
Test Execution

Modulo 2.2

Capitolo 17 del libro

Learning objectives

• Appreciate the purpose of test automation
– Factoring repetitive, mechanical tasks from

creative, human design tasks in testing

• Recognize main kinds and components of test
scaffolding

• Understand some key dimensions in test
automation design
– Design for testability: Controllability and

observability

– Degrees of generality in drivers and stubs

– Comparison-based oracles and self-checks

Automating Test Execution

• Designing test cases and test suites is creative

– Like any design activity: A demanding intellectual

activity, requiring human judgment

• Executing test cases should be automatic

– Design once, execute many times

• Test automation separates the creative human

process from the mechanical process of test

execution

Generation: From Test Case
Specifications to Test Cases

• Test design often yields test case specifications,

rather than concrete data

– Ex: “a large positive number”, not 420023

– Ex: “a sorted sequence, length > 2”, not “Alpha,

Beta, Chi, Omega”

• Other details for execution may be omitted

• Generation creates concrete, executable test

cases from test case specifications

Example Tool Chain for Test
Case Generation & Execution

• We could combine ...

– A combinatorial test case generation (ctwdge) to

create test data

• Optional: Constraint-based data generator to “concretize”

individual values, e.g., from “positive integer” to 42

– DDSteps to convert from spreadsheet data to JUnit

test cases

– JUnit to execute concrete test cases

• Many other tool chains are possible ...

– depending on application domain

Photo: (c) Scott Robinson (clearlyambiguous on Flickr) , creative commons attribution license

Scaffolding

• Code produced to

support development

activities (especially

testing)

– Not part of the “product”

as seen by the end user

– May be temporary (like

scaffolding in construction

of buildings

• Includes

– Test harnesses, drivers,

and stubs

Image by Kevin Dooley under Creative Commons license

Scaffolding ...

• Test driver

– A “main” program for running a test

• May be produced before a “real” main program

• Provides more control than the “real” main program

– To driver program under test through test cases

• Test stubs

– Substitute for called functions/methods/objects

• Test harness (imbragatura)

– Substitutes for other parts of the deployed

environment

• Ex: Software simulation of a hardware device

Unit Testing - Esempio

Esempio

foo(int x2, int y2) {

……

gig(x2+2);

……

}

testFoo() {

……

foo(x1+1, y1-1);

// controllo

}

gig(int x3) {

……

}

→ foo: test unit

Metodo da testare

→ testFoo: test driver

Metodo che testa foo

Simula una unità chiamante

→gig: test stub (opzionale)

Simula un metodo chiamato da foo in
modo di isolare il caso di test dal resto
del sistema

Controllability & Observability

GUI input (MVC “Controller”)

Program Functionality

Graphical ouput (MVC “View”)

Example: We want
automated tests, but
interactive input provides
limited control and graphical
output provides limited
observability

Controllability & Observability

GUI input (MVC “Controller”)

Program Functionality

Graphical ouput (MVC “View”)

API

Test driver

Capture wrapper

Log behavior

A design for automated test
includes provides interfaces
for control (API) and
observation (wrapper on
ouput).

Generic or Specific?

• How general should scaffolding be?

– We could build a driver and stubs for each test case

– ... or at least factor out some common code of the

driver and test management (e.g., JUnit)

– ... or further factor out some common support code,

to drive a large number of test cases from data (as

in DDSteps)

– ... or further, generate the data automatically from

a more abstract model (e.g., network traffic model)

• A question of costs and re-use

– Just as for other kinds of software

DDSTEPS

JUnit extension making test cases data driven.

Uses external test data (in Excel, XML etc)

which is injected into your test case using

standard JavaBeans properties. Data enables

and integrates toolkits such as jWebUnit and

DbUnit. 100% JUnit compatible.

Example: FIT test

Fit works by reading tables
in HTML files, produced with
a tool like Microsoft Word.
Each table is interpreted by
a "fixture" that programmers
write. The fixture checks
the examples in the table by
running the actual program.

In this example, the team is
building a product to
calculate employee pay. The
team has worked together to
create a Fit document that
includes some examples of
how hourly pay should be
calculated.

Unit Testing - Esempio

→ foo: test unit

Metodo da testare

→ testFoo: test driver

Metodo che testa foo

Simula una unità chiamante

→gig: test stub (opzionale)

Simula un metodo chiamato da

foo in modo di isolare il caso di

test dal resto del sistema

Esempio

foo(int x2, int y2) {

……

gig(x2+2);

……

}

testFoo() {

……

foo(x1+1, y1-1);

// controllo

}

gig(int x3) {

……

}

Oracles

• Did this test case succeed, or fail?

– No use running 10,000 test cases automatically if the

results must be checked by hand!

• Range of specific to general, again

– ex. JUnit: Specific oracle (“assert”) coded by hand

in each test case

– Typical approach: “comparison-based” oracle with

predicted output value

– Not the only approach!

Comparison-based oracle

• With a comparison-based oracle, we need predicted

output for each input

– Oracle compares actual to predicted output, and reports failure

if they differ

• Fine for a small number of hand-generated test cases

– E.g., for hand-written JUnit test cases

Self-Checking Code as Oracle

• An oracle can also be written as self-checks

– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically

generated test suites, but often only a partial check

– e.g., structural invariants of data structures

– recognize many or most failures, but not all

Oracle examples

Comparison-based

Use assertion as in Junit

assertEquals(5,y)

Self-Checking codes

Use assertion in Java (part of the language)

assert (s != null)

....

Using AssertJ
https://assertj.github.io/doc/
// entry point for all assertThat methods and utility methods (e.g. entry)
import static org.assertj.core.api.Assertions.*;

// basic assertions
assertThat(frodo.getName()).isEqualTo("Frodo");
assertThat(frodo).isNotEqualTo(sauron);

// chaining string specific assertions
assertThat(frodo.getName()).startsWith("Fro").endsWith("do").isEqualToIgnoring
Case("frodo");

// collection specific assertions (there are plenty more)
// in the examples below fellowshipOfTheRing is a List<TolkienCharacter>
assertThat(fellowshipOfTheRing).hasSize(9).contains(frodo,
sam).doesNotContain(sauron);

// as() is used to describe the test and will be shown before the error message
assertThat(frodo.getAge()).as("check %s's age",
frodo.getName()).isEqualTo(33);

https://assertj.github.io/doc/

Capture and Replay

• Sometimes there is no alternative to human

input and observation

– Even if we separate testing program functionality

from GUI, some testing of the GUI is required

• We can at least cut repetition of human testing

• Capture a manually run test case, replay it

automatically

– with a comparison-based test oracle: behavior same

as previously accepted behavior

• reusable only until a program change invalidates it

• lifetime depends on abstraction level of input and output

Esempio

⚫Record and playback any web application. Recording saves

time and helps non-technical users contribute to

automation.

⚫The Sahi Controller helps easily identify and experiment

with elements on any browser.

⚫The same script works on all browsers.

_click(_link("Login"));
_setValue(_textbox("username"), $usr);
_setValue(_password("password"), $pwd);
_click(_submit("Login"));

Esempio con Selenium

⚫Testing automatico di applicazioni web

⚫Usato per capture-replay

⚫Selenium ide come plugin del browser

⚫Gli script sono salvati in un formato testuale

(linguaggio selenese) e possono essere modificati e

reiseguiti

⚫Oppure posso scrivere dei test nei maggiori

linguaggi di programmazione

⚫Usando la libreria Selenium WebDriver

⚫Simula l’uso del browser

1. capture and replay

⚫Demo con firefox

1)Installa plugin

2)Registra

3)Usa il browser

4)Salva lo script

5)rieseguilo

Running selenium

2. scrivere casi di test

- installo chrome e chrome driver (o per il TUO

browser)

–Selenium non riesce a controllare il browser direttamente

- costruisco un progetto java (ad esempio con maven)

–- aggiungo il jar di selenium

- scrivo il caso di test come @Test o come programmi

- metto i comandi per fare azioni nel browser e

controllare che il tutto funzioni

Vedi codice su github progetto + demo

2. scrivere casi di test

- installo chrome e chrome driver (o per il TUO

browser)

–Selenium non riesce a controllare il browser direttamente

- costruisco un progetto java (ad esempio con maven)

–- aggiungo il jar di selenium

- scrivo il caso di test come @Test o come programmi

- metto i comandi per fare azioni nel browser e

controllare che il tutto funzioni

Vedi codice su github progetto + demo

Mocking frameworks

mock objects are simulated objects that mimic

the behavior of real objects in controlled ways

–A programmer typically creates a mock object to

test the behavior of some other object, in much the

same way that a car designer uses a crash test

dummy to simulate the dynamic behavior of a human

in vehicle impacts.

Advantages of using mock objects

⚫when the real object are too difficult to use
–e.g. a database

–Slow, using networks, or other types of
infrastructure

⚫When the real object have non deterministic
behavior

⚫And the test may fail for that

–eg. Time, random …

⚫Before they exist
⚫Not implemented yet

Mock in brief
In your unit tests, you want to test certain functionality (the class under test) in

isolation. Other functionality required to test the class under test, should be

controlled to avoid side-effects.

A mock object is a dummy implementation for an interface or a class. It allows to

define the output of certain method calls. They typically record the interaction

with the system and tests can validate that.

You can create mock objects manually (via code) or use a mock framework to

simulate these classes. Mock frameworks allow you to create mock objects at

runtime and define their behavior.

The classical example for a mock object is a data provider. In production an

implementation to connect to the real data source is used. But for testing a mock

object simulates the data source and ensures that the test conditions are always

the same.

These mock objects can be provided to the class which is tested. Therefore, the

class to be tested should avoid any hard dependency on external data.

Mocking or mock frameworks allows testing the expected interaction with the mock

object. You can, for example, validate that only certain methods have been called

on the mock object.

Using mockito to build stubs

Mockito can be used to “mock” real objects with

simpler version (like DB):

//

LinkedList mockedList = mock(LinkedList.class);

// stubbing appears before the actual execution

when(mockedList.get(0)).thenReturn("first");

// the following prints "first"

System.out.println(mockedList.get(0));

// the following prints "null" because get(999) was not stubbed

System.out.println(mockedList.get(999));

Esempio più complesso

Ho una implementazione incompleta che voglio

testare

Posso creare un oggetto mock e

- specificare cosa fare quando un certo metodo

viene chiamato

- verificare che il metodo venga chiamato

- controllare il risultato

Per applicazioni mobili?

http://appium.io/
Appium is an open source test
automation framework for use
with native, hybrid and mobile
web apps.
It drives iOS, Android, and
Windows apps using the
WebDriver protocol.

http://appium.io/
http://appium.io/docs/en/writing-running-appium/web/hybrid/

Per applicazioni GUISWTBOT

Summary

• Goal: Separate creative task of test design from
mechanical task of test execution
– Enable generation and execution of large test suites

– Re-execute test suites frequently (e.g., nightly or
after each program change)

• Scaffolding: Code to support development and
testing

– Test drivers, stubs, harness, including oracles

– Ranging from individual, hand-written test case
drivers to automatic generation and testing of large
test suites

– Capture/replay where human interaction is required

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Using AssertJ
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Running selenium
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Per applicazioni mobili?
	Slide 34: Per applicazioni GUI
	Slide 35

