Testing Java code con EFSM

Corso di testing e verifica del software

Materiale

* Capitolo 5 del libro «practical model-based testing»
» Pdf del capitolo su restricted

* Tool ModelJunit.jar

EFSM

* Per modellare e quindi testare programmi (java) useremo le
Extended Finite State Machines

* An EFSM looks similar to an FSM (states and transitions), but it is
more expressive because it has internal variables that can store more

detailed state information.
* Avremo un insieme di variabili

* Il numero degli stati visibili € comunque finite
* Alcune volte raggruppiamo tanti valori di variabili in uno stato

EFSM in ModelJUnit

* The basic philosophy of ModelJUnit is to take advantage of
the expressive power of Java (procedures, parameters,
inheritance, annotations, etc.) to make it easier to write
EFSM models, and then provide a collection of common
traversal algorithms for generating tests from those models.
It is typically used for online testing, which means that the
tests are executed while they are being generated.

* The EFSM usually plays a dual role:

* it defines the possible states and transitions that can be tested,

* it acts as the adaptor that connects the model to the SUT (which is
usually another Java class).

Write an EFSM with ModelJUnit

e Each EFSM model is written as a Java class, which must
implement the interface FsmModel

* and have at least the following public methods:

* Object getState():
This method returns the current visible state of the EFSM. So
this method defines an abstraction function that maps the
internal state of the EFSM to the visible states of the EFSM
graph. Typically, the result is a string, but it is possible to return
any type of object.

@Override
public Object getState() {
String result = carl.toString() + "-" + car2.toString();

if ((Capl.r‘ow == 1) && (Car']..COl == 2)) {
result += "EXIT";

reset

* public void reset(boolean):
This method resets the EFSM to its initial state.

EFSM actions

* @Action void namei():
The EFSM must define several of these action methods, each marked
with an @Action annotation. These action methods define the
transitions of the EFSM. They can change the current state of the
EFSM.

* boolean nameiGuard():
Each action method can optionally have a guard, which is a boolean
method with the same name as the action method but with “Guard”
added to the end of the name. When the guard returns true, then
the action is enabled (so may be called), and when the guard returns
false, the action is disabled (so will not be called). Any action method
that does not have a corresponding guard method is considered to
have an implicit guard that is always true.

Esempio

@Action
public void upl() {
carl.row--;

}
public boolean uplGuard() {

return (carl.row > 9)

&& (!(car2.col == carl.col && car2.row == carl.row - 1));

Esempio — interruttore ON - OFF

Versione 1: con una sola azione change

e Scrittura della EFSM in Java

Generazione dei casi di test — valutazione
copertura e stampa dei test

* In questo caso generiamo i casi di test utilizzando il seguente codice
Java:

public static void main(String args[]) {
OnOffMachine model = new OnOffMachine();
Tester tester = new RandomTester(model);
tester.generate(10);

Generazione dei casi di test

* In questo caso generiamo i casi di test utilizzando il seguente codice Java:
public static void main(String args[]) {

OnOffMachine model = new OnOffMachine();

Tester tester = new RandomTester(model);

GraphListener graph = tester.buildGraph();

CoverageMetric stateCoverage = new StateCoverage();
tester.addCoverageMetric(stateCoverage);

CoverageMetric transitionCoverage = new TransitionCoverage();
tester.addCoverageMetric(transitionCoverage);
tester.addListener(new VerboselListener());
tester.generate(10);

System.out.println("State coverage =" + stateCoverage.toString());

System.out.println("Transitioncoverage="+transitionCoverage.toString());

Drawing the EFSM

* Dal modello e possibile ottenere il disegno:
1. Esportarein jar
2. Caricarlo in ModelJUnit

Demo + (esercitazione) + video

ATTENZIONE: prima di farlo disegnare assicurarsi che sia corretto
(come visto prima) almeno sintatticamente.

Testare del codice senza modificarlo

* Alcune volte NON posso modificare il codice del System Under
Testing (SUT)

* |l codice fa parte di una libreria

 Alcune volte voglio testarere solo una parte del comportamento
* La classe SUT fa anche altre cose

* Alcune volte non riesco a trovare le azioni semplici del SUT
* | metodi sono complicati

* In questi casi devo connettere la mia SUT con |la EFSM

Connecting with the sut for online testing

* Se voglio usare ModelJunit per online testing della mia SUT devo connetterla:
* Creo uno istanza della sut nel costruttore
* Invio al SUT gli input chiamando | metodi e poi controllo che il comportamento sia corretto.

* Ad esempio:
public class RushHourFSM implements FsmModel {
private int cl_row, cl_col, c2_row, c2_col;
// system under test
RushHour sut;
public RushHourFSM() {
cl row = 1;cl col = 1;c2 row = 1; c2 col = 2;
// creo sut
sut = new RushHour();

Connecting with the sut for online testing

e @Action void namei():
The EFSM must define several of these action methods, each
marked with an @Action annotation. These action methods
define the transitions of the EFSM. They can change the
current state of the EFSM. and when online testing is being
used, they also send test inputs to the SUT and check the
correctness of its responses.

* reset: When online testing is being used, it should also reset
the SUT or create a new instance of the SUT class. The
boolean parameter can be ignored for most unit testing
applications.

Connecting with the sut for online testing

* Each action method typically defines a short, straight-line sequence of Junit
code that tests one aspect of the SUT by calling one or more SUT methods
and checking the correctness of their results.

* The effect of applying model based testing to the EFSM is to make a traversal
through the EFSM graph, and this weaves those short sequences of test code
into longer sequences of more sophisticated tests that dynamically explore
many aspects of the SUT

* Esempio

@Action

public void down2() {
sut.moveCar(car2.row, car2.col, 3);
car2.row++;
assertTrue(sut.griglia[car2.row][car2.col] == 2);

Alternativa 1. Yakindu

 YAKINDU Statechart Tools

e https://www.itemis.com/en/yakindu/state-machine/download-
options/

SIMULAZIONE
Yakindu statechart
tool (editor)
SCENARI con
copertura

GENERAZIONE DEL
CODICE

https://www.itemis.com/en/yakindu/state-machine/download-options/

Yakindu 1 — finite state machines

* Mealy machines produce outputs only on transitions and not in
states.

'

Light Off

ON_pressed /
brightnessLow

OFF_pressed /
brightnessOff

-

A

OFF_pressed / brightnessOff

OFF_pressed / brightnessOff

Light On - Dimmed

ON_pressed /
brightnessMedium

Light On - Medium

ON_pressed /
brightnessHigh

Light On - Bright

ON_pressed /
brightnessLow

Ogni transizione ha:
evento/azione

Gli eventi (input) e le azioni
vanno dichiarate prima

Harel statechart

MOT_pressed N Motion Detection Mode
. rl
l ONf_pressed / ON_pressed /
brightness = 1 _ brightness = 1
Light Off N Manual Mode < No Motion Detected
entry / brightness = 0 OFF_pressed MOT pressed entry / brightness = 0
—————— - >

ON_pressed /
brightness=(brightness % 3) + 1

motion_detected l ‘ after 30 s

OFF_pressed Motion Detected

entry / brightness = 3

e variabili nello stato es. brightness]
e Stati gerarchici: uno stato puo contenere + stati A
* Le azioni possono cambiare lo stato

* Gli eventi possono essere condizionati

* Ho gli eventi temporali

* Ho azioni quanto entro/esco in uno stato

Come si sviluppano i modelli con Yakindu

0 LightSwitch

@EventDriven
internal:
var brightness: integer

interface:
in event on_button
in event off_button

interface sensor:
in event motion

Definition

Section

main region
I Composite State
MotionSensingMode ManualMode
Transition
i Reaction
? 2) A 1
Off sensor.motion | On
entry / entry / -
brightness = 0 brightness = 1
I j] on_button [brightness < 10] / brightness += 1
after 30s sensor.motion
I S

State off_button

Reaction

on_button

. Entry

Statechart elements overview

—yp Iransition

g State

¢ Composite State

__. Orthogonal State

Region

. Entry

@ Final State
® Exit Node
O Choice

Transitions connect states with each other. Transition reactions define under which
conditions a transition is taken.

A state is the most basic building block of a statechart. A state can define reactions
for when it gets entered or left.

A composite state groups a number of substates. It can be used to express state
hierarchies.

An orthogonal state is used to express concurrency.

A region is a container for states and transitions. Regions can exist as top-level
elements or inside of a composite or orthogonal state. Multiple regions that coexist
on the same level express concurrency as in an orthogonal state.

Entry points mark the initial state of a region. A region can have multiple named
entry points to specify different execution flows.

A final state denotes the end of the execution flow.

Exit points are used to leave a composite state and are the counterparts of
entry points.

A choice node is used to model a conditional path.

interfaccia

in event SwitchOn

in event Slider : integer

out event Finish
out event Error : string

var brightness : integer

var brightness : integer = 3

var readonly brightness :
integer

const Pl : real =3.14

operation average(a : real, b :

real) : real

Incoming event, supposed to be raised by the client code and
processed by the state machine to evaluate potential state
transitions.

Incoming event with payload of type integer

Outgoing event, supposed to be raised by the state machine and
delivered to the outside.

Outgoing event with payload of type string. Can be raised by a
transition or state reaction with raise Error : "Some error message"

Variable, used to store some data. Can be changed by the state
machine and by the client code.

Variable with initial value.

Variable marked as readonly to ensure it is not changed by the client
code.

Constant, used to store some immutable data that is not changeable
by the client code or the state machine. Constants must have an
initial value.

Operation, connects a state machine to the outside world by making
external behaviour accessible. Implementation needs to be provided
by the client code.

Transition reactions qger [quard] / effect

Trigger Syntax

Meanin
Examples g

Event trigger, triggers when the event evl is raised. The used event
evl . - :

needs to be declared in the definition section.
evl ev2 Multiple event triggers, triggers when one of the events evl or ev2 is

’ raised. The used events need to be declared in the definition section.

after 10s Time trigger, trigger after given amount of time.

Always trigger, triggers always. Can be omitted when used with a
always

guard.
oncycle Oncycle trigger, same as always trigger.

Else trigger, only valid on outgoing transitions of choice states to
else denote the default transition if no other outgoing transition can be

taken.

default Default trigger, same as else trigger.

Guardie ed effetti trigger [guard] / effect

Guard Syntax Examples Expression Kind
[varl && !var2] Logical AND, OR, NOT
[varl >0 && varl <= 10] Logical comparisons <, <=, >, >=
[varl ==10 && var2 = 17] Logical equality or inequality
lisOdd(vard)] Slizration calls with boolean return
[varl] Boolean variables or constants
Effect Syntax Examples Meaning
/ var1l+=10; var2=varl Variable assignment
/ calculate(varl, var2) Operation call
/ raise evl Event raising
/ raise ev2 : 42 Event raising with payload
/varl>107?varl=0:varl++ Conditional expression

/varl<< 8 Bit shifting

Choices

main region

t [x > 0]

Init]

ev 2[x< 0]

A

A

Basic execution flow

* All source state’s exit actions are executed
* All transition actions are executed
 All target state’s entry actions are executed

Simulation

* Demo starting a simulation

o default - LightSwitch/model/light_switch_dimmer.sct - YAKINDU 5CT Pro Edition
File Edit Diagram MNavigate Search Project Run Window Help
CERIPY H O~ R i H G
[Tahoma 9 | A~ &~ g~~~ |8 Bi~E~|s| ~ |[100%
{5 ProjectEx.. 82 = B % light_switch_dimmersct 53
S-S ®.. Statechart light_switch
4 122 LightSwitch
4 (= model * light_switch main region
. light——— ik em
igl ,
Open F3
Open With 3 LightOff
entry /
B Copy Ctrl+C Lamp.brightness = 0
Paste Ctrl+V .
3 Delete Delete pressLiphton
Move... pressLightOff
Rename... F2 1
LightOn
Ey Import... entry /
i Export.. Lamp.brightness += 1 72*‘
Refresh F5 T
On [L .bright 5
Run As v (D IStatE(hartSIEU\at\on (e, RS <]
RS ' Run Configurations...
Profile As]
Team (3 § o]
Replace With » :
tSwitch/model
Compare With 3
Value i
Properties Alt+Enter =
derived false
editable true
< m r last modified February 20, 2018 at 4:25:00 PM -
& light_switch_dimmer.sct - LightSwitch/model 8

Writing scenarios

 Similar to Junit test cases
* Still abstract they need to be concretized

Alternativa 2: ATGT

* Generazione di sequenze avalla a partire dai modelli ASM

* Con dei criteri di copertura
* Basato sulle regole
* Basato sugli input (combinatorial)

* Generatore di scenari astratti poi da concretizzare

