Abstract State
Machines

Angelo Gargantini
2023
Testing e verifica del sw

Scenario-based
validation

Motivations

Validation: investigating a model with respect
to its user perceptions, in order to ensure that
the it really satisfies the user needs

m detect faults as early as possible

m possible techniques: scenarios generation,
development of prototypes, animation, simulation,
and also testing

Scenario: description of a possible behavior of
the system

m observable interactions between the system and its
environment in specific situations

Gargantini & Riccobene - ASMETA - GSSI July 2022

A philosophical view

MODEL All men are mortal.

Socrates is a man implies R\lels[=INe|a(=le {Iale Rz g[e
Socrates is mortal. similar techniques

| Find Socrates,
based check he is a man,
VALIDATION

VERIFICATION

1 Gen Philos Sci (2008) 39:85-113

and he iS dead DOI 10,1007/510838-008-9068-7

DISCUSSION

Towards a Philosophy of Software Development:
40 Years after the Birth of Software Engineering

Mandy Northover - Derrick G. Kourie - Andrew Boake *
Stefan Gruner * Alan Northover

“the susceptibility of a formal specification to scenario-
based validation demonstrates its falsifiability, and
thus the scientific nature of software development.gargantini & riccobene - ASMETA - GSSI July 2022

Related works 1

From telecommunication systems
m Message Sequence Charts (MSCs) (graphical)

m Life Sequence Charts (LSCs)

W. Damm and D. Harel. LCSs: Breathing life into
message sequence charts: extends the MSCs by
providing the "clear and usable syntax and a formal
semantics" MSCs lack of.

UML Use cases
= black box view - graphical notation

Temporal Logical/ formal methods

Albert II formal language and scenarios are
represented by MSC

Gargantini & Riccobene - ASMETA - GSSI July 2022

Related works 2

For ASM

= W. Grieskamp, N. Tillmann, and M. Veanes.
Instrumenting scenarios in a model-driven
development environment, 2004.

m Spec# specifications are instrumented to allow validation

E.g. “to describe observations in scenarios, we extend
Spec# by the so-called expect statement”

For a survey:

DANIEL AMYOT
An Evaluation of Scenario Notations and Construction

Approaches for Telecommunication Systems
Development

Gargantini & Riccobene - ASMETA - GSSI July 2022

Our proposal in ASMETA -
ABZ08

International Conference on Abstract State Machines, B and Z

L> ABZ 2008: Abstract State Machines, B and Z pp 71-84 \ Cite as

A Scenario-Based Validation Language for ASMs

Alessandro Carioni, Angelo Gargantini, Elvinia Riccobene & Patrizia Scandurra

Gargantini & Riccobene - ASMETA - GSSI July 2022

Goals

Textual notation
m Similar to programs (as Spec#)
Clear semantics
m As LSC (e.g. clear definition of necessary and possible)
m defined by ASMs ?
Able to describe internal details
= Not only black box as UML use cases
Similar to testing notations?
m Like Use case maps similar to TTCN
To validate ASM written in Asmetal
= To be integrated within the ASMETA framework

Gargantini & Riccobene - ASMETA - GSSI July 2022

Fromm UML Actor to ASM Actor

UML USE CASE: j‘> SYSTEM
actor interacts with i
the system. <

One or more scenarios

may be generated <—_:|

from each use case ’

BLACK BOX VIEW user
actor

ASM Actor
sets monitored and shared functions
(environment)

checks out functions (machine
reaction)

Gargantini & Riccobene - ASMETA - GSSI July 2022

ASM observer

SYSTEM
ASM observer — USE
_ CASEs
checks machine
internal state
and invariants - =
] Int I
requires the ate
execution of - -

arbitrary rules observer
GRAY BOX VIEW @tr

Gargantini & Riccobene - ASMETA - GSSI July 2022

Twofold use of scenarios

Two kinds of external actors:

= user, who has a black box view of the
system

= observer, who has a gray box view

Two goals for scenarios
m classical validation

user actions and machine reactions
= testing activity

observer inspection of the internal state of
the machine

Gargantini & Riccobene - ASMETA - GSSI July 2022

ASM scenario

interaction sequence consisting of actions:

by observer

1. set the environment (i.e. the values of
monitored/shared functions)

2. check for the machine outputs (i.e. the values of
out functions),

3. check the machine state and invariants
4. ask for the execution of given transition rules

by machine
®= makes one step as reaction of the actor actions

written in
Asm Validation Language > AVallLa

Gargantini & Riccobene - ASMETA - GSSI July 2022

AVallLa primitives

set A command to set the location of a (monitored) function to a
specific value: it simulates the environment

check To inspect external values and (only for the observer) to inspect
internal values in the current state
step To signal that the environment has finished to update the

monitored locations, hence the machine can perform a step

step until To signal that the machine can perform a step iteratively until a
specified condition becomes true

invariant To state critical specification properties that should always hold
for a scenario

exec To execute transition rule when required by the observer

Gargantini & Riccobene - ASMETA - GSSI July 2022

USING AVALLA

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Advanced Clock

Advanced clock:
= A clock with seconds, minutes, and hours
m At every step the second is incremented by 1

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 1

Check that at the beginning the clock is at
midnight (00:00:00);

Perform a step of the machine

Check now that the time is 00:00:01;
Another step

Check now that the time is 00:00:02;

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 1

asm to validate

scenario advancedClockl

load AdvancedClock.asm
Check initially is

00:00:00 check hours = @ and minutes = 0 and
seconds = 0;
Perform a step step
) heck h =0 d minut =0 d
Check that now is geigndso:ri- and minutes an
00:00:01 ?
step
Perform a step
check hours = @ and minutes = 0 and

check again seconds = 2;

Gargantini & Riccobene - ASMETA - GSSI
Tulv 2022

How to execute the scenario

VNN v e T TES A AsmetaA > B @ i@y il - f o

AsmetaSMV > ary.asm AdvancedClock.asm scel
\aster] Fi= Run the flattener enario advancedClockl
M4 Run the model advisor
V' Run AsmetaV

>\ Run AsmetaV with the Animator
7€M \L Run AsmetaV and compute coverage

AsmetaVis

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Advanced Clock

Scenario 1 can be very long

Scenario 2:

= After one hour

m exec step by step until the houris 1
m Check that now it is 01:00:00

m Step

m Check that now it is 01:00:01

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 2

// using step until
scenario advancedClock?2

load AdvancedClock.asm
check hours = @ and minutes
step until hours = 1;

check hours = 1 and minutes

©® and seconds

® and seconds

Gargantini & Riccobene - ASMETA - GSSI

July 2022

Scenario 3 - Invariants

Invariants can be used to check
m Properties generic to the machine are always guaranteed
m Properties for the scenario are true:

Scenario 2:

m Seconds are always lower than 60
For every execution

= Hours are lower of equal 1
Specific of the scenario

Let’s execute the scenario
Let’s check that if both invariants are actually checked

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 4 — using exec

Sometimes we want to change the state of

the machine directly

m against information hiding

= improve the testability without changing the
visibility

Scenario 4

m Set with a par rule 02:01:59;

m Perform a step of the clock

m Check now that now is 02:02:00;

Gargantini & Riccobene - ASMETA - GSSI July 2022

Introducing monitored functions

Till now Advanced Clock is a closed system
= Its behavior does not depend on the environment
= Closed system

Second version:

m The clock is connected to signal and the seconds
are incremented only if signal is true

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenarios

Scenario 5:

= Set signal true and check that seconds is
incremented

= Set signal false and check that seconds is NOT
incremented

Scenario 6:
= Using step until

Gargantini & Riccobene - ASMETA - GSSI July 2022

SEMANTICS

Gargantini & Riccobene - ASMETA - GSSI
July 2022

AValLa sematics

Semantics of a metamodel-based language L can
be given by an ASM-based semantic framework
m some details in the paper

Intuition

m every program written in L becomes an ASM

= definition of a mapping M from the elements of L to
elements of ASM

= M can be defined at the metamodel (abstract syntax)
level

For AVallLa
= Given a scenario, obtain an ASM (validating ASM)

Gargantini & Riccobene - ASMETA - GSSI July 2022

In practice ...

scl.avalla
scenario sci

clock _scl.asm
load clock.asm asm clock scl

set ... M

clock.asm
asm clock

VALIDATING ASM

.ASM to be
validated

Gargantini & Riccobene - ASMETA - GSSI July 2022

M for AValLa elements

AVallLa AsmM

Set 1L o=vw UpdateRule 1L s=w
Check expr ConditionalRule with guard expr
and body allChecksOk := false

Invariant expr AXiom expr

Exec Rule
Step MacroDeclaration r_step_i
StepUntil Two macroDeclations

r_step_i and r_step_i_until

Gargantini & Riccobene - ASMETA - GSSI July 2022

AsmetaValidator

PASS/FAIL

COVERAGE

scenari
Asmet %
spec

lth}ﬂ

Semantic
Asmeta
mapplng Simulator

/

validating
Asmetal

‘o

INSPECTION
WINDOW

Gargantini & Riccobene - ASMETA - GSSI July 2022

ADVANCED USE

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Two extensions

Coverage
Animating the scenarios

demo

Gargantini & Riccobene - ASMETA - GSSI July 2022

Simulation <-> scenarios

Type Functions State 0 State 1 Stete2 State 3
I F th ' t t
1 avalla
Inviariant violation / exceptions ——
= Type Functions State 0 State 1 State2 State 3
+ oA c step 0 1 2 3
O C ‘takeThePill true true true
A timeDiffOvert false. false false
5 TAKE_PILL CLOSE_DRAWER IN_10_MIN
Contralled Function
SEESTEE OA € reded ON BLNKING
Controlled Functions D A € result 1
ve Monitored Functions oA C ‘apenSwitch true false
Monitored Functions N =) i
—

// EE SIS LSS EEEEEEEEEEE S ESEESES

// Close the drawer within 10 minutes

// sk sk sk sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk sk sk sk sk sk sk ok ok sk sk ok sk sk ok sk sk sk sk sk sk ok sk sk sk sk skosk sk sksk
set timeDiffOver600 := false;

set openSwitch := false;

step

check redlLed = OFF;

check outMess = NONE;

Animate the ava”a check logMess = NONE;

Gargantini & Riccobene - ASMETA - GSSI July 2022

Building the scenarios from
animations

|
7] AsmetaA - O x
~ Type Functions h State 0 State 1 State 2 State 3 State 4 State 5 State 6 State 7 £
Do one interactive st [
Do random step/s
Insert random step nu
R
Inviariant violation /
exceptions
Type Functions - [State 0 State 1 State 2 State 3 State 4 State 5 State 6 State 7 I
OA C position(CABBAGE) LEFT LEFT LEFT LEFT LEFT RIGHT RIGHT RIGHT
E[we Controlled Functions OA C position(FERRYMAN) LEFT RIGHT LEFT RIGHT LEFT RIGHT LEFT RIGHT ;
Ee Controlled Functions D oA |c R g 1 2 3 “ 5 6 7
OA C position(GOAT) LEFT RIGHT RIGHT RIGHT LEFT LEFT LEFT RIGHT
ﬁwe Monitored Functions .
OA C position(WOLF) LEFT LEFT LEFT RIGHT RIGHT RIGHT RIGHT RIGHT
EE Monitored Functions D OA C outMess Fromright to left From left to right From right to left From left to right From right to left From left to right From right to left
OA C carry FERRYMAN WOLF GOAT CABBAGE FERRYMAN GOAT GOAT
expart to Avalla
O C result 1 1 1 1 1 1

Gargantini & Riccobene - ASMETA - GSSI July 2022

Asmeta console]]
Running interactively terrymanSimulator.asm

- H INITIAL STATE:
e S‘ el Ia rI O IS Insert a symbol of Actors in [FERRYMAN, GOAT, CABBAGE, WOLF] for carry:

//// starting scenario
scenario SCENARIO_NAME
= = load __ tempAsmetaV14229261553513561718.asm
rl n te I n t e check position(CABBAGE) = LEFT;
check position(FERRYMAN) = LEFT;
check step__ = 9;
check position(GOAT) = LEFT;

check position(WOLF) = LEFT;
step

check position(CABBAGE) = LEFT;
check position(FERRYMAN) = RIGHT;
check step__ = 1;

check position(GOAT) = RIGHT;

check position(WOLF) = LEFT;

check outMess = From right to left;
check carry = FERRYMAN;

step

check position(CABBAGE) = LEFT;
check position(FERRYMAN) = LEFT;
check step__ = 2;

check position(GOAT) = RIGHT;

check position(WOLF) = LEFT;

check outMess = From left to right;
check carry = WOLF;

check result = 1;

step

check position(CABBAGE) = LEFT;
check position(FERRYMAN) = RIGHT;
check step_ = 3;

check position(GOAT) = RIGHT;

check position(WOLF) = RIGHT;

check outMess = From right to left;
check carry = GOAT;

check result = 1;

step

check position(CABBAGE) = LEFT;
check position(FERRYMAN) = LEFT;

check step__ = 4;
Gargantini & Riccobene - ASMETA - C:ect POS%:%MEESLL\B = SEET
check position = ;
GSSI JUIy 2022 check outMess = From left to right;

check carry = CABBAGE;
<

Using blocks

It is possible to define a scenario block:
m Sequence of commands to be reused
Definition of a block primo scenario.avalla:

scenario first scenario

load ./mioModello.asm

begin blockname

end
the block will be executed
Calling a block

scenario first scenario
load ./mioModello.asm

execblock primo_ scenario:nomeblocco

Gargantini & Riccobene - ASMETA - GSSI July 2022

1 scenario scenariol
2 load pillbox_@.asm

3
4°begin takePill C I
: omplex
6 [[F KRRk o o K KoK o K o R K oK o KK o K oK 3 K KoK o Ko o K ok o o KoK o 3K o o K o
7 // Setting-up the initial state, where everything is OFF exarrlple
8 [RS Rk o ko o ok oS o R s o o S o oS o K o o S o R ok sk o o K o o sk o o o sk o o K
S set openSwitch := false;
10 step
11 check redLed = OFF;
12 check outMess = NONE; 1k . 0
cenarlo scenarlo
13 check logMess = NONE; 2 Tload pillbox_B.asm
14 [[F KKKk o K KoK o K oK KK oK o KK oK K K KKK R K KRR Kk K g
16 [[R A Rkok okok RR ok ok R K Rk ok ko kok ko x 0 // Initdlalization and need to take the pill
17 set takeThePill := true; 7 execblock pillbox_© scenariol:takePill;
18 set timeDiffOver60@ := false; 8
P . 1@ // Open the drawer within 18 minutes
20 check redlLed = ON, L1 [/ /R ko sk sk ok ok sk ok o o ko sk o ok o ok sk o ok ok ook o o Kok ok ok o ok ok ok o ok ok o
21 check outMess = TAKE PILL; 12 execblock pillbox_@_scenariol:openDrawerInl®Min;
22 check logMess = NONE; 1
23 15 // Do not close the drawer within 1@ minutes, and overpass
25 17 set timeDiffOver6@@ := true;
. . 18 set openSwitch := true;

26-begin openDrawerInl@Min ?

19
27 20 step
28 [[FHFF A Kok ok kR Kok KoKk kK ok KKk Rk Rk K]
29 // Open the drawer within 1@ minutes gg‘:mt ”mLejf SFH.
30 [[F KKKk o o K KoK o ok o o KK oK o KK o ok oK 3 K KoK o K oK K K oK cnecx opened = true;

24 check outMess = NONE;
31 set openSwitch := true; 25 check logMess = DRAWER_NOT_CLOSED;
32 set timeDiffOvere00 := false;
33 step
34 check redlLed = BLINKING;
35 check outMess = CLOSE_DRAWER_IN_1@_MIN;
36 check logMess = NONE; 3SSI
37

38 end

HOW AVALLA IS
DEFINED

cccccccc
22222222

Model-driven language
engineering

AVallLa is defined following the Model Driven
Engineering for language definition

MDE for languages:

m Definition of the abstract syntax by an object-oriented
model (metamodel)

m Derivation of concrete syntaxes from the metamodel
m Supporting tools and technologies

EMF: eclipse modelling framework
MOF: OMG Meta Object Facility

As done for the Asmeta Abstract State Machines

Gargantini & Riccobene - ASMETA - GSSI July 2022

AValLa Metamodael

H scenario

O spec
= pame

commands

H command

Invariants
0.*

H Invariant

= expr
= pame

AR

H Exec

= rule

H step H check H set
= expr = locat...
= value
H stepUntil
= cond

Gargantini & Riccobene - ASMETA - GSSI July 2022

Avalla in XTEXT

Language project

Antlr

o BERE
[o]
jdVd
(optional) |
ADT
4 ATl
Generated P e ey === - —

| I |

| I |

I I '

I [JS code | Y |

I || &

. o |

| I | Assist

I I =" |

b= ~Gargantini & Riccobene = — = = = - - — = J

ASMETA - GSSI July 2022

Editor features

Syntax Coloring Folding

Content Assist Hyperlinks for all Cross
Template Proposals References

Rich Hover Find References
Rename Refactoring Toggle Comment
Quick Fixes Mark Occurrences
Outline Formatting

8= Ouline x

Modues 2]
I < and install Betsie, please refer tc

I © Socket
“ & strict
® Subroutines
=S) [= alarm
Sy P T I ® basebdencode
= 5 - = error
dass
/defan continue srsion) [@ grabur
private|d nte s cx I m make auth cookie and loc
e version nissing in $feature_dir/feature.xrl®;
privat - — o It [= make auth page
ccccccccccccccccccccccccccccc _DEFAULT = new Int : L = mata harh: 5d|
4 | o]
QOutline | RegExp

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Lift case study

Lift Control : The Problem

Design the logic to move n lifts bw m floors, and prove it to be well
functioning, where

m Each lift has for each floor one button which, if pressed,
causes the lift to visit (i.e. move to and stop at) that floor.

m Each floor (except ground and top) has two buttons to request
an up-lift and a down-lift. They are cancelled when a lift visits
the floor and is either travelling in the desired direction, or
visits the floor with no requests outstanding. In the latter
case, if both floor request buttons are illuminated, only one
should be cancelled.

m A lift without requests should remain in its final destination
and await further requests.

m Each lift has an emergency button which, if pressed, causes a
warning to be sent to the site manager. The lift is then
deemed ‘out of service’. Each lift has a mechanism to cancel
its ‘out of service’ status. (sikip this part for now)

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift Example

validate lift2.asm

Set the button at

ground floor to off

Switch off all the
buttons

Check that the lift is
halted at ground floor,
direction UP

Make a step
Check again

scenario 1lift2 sO
load ./lift2.asm

// 1nit monitored functions

set hasToDeliverAt (1iftl, 0) := false;
set existsCallFromTo (0, UP) = false;
set existsCallFromTo (0, DOWN) := false;
check floor (liftl) = 0;

check ctlState(liftl) = HALTING;

check dir(liftl) = UP;

step

check floor (liftl) = 0;

check ctlState(liftl) = HALTING;

check dir(liftl) = UP;

Gargantini & Riccobene - ASMETA - GSSI July 2023

Lift Control : control state
ASM

J DEPART

halting » moving

‘ STOP

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Esempio del Lift

set
— = — LIFT
check out
External request
actor \
ChECk Internal request
exec
>

— e —

-:{Observer:»:-
actor (A)
existsCallFromTo (floor,dir) : richiesta esterna
di selezione dir (=UP/DOWN) da piano floor

hasToDeliverAt (1lift, floor) : richiesta interna
al piano floor

m se consumati, gli eventi diventano false
Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift model

asm lift3

import ../LIB/StandardLibrary

signature:
abstract domain Lift
domain Floor subsetof Integer
enum domain Dir = {UP | DOWN}
enum domain State = {HALTING | MOVING}

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift functions

// 1lift direction of travel

dynamic controlled dir: Lift -> Dir

// 1lift control state

dynamic controlled ctlState: Lift -> State

//1ift current floor

dynamic controlled floor: Lift -> Floor

// internal request

dynamic monitored hasToDeliverAt: Prod(Lift, Floor) -> Boolean
// external request

dynamic monitored existsCallFromTo: Prod(Floor, Dir) -> Boolean

derived hasToVisit: Prod(Lift, Floor) -> Boolean
derived attracted: Prod(Dir, Lift) -> Boolean
derived canContinue: Lift -> Boolean

static opposite: Dir -> Dir

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift

// consts

static ground: Integer
static top: Integer
static liftl: Lift

definitions:
domain Floor = {0..4}
function ground = ©

function top = 4

function opposite ($d in Dir) =
if ($d = UP) then DOWN else UP endif

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift

function hasToVisit($1l in Lift, $floor in Floor) =
hasToDeliverAt($1, $floor)
or existsCallFromTo($floor, UP)
or existsCallFromTo($floor, DOWN)

function attracted($dir in Dir, $1 in Lift) =
$dir = UP and (exist $floor in Floor with $floor > floor($1l)
and hasToVisit($1l, $floor))

or
$dir = DOWN and (exist $floor2 in Floor with $floor2 <

floor($1l) and hasToVisit($l, $floor2))

function canContinue($l in Lift) =
attracted(dir($1l), $1)
and not hasToDeliverAt($1l, floor($1l))
and not existsCallFromTo(floor($1l), dir($1))

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift

macro rule r_cancelRequest($dir in Dir, $1 in Lift) =
par
hasToDeliverAt($1, floor(%$l)) := false
existsCallFromTo(floor($1l), $dir) := false
endpar

macro rule r_moveLift($1l in Lift) =

par
if dir($1) = UP then floor($l) := floor(%$l) + 1
endif
if dir($1) = DOWN then floor($l) := floor($l) - 1
endif

endpar

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift Control : control state
ASM

J DEPART

halting » moving

‘ STOP

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Lift

macro rule r_depart($l in Lift) =
if ctlState($1l) = HALTING and attracted(dir($1l), $1) then
par
r_movelLift[$1]
r_cancelRequest[dir($1l), $1]
ctlState($1) := MOVING
endpar
endif

macro rule r_continue($l in Lift) =
if ctlState($l) = MOVING and canContinue($1l) then
r_moveLift[$1]
endif

Gargantini & Riccobene - ASMETA - GSSI July 2022

Modello per Lift

macro rule r_stop($l in Lift) =
if ctlState($1l) = MOVING and not canContinue($1l) then
par
r_cancelRequest[dir($l), $1]
ctlState($1) := HALTING
endpar
endif

macro rule r_change($l in Lift) =
let ($d = dir($1), $d2 = opposite($d)) in
if ctlState($1l) = HALTING and not attracted($d, $1) and
attracted($d2, $1) then
par
dir($1l) := $d2
r_cancelRequest[$d2, $1]
endpar
endif

endlet
Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift

macro rule r_lift($l in Lift) =
par
r_depart[$1]
r_continue[$1]
r_stop[$1]
r_change[$1]
endpar

invariant over existsCallFromTo:
not existsCallFromTo(ground, DOWN) and not existsCallFromTo(top,
UP)

main rule r_main = r_lift[liftl]
default init se:
function floor($l in Lift) = ground

function dir($1 in Lift) = UP
-Function ctlState($1 in Ll'Ft)= HALTING Gargantini & Riccobene - ASMETA - GSSI July 2022

First scenario

Description:

= The lift is at ground and there are no requests
(internal no external)

= The lift remains in the position

Gargantini & Riccobene - ASMETA - GSSI July 2022

Primo scenario per il Lift

valida lift2.asm

All the requests
are off

Check that the
elevator is
halting

Perform a step

Check again

scenario 1ift2 sl
load ./1lift2.asm

// 1nit monitored functions

set hasToDeliverAt (1liftl, 0) :=
set existsCallFromTo (0, UP) t=
set existsCallFromTo (0, DOWN) :=

false;
false;
false;

floor (1iftl) =
ctlState (1iftl)
dir(liftl) = UP;

check
check
check

0;
= HALTING;

step

floor (1iftl) =
ctlState (1iftl)

dir(liftl) = UP;]
Gargantini & Riccobene - ASMETA - GSSI July 204

check
check
check

0;
= HALTING;

Scenario 2

Description:

m The list is at ground floor (0). An user calls the
elevator from floor 4 and wants to go to floor 2.
She enters the elevator and presses floor 2.

m Check that the elevator performs all the required
action

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 2 in Avalla

scenario 1lift2 s2
load ./1ift2.asm

//setting inizial state

// an external request to floor 4

set existsCallFromTo (4, DOWN) := true;

// 1ift goes to floor 4

step until ctlState(liftl) = HALTING and floor(liftl) = 4;
// request to floor 2

set hasToDeliverAt (1iftl, 2) := true;

step

// must go down to floor 2, down dir

check dir(l1iftl) = DOWN;

// the request at floor 4 is cancelled

check not existsCallFromTo (4, DOWN) ;

// goes to floor 2

step until ctlState(liftl) = HALTING and floor(liftl) = 2;
// request to floor 2 is cancelled

check not hasToDeliverAt (1iftl, 2);

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 3

Description:

= Lift at ground and all the external requests are ON
(up and down).

= The lift goes UP from floor O to the last one (4). All
the requests to go UP are cancelled.

= All the requests to go down are not cancelled

m Richiediamo l'invariante: I'ascensore non cambia
direzione mentre sale: dir (1iftl) !'= DOWN

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenario 3 in Avalla

scenario lift2 s3

load lift.asm

invariant neverDown: dir (l1iftl) != DOWN;

exec //set floor requests (all ext. buttons UP and DOWN pushed)
forall $i in {0..4} do

par
hasToDeliverAt (1iftl, $i) := false
if $i != top then existsCallFromTo ($Si, UP) := true endif
if $i != ground then existsCallFromTo ($Si, DOWN) := true endif
endpar;
//the 1ift goes up to floor 4, then goes down
step until ctlState(liftl) = HALTING and floor (liftl) = 4;

// check that the UP-external requests have been satisfied, while
the DOWN-requests are still pending

check (forall $i in {0..4} with existsCallFromTo ($i, DOWN) = true);
check (forall $i in {0..4} with existsCallFromTo (Si, UP) = false);

Gargantini & Riccobene - ASMETA - GSSI July 2022

Lift scenarios

I
o8 Y

The lift is halted at ground floor,
no request, it should stay

S1 External request at the same 24 7/8
floor (ground) and direction,
internal request for floor 2. The
lift should reach floor 2

S2 External request at floor 4, 22 8/8
enters and ask for floor 2
s3 All external (UP and DOWN) 4 - 1invariant 8/8 ¥

buttons have been pushed. The
lift reaches the top floor and UP
requests are canceled

Gargantini & Riccobene - ASMETA - GSSI July 2022

NEW IDEAS

Gargantini & Riccobene - ASMETA - GSSI
July 2022

Scenarios and refinement

Scenarios can be automatically refined
when a specification is refined
Paolo Arcaini, Elvinia

=
Riccobene,

ﬂ N &> Model Automatic Refinement of

checker ASM Abstract Test Cases
A-MOST workshop 2019

IEEE International
scenario Conference on Software
Testing, Verification and
Validation

A way to check if:
The refinement is correct

It captures the desired behaviors
« Manual checking of scenarios Gargantini & Riccobene - ASMETA - GSSI July 2022

Automatic generation of
scenarios

Using the model
checker and its
capability to generate Q
counter examples,

Several coverage m
criteria

The user can inspect
and validate the
scenarios

Gargantini & Riccobene - ASMETA - GSSI July 2022

Scenarios and traceability (ABZ

2021)

Establish a link
between

requirements and
rules

scenario

Covers r_rql

//RQ1: ...

rule r_rql

The validator links
scenarios and
rules

Gargantini & Riccobene - ASMETA - GSSI July 2022

From scenarios to unit tests for
code

Scenarios can be translated to executable
Unit test code

' " IFIP International Conference on Testing_Software and Systems
Ly ICTSS 2021: Testing Software and Systems pp 65-72 | Cite as

Automatic Test Generation with ASMETA
for the Mechanical Ventilator Milano Controller

Andrea Bombarda, Silvia Bonfanti ™~ & Angelo Gargantini

Conference paper ‘ First Online: 10 May 2022

50 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13045)

Gargantini & Riccobene - ASMETA - GSSI July 2022

Use of scenarios

Regression testing
m Scenario can be executed to check the modifications
do not introduce unintended behaviors
Scenario-driven development?
What about refinement?

Coverage
m Scenario can give a measure of which rules are
covered
When stopping writing scenarios?
Or better use mutation testing?
= Traceability (later)

Link between scenarios and rules is useful trace
requirements to scenarios

Gargantini & Riccobene - ASMETA - GSSI July 2022

Test generation and execution
process

ASM A \(Test Case Generator with| AT Abstract Tests [\ -
Specification ’L Model Checker GT in Avalla Test Optimizer
Y
Test results + [\ NJ Concretized [\ Avalla to Obptimized
Code coverage Test executor < GoogleTest GoogleTest Tests
C code json conf fil

Gargantini & Riccobene - ASMETA - GSSI July 2022

