agency.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Standard de�nitions

Veri�cation

Validation against actual requirements necessarily involves
human judgment

Veri�cation can be automatized

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Validation & Veri�cation

1 Can we arrive at some logically sound argument or proof that
a program satis�es the speci�ed properties?

2 Alan Turing proved that some problems cannot be solved by
any computer program.

3 an undecidable problem is a decision problem for which it is
known to be impossible to construct a single algorithm that
always leads to a correct yes-or-no answer.

4 for instance the halting problem

5 every interesting property regarding the behavior of computer
programs can be shown to "embed" the halting problem,

HALTING PROBLEM

Given the description of an arbitrary program and a �nite input,
decide whether the program �nishes running or will run forever.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Validation & Veri�cation

1 Can we arrive at some logically sound argument or proof that
a program satis�es the speci�ed properties?

2 Alan Turing proved that some problems cannot be solved by
any computer program.

3 an undecidable problem is a decision problem for which it is
known to be impossible to construct a single algorithm that
always leads to a correct yes-or-no answer.

4 for instance the halting problem

5 every interesting property regarding the behavior of computer
programs can be shown to "embed" the halting problem,

HALTING PROBLEM

Given the description of an arbitrary program and a �nite input,
decide whether the program �nishes running or will run forever.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Validation & Veri�cation

1 Can we arrive at some logically sound argument or proof that
a program satis�es the speci�ed properties?

2 Alan Turing proved that some problems cannot be solved by
any computer program.

3 an undecidable problem is a decision problem for which it is
known to be impossible to construct a single algorithm that
always leads to a correct yes-or-no answer.

4 for instance the halting problem

5 every interesting property regarding the behavior of computer
programs can be shown to "embed" the halting problem,

HALTING PROBLEM

Given the description of an arbitrary program and a �nite input,
decide whether the program �nishes running or will run forever.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Validation & Veri�cation

1 Can we arrive at some logically sound argument or proof that
a program satis�es the speci�ed properties?

2 Alan Turing proved that some problems cannot be solved by
any computer program.

3 an undecidable problem is a decision problem for which it is
known to be impossible to construct a single algorithm that
always leads to a correct yes-or-no answer.

4 for instance the halting problem

5 every interesting property regarding the behavior of computer
programs can be shown to "embed" the halting problem,

HALTING PROBLEM

Given the description of an arbitrary program and a �nite input,
decide whether the program �nishes running or will run forever.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Validation & Veri�cation

1 Can we arrive at some logically sound argument or proof that
a program satis�es the speci�ed properties?

2 Alan Turing proved that some problems cannot be solved by
any computer program.

3 an undecidable problem is a decision problem for which it is
known to be impossible to construct a single algorithm that
always leads to a correct yes-or-no answer.

4 for instance the halting problem

5 every interesting property regarding the behavior of computer
programs can be shown to "embed" the halting problem,

HALTING PROBLEM

Given the description of an arbitrary program and a �nite input,
decide whether the program �nishes running or will run forever.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Exhaustive testing

s t a t i c i n t sum(i n t a , i n t b) { return a+b ; }

1 Exhaustive testing, that is, executing and checking every
possible behavior of a program, would be a "proof by cases,"
which is a correct way to construct a logical proof. How long
would this take?

2 there are only 232 Ö 232 = 264 ≈ 1021 di�erent inputs on
which the method Trivial.sum() need be tested to obtain a
proof of its correctness. At one nanosecond (10−9 seconds)
per test case, this will take approximately 1012 seconds, or
about 30,000 years.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Exhaustive testing

s t a t i c i n t sum(i n t a , i n t b) { return a+b ; }

1 Exhaustive testing, that is, executing and checking every
possible behavior of a program, would be a "proof by cases,"
which is a correct way to construct a logical proof. How long
would this take?

2 there are only 232 Ö 232 = 264 ≈ 1021 di�erent inputs on
which the method Trivial.sum() need be tested to obtain a
proof of its correctness. At one nanosecond (10−9 seconds)
per test case, this will take approximately 1012 seconds, or
about 30,000 years.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Pessimistic and Optimistic inaccuracy

A (testing/analysis) technique
can be approximate:

1 pessimistic : it is not
guaranteed to accept a
program even if the
program does possess the
property being analyzed

2 optimistic : if it may
accept some programs
that do not possess the
property (i.e., it may not
detect all violations)

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Simpli�cation/abstraction

1 we want to verify a
property S, but

1 we cannot accept the
optimistic inaccuracy of
testing for S

2 precise analysis is too
di�cult

2 a simpler property S' is a
su�cient, but not
necessary, condition for S

3 we check S' rather than S

4 we require S' to be
satis�ed

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Simpli�cation/abstraction Example

i n t i , sum ;
i n t f i r s t =1;
fo r (i =0; i <10; ++i) {

i f (f i r s t) {
sum=0; f i r s t =0;

}
sum += i ;

}

Property: each variable should
be initialized with a value
before its value is used in an
expression

1 P vale??

2 in C language?

3 in Java ???

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Simpli�cation/abstraction Example

i n t i , sum ;
i n t f i r s t =1;
fo r (i =0; i <10; ++i) {

i f (f i r s t) {
sum=0; f i r s t =0;

}
sum += i ;

}

Property: each variable should
be initialized with a value
before its value is used in an
expression

1 P vale??

2 in C language?

3 in Java ???

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Simpli�cation/abstraction Example

i n t i , sum ;
i n t f i r s t =1;
fo r (i =0; i <10; ++i) {

i f (f i r s t) {
sum=0; f i r s t =0;

}
sum += i ;

}

Property: each variable should
be initialized with a value
before its value is used in an
expression

1 P vale??

2 in C language?

3 in Java ???

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Simpli�cation/abstraction Example

i n t i , sum ;
i n t f i r s t =1;
fo r (i =0; i <10; ++i) {

i f (f i r s t) {
sum=0; f i r s t =0;

}
sum += i ;

}

Property: each variable should
be initialized with a value
before its value is used in an
expression

1 P vale??

2 in C language?

3 in Java ???

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Example of simpli�ed property: Unmatched Semaphore
Operations

Property: every semaphore it is eventually unlocked

i f (. . . .) {
. . . l o c k (S) ;
}
. . .
i f (. . .) {

. . . un l ock (S) ;
}

Static checking for match is
necessarily inaccurate ...

Java solution: synchronized
statements specify the object
that provides the intrinsic lock

synchronized (S) {
. . .

}

It is guarenteed that the lock S
is released.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Example of simpli�ed property: Unmatched Semaphore
Operations

Property: every semaphore it is eventually unlocked

i f (. . . .) {
. . . l o c k (S) ;
}
. . .
i f (. . .) {

. . . un l ock (S) ;
}

Static checking for match is
necessarily inaccurate ...

Java solution: synchronized
statements specify the object
that provides the intrinsic lock

synchronized (S) {
. . .

}

It is guarenteed that the lock S
is released.

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

How to deal with undecideble problems

1 optimistic inaccuracy: we may accept some programs that do
not possess the property (i.e., it may not detect all violations).

testing

2 pessimistic inaccuracy: it is not guaranteed to accept a
program even if the program does possess the property being
analyzed

automated program analysis techniques

3 simpli�ed properties: reduce the degree of freedom for
simplifying the property to check

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

How to deal with undecideble problems

1 optimistic inaccuracy: we may accept some programs that do
not possess the property (i.e., it may not detect all violations).

testing

2 pessimistic inaccuracy: it is not guaranteed to accept a
program even if the program does possess the property being
analyzed

automated program analysis techniques

3 simpli�ed properties: reduce the degree of freedom for
simplifying the property to check

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

How to deal with undecideble problems

1 optimistic inaccuracy: we may accept some programs that do
not possess the property (i.e., it may not detect all violations).

testing

2 pessimistic inaccuracy: it is not guaranteed to accept a
program even if the program does possess the property being
analyzed

automated program analysis techniques

3 simpli�ed properties: reduce the degree of freedom for
simplifying the property to check

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Some Terminology

Safe (Sicuro): A safe analysis has no optimistic inaccuracy, i.e., it
accepts only correct programs.

if a program is �wrong� it is rejected.

Sound (Corretto): An analysis of a program P with respect to a
formula F is sound if the analysis returns true only
when the program does satisfy the formula.

if a program is accepted, it is correct
no wrong program is accepted
there may be correct programs that are not
accepted (conservative - pessimistic)
testing is not sound.

Complete (completo): An analysis of a program P with respect to a
formula F is complete if the analysis always returns
true when the program actually does satisfy the
formula.

every correct program is accepted
a wrong program maybe accepted (optimistic - if
unsound)

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Some Terminology

Safe (Sicuro): A safe analysis has no optimistic inaccuracy, i.e., it
accepts only correct programs.

if a program is �wrong� it is rejected.

Sound (Corretto): An analysis of a program P with respect to a
formula F is sound if the analysis returns true only
when the program does satisfy the formula.

if a program is accepted, it is correct
no wrong program is accepted
there may be correct programs that are not
accepted (conservative - pessimistic)
testing is not sound.

Complete (completo): An analysis of a program P with respect to a
formula F is complete if the analysis always returns
true when the program actually does satisfy the
formula.

every correct program is accepted
a wrong program maybe accepted (optimistic - if
unsound)

Angelo Gargantini 1. A Framework for Test and Analysis

Validation and Veri�cation
Degrees of Freedom

Some Terminology

Safe (Sicuro): A safe analysis has no optimistic inaccuracy, i.e., it
accepts only correct programs.

if a program is �wrong� it is rejected.

Sound (Corretto): An analysis of a program P with respect to a
formula F is sound if the analysis returns true only
when the program does satisfy the formula.

if a program is accepted, it is correct
no wrong program is accepted
there may be correct programs that are not
accepted (conservative - pessimistic)
testing is not sound.

Complete (completo): An analysis of a program P with respect to a
formula F is complete if the analysis always returns
true when the program actually does satisfy the
formula.

every correct program is accepted
a wrong program maybe accepted (optimistic - if
unsound)

Angelo Gargantini 1. A Framework for Test and Analysis

	Validation and Verification
	Standard definitions

	Degrees of Freedom

