
1 Program veri�cation

The methods of the previous chapter are suitable for verifying systems of communicating

processes, where control is the main issue, but there are no complex data. We relied on

the fact that those (abstracted) systems are in a �nite state. These assumptions are not

valid for sequential programs running on a single processor, the topic of this chapter. In

those cases, the programs may manipulate non-trivial data and � once we admit variables

of type integer, list, or tree � we are in the domain of machines with in�nite state space.

In terms of the classi�cation of veri�cation methods given at the beginning of the last

chapter, the methods of this chapter are

Proof-based. We do not exhaustively check every state that the system can get in to,

as one does with model checking; this would be impossible, given that program

variables can have in�nitely many interacting valu es. Instead, we construct a

proof that the system satis�es the property at hand, using a proof calculus. This

is analogous to the situation in Chapter 2, where using a suitable proof calculus

avoided the problem of having to check in�nitely many models of a set of predicate

logic formulas in order to establish the validity of a sequent.

Semi-automatic. Although many of the steps involved in proving that a program satis�es

its speci�cation are mechanical, there are some steps that involve some intelligence

and that cannot be carried out algorithmically by a computer. As we will see,

there are often good heuristics to help the programmer complete these tasks. This

contrasts with the situation of the last chapter, which was fully automatic.

Property-oriented. Just like in the previous chapter, we verify properties of a program

rather than a full speci�cation of its behaviour

Application domain. The domain of application in this chapter is sequential transforma-

tional programs. `Sequential' means that we assume the program runs on a single

processor and that there are no concurrency issues. `Transformational' means that

the program takes an input and, after some computation, is expected to terminate

with an output. Fo r example, methods of objects in Java are often programmed

in this style. This contrasts with the previous chapter which focuses on reactive

systems that are not intended to terminate and that react continually with their

environment.

Pre/post-development. The techniques of this chapter should be used during the coding

process for small fragments of program that perform an identi�able (and hence,

speci�able) task and hence should be used during the development process in order

to avoid functional bugs.

1



1 Program veri�cation

1.1 Why should we specify and verify code?

The task of specifying and verifying code is often perceived as an unwelcome addition to

the programmer's job and a dispensable one. Arguments in favour of veri�cation include

the following:

Documentation: The speci�cation of a program is an important component in its doc-

umentation and the process of documenting a program may raise or resolve impor-

tant issues. The logical structure of the formal speci�cation, written as a formula

in a suitable logic, typically serves as a guiding principle in trying to write an

implementation in which it holds.

Time-to-market: Debugging big systems during the testing phase is costly and time-

consuming and local `�xes' often introduce new bugs at other places. Experience

has shown that verifying programs with respect to formal speci�cations can signif-

icantly cut down the duration of software development and maintenance by elim-

inating most errors in the planning phase and helping in the clari�cation of the

roles and structural aspects of system components.

Refactoring: Properly speci�ed and veri�ed software is easier to reuse, since we have a

clear speci�cation of what it is meant to do.

Certi�cation audits: Safety-critical computer systems � such as the control of cooling

systems in nuclear power stations, or cockpits of modern aircrafts � demand that

their software be speci�ed and veri�ed with as much rigour and formality as pos-

sible. Other programs may be commercially critical, such as accountancy software

used by banks, and they should be delivered with a warranty: a guarantee for

correct performance within proper use. The proof that a program meets its speci-

�cations is indeed such a warranty.

The degree to which the software industry accepts the bene�ts of proper veri�cation of

code depends on the perceived extra cost of producing it and the perceived bene�ts of

having it. As veri�cation technology improves, the costs are declining; and as the com-

plexity of software and the extent to which society depends on it increase, the bene�ts

are becoming more important. Thus, we can expect that the importance of veri�cation

to industry will continue to increase over the next decades. Microsoft's emergent tech-

nology A# combines program veri�cation, testing, and model-checking techniques in an

integrated in-house development environment. Currently, many companies struggle with

a legacy of ancient code with- out proper documentation which has to be adapted to new

hardware and network environments, as well as ever-changing requirements. Often, the

original programmers who might still remember what certain pieces of code are for have

moved, or died. Software systems now often have a longer life-expectancy than humans,

which necessitates a durable, transparent and po rtable design and implementation pro-

cess; the year-2000 problem was just one such example. Software veri�cation provides

some of this.

2


