Automatic Review of Abstract
State Machines by Meta-
Property Verification

Corso tvsw

Angelo Gargantini
18/19



Outline

1. Foundations: concepts and principles
. Model review and meta-properties

2. Abstract State Machines
3. Meta-Properties of ASMs

 Definition and derivation
* Verification by Model Checking

4. Experiments



1. Validation and Verification

* Validation:
* the systems satisfies or fits the intended usage

e Validation should preceed formal property verification
* Proving properties of wrong models?

* Validation activities include
* Simulation
* |nteractive, random, scenario based ...

* Model review — static analysis
* Similar to static analysis of code like PMD



2. Model review

* “model walk-through” or “model inspection”, is a validation
technique

* Models are critically examined to determine if
* fulfill the intended requirements
* are of sufficient “quality” to be easy to develop, maintain, and enhance.

* Quality assurance process

* allow defects to be detected early in the system development, reducing the
cost of fixing them

 What to check?
» Definition of “properties” of a good model



3. Meta-properties

* Some properties should be true for any model

* Parnas: “reviewers spent too much of their time and energy checking for
simple, application-independent properties which distracted them from the
more difficult, safety-relevant issues.”

* We call these meta-properties
* Meta-property <> quality attribute

* Tools that automatically perform such checks can save reviewers
considerable time and effort, liberating them to do more creative
work



4. Critical systems

 Safety critical systems may need more severe quality requirements
* More severe meta-properties

Example of Criteria:

Models
, Type check
Syntactically correct m

4 N

Semantically correct J _
|| No runtime errors

=

—_

[ Accepted for critical systems
S Satisfy Meta-
\ Properties for Safety
Critical Systems

A. Gargantini - Meta-properties for automatic review of ASMs 6



5. Meta-properties and notation

* Meta-properties definition may be notation depedent
* But most of them refer to general quality attributes

* |n our case:
» ABSTRACT STATE MACHINES (ASM)

* Largely inspired by the work done by Connie Heitmeyer at the NRL
with SCR tabular notation



Rule Firing Condition

* For every rule is possible to statically compute the conditions under
which it will fire:

* Rule Firing Condition (RFC)
RFC: Rules — Conditions

* RFC can be built by visting the model (details on the paper)



RFC — example

main rule R =
if x > 0 then
if v < 0 _then
X:= 5
endif
endif

Rule Firing Condition:

X>0and y <0

A. Gargantini - Meta-properties for automatic review of ASMs



Meta-properties for ASMs



Meta-properties families

* Consistency
locations are never simultaneously updated to different values
(inconsistent updates).

* Completeness
every behavior of the system is explicitly modeled.

* E.g. listing of all the possible conditions in conditional rules
* Minimality
the specification does not contain elements — e.g. transition rules, domain
elements — defined or declared but never used (over specification).



Meta-properties definition

* Two possible schemas for meta-properties:
Always(¢) : ¢ must be true in any reachable state

Sometime(¢) : ¢ must be true in a reachable state



MP1. No inconsistent update is ever
performed

* An inconsistent update occurs when two updates clash, i.e. they refer to
the same location but are distinct

For every rule R1 and R2

Example R

| ] 1:
main rule R = f(ay) = t4
pal" RZ:
1:=1 Inconsisten f(a ) =t
2) =1
1:=2 @ t -
endpar Hpaae RFC(R,) ARFC(R,)
Always N ap =a;

— t1=t2



MP2. Every conditional rule must be
complete

* |n a conditional rule R = if c then Rthen endif, without else, the
condition c must be true if R is evaluated.

* Therefore, in a nested conditional rule, if one does not use the else
branch, the last condition must be true.



MP3. Every rule can eventually fire

Example
main rule R = Never fires
if x > 0 then ¥
if x < 0 then 1:=1
endif
endif

For every rule R in the
model:

Sometime(RFC(R))



MP4. No assignment is always trivial

* An update | :=tis trivial [7] if | is already equal to t, even before the
update is applied. This property requires that each assignment which
is eventually performed, will not be always trivial. Let R = | := tbe an
update rule.

* Property
Sometime(RFC(R)) &> Sometime(RFC(R)Al!= t)



Other meta-properties

MP5 For every domain element e there exists a location which can
take value e

MP6. Every controlled function can take any value in its co-domain
MP7 Every controlled location is updated and every location is read



MP verification

MP definition
schemas
ASM
RFC MP
Model . o AsmetaSMV
computation [> derivation [:>-
Model
Review:
MP

A. Gargantini - Meta-properties for automatic review of ASMs



