
1 A Framework for Test and Analysis

The purpose of software test and analysis is either to assess software qualities or else
to make it possible to improve the software by �nding defects. Of the many kinds of
software qualities, those addressed by the analysis and test techniques discussed in this
book are the dependability properties of the software product.
There are no perfect test or analysis techniques, nor a single "best" technique for all

circumstances. Rather, techniques exist in a complex space of trade-o�s, and often have
complementary strengths and weaknesses. This chapter describes the nature of those
trade-o�s and some of their consequences, and thereby a conceptual frame-work for un-
derstanding and better integrating material from later chapters on individual techniques.
It is unfortunate that much of the available literature treats testing and analysis as

independent or even as exclusive choices, removing the opportunity to exploit their com-
plementarities. Armed with a basic understanding of the trade-o�s and of strengths and
weaknesses of individual techniques, one can select from and combine an array of choices
to improve the cost-e�ectiveness of veri�cation.

1.1 Validation and Veri�cation

While software products and processes may be judged on several properties ranging from
time-to-market to performance to usability, the software test and analysis techniques we
consider are focused more narrowly on improving or assessing dependability.
Assessing the degree to which a software system actually ful�lls its requirements, in the

sense of meeting the user's real needs, is called validation. Ful�lling requirements is not
the same as conforming to a requirements speci�cation. A speci�cation is a statement
about a particular proposed solution to a problem, and that proposed solution may or
may not achieve its goals. Moreover, speci�cations are written by people, and therefore
contain mistakes. A system that meets its actual goals is useful, while a system that is
consistent with its speci�cation is dependable.1

"Veri�cation" is checking the consistency of an implementation with a speci�cation.
Here, "speci�cation" and "implementation" are roles, not particular artifacts. For exam-
ple, an overall design could play the role of "speci�cation" and a more detailed design
could play the role of "implementation"; checking whether the detailed design is consis-
tent with the overall design would then be veri�cation of the detailed design. Later, the

1A good requirements document, or set of documents, should include both a requirements analysis

and a requirements speci�cation, and should clearly distinguish between the two. The requirements

analysis describes the problem. The speci�cation describes a proposed solution. This is not a book

about requirements engineering, but we note in passing that confounding requirements analysis with

requirements speci�cation will inevitably have negative impacts on both validation and veri�cation.

1

1 A Framework for Test and Analysis

User needs
(actual requirements)

SW
specifications

system

VALIDATION

Includes
usability testing,
user feedback

VERIFICATION

Includes testing,
inspections,
static analysis

Figure 1.1: Validation and veri�cation in brief

same detailed design could play the role of "speci�cation" with respect to source code,
which would be veri�ed against the design. In every case, though, veri�cation is a check
of consistency between two descriptions, in contrast to validation which compares a de-
scription (whether a requirements speci�cation, a design, or a running system) against
actual needs.

Standard de�nitions

Validation & Veri�cation - standard de�nitions

IEEE standard in its 4th edition de�nes the two terms as follows:

Validation. The assurance that a product, service, or system meets the needs of the cus-
tomer and other identi�ed stakeholders. It often involves acceptance and suitability
with external customers. Contrast with veri�cation.

Veri�cation. The evaluation of whether or not a product, service, or system complies
with a regulation, requirement, speci�cation, or imposed condition. It is often an
internal process. Contrast with validation.

ISO 9001 standard de�nes them this way :

Veri�cation is the conformation that a product meets identi�ed speci�cations.

Validation is the conformation that a product appropriately meets its design function
or the intended use.

Validation & Veri�cation - standard de�nitions

Capability Maturity Model (CMMI-SW v1.1):

Software Veri�cation: The process of evaluating software to determine whether the
products of a given development phase satisfy the conditions imposed at the start
of that phase.

2

1 A Framework for Test and Analysis

Figure 1.2: Validation activities check work products against actual user requirements,
while veri�cation activities check consistency of work products.

Software Validation: The process of evaluating software during or at the end of the
development process to determine whether it satis�es speci�ed requirements.

Boehm succinctly expressed the di�erence between:

Software Veri�cation: Are we building the product right?

Software Validation: Are we building the right product?

Figure 1.2 sketches the relation of veri�cation and validation activities with respect
to artifacts produced in a software development project. The �gure should not be inter-
preted as prescribing a sequential process, since the goal of a consistent set of artifacts
and user satisfaction are the same whether the software artifacts (speci�cations, design,
code, etc.) are developed sequentially, iteratively, or in parallel. Veri�cation activities
check consistency between descriptions (design and speci�cations) at adjacent levels of
detail, and between these descriptions and code. 2 Validation activities attempt to gauge
whether the system actually satis�es its intended purpose.
Validation activities refer primarily to the overall system speci�cation and the �nal

code. With respect to overall system speci�cation, validation checks for discrepancies
between actual needs and the system speci�cation as laid out by the analysts, to ensure
that the speci�cation is an adequate guide to building a product that will ful�ll its goals.
With respect to �nal code, validation aims at checking discrepancies between actual
need and the �nal product, to reveal possible failures of the development process and

2This part of the diagram is a variant of the well-known "V model" of veri�cation and validation.

3

1 A Framework for Test and Analysis

to make sure the product meets end-user expectations. Validation checks between the
speci�cation and �nal product are primarily checks of decisions that were left open in the
speci�cation (e.g., details of the user interface or product features). Chapter 4 provides
a more thorough discussion of validation and veri�cation activities in particular software
process models.
We have omitted one important set of veri�cation checks from Figure 2.1 to avoid

clutter. In addition to checks that compare two or more artifacts, veri�cation includes
checks for self-consistency and well-formedness. For example, while we cannot judge that
a program is "correct" except in reference to a speci�cation of what it should do, we can
certainly determine that some programs are "incorrect" because they are ill-formed. We
may likewise determine that a speci�cation itself is ill-formed because it is inconsistent
(requires two properties that cannot both be true) or ambiguous (can be interpreted to
require some property or not), or because it does not satisfy some other well-formedness
constraint that we impose, such as adherence to a standard imposed by a regulatory
agency.
Validation against actual requirements necessarily involves human judgment and the

potential for ambiguity, misunderstanding, and disagreement. In contrast, a speci�cation
should be su�ciently precise and unambiguous that there can be no disagreement about
whether a particular system behavior is acceptable. While the term testing is often used
informally both for gauging usefulness and verifying the product, the activities di�er
in both goals and approach. Our focus here is primarily on dependability, and thus
primarily on veri�cation rather than validation, although techniques for validation and
the relation between the two is discussed further in Chapter 22.
Dependability properties include correctness, reliability, robustness, and safety. Cor-

rectness is absolute consistency with a speci�cation, always and in all circumstances.
Correctness with respect to nontrivial speci�cations is almost never achieved. Reliability
is a statistical approximation to correctness, expressed as the likelihood of correct be-
havior in expected use. Robustness, unlike correctness and reliability, weighs properties
as more and less critical, and distinguishes which properties should be maintained even
under exceptional circumstances in which full functionality cannot be maintained. Safety
is a kind of robustness in which the critical property to be maintained is avoidance of par-
ticular hazardous behaviors. Dependability properties are discussed further in Chapter
4.

1.2 Degrees of Freedom

Given a precise speci�cation and a program, it seems that one ought to be able to
arrive at some logically sound argument or proof that a program satis�es the speci�ed
properties. After all, if a civil engineer can perform mathematical calculations to show
that a bridge will carry a speci�ed amount of tra�c, shouldn't we be able to similarly
apply mathematical logic to veri�cation of programs?
For some properties and some very simple programs, it is in fact possible to obtain a

logical correctness argument, albeit at high cost. In a few domains, logical correctness

4

1 A Framework for Test and Analysis

arguments may even be cost-e�ective for a few isolated, critical components (e.g., a safety
interlock in a medical device). In general, though, one cannot produce a complete logical
"proof" for the full speci�cation of practical programs in full detail. This is not just a
sign that technology for veri�cation is immature. It is, rather, a consequence of one of
the most fundamental properties of computation.
Even before programmable digital computers were in wide use, computing pioneer

Alan Turing proved that some problems cannot be solved by any computer program.
The universality of computers - their ability to carry out any programmed algorithm,
including simulations of other computers - induces logical paradoxes regarding programs
(or algorithms) for analyzing other programs. In particular, logical contradictions ensue
from assuming that there is some program P that can, for some arbitrary program Q
and input I, determine whether Q eventually halts. To avoid those logical contradictions,
we must conclude that no such program for solving the "halting problem" can possibly
exist.
Countless university students have encountered the halting problem in a course on the

theory of computing, and most of those who have managed to grasp it at all have viewed
it as a purely theoretical result that, whether fascinating or just weird, is irrelevant to
practical matters of programming. They have been wrong. Almost every interesting
property regarding the behavior of computer programs can be shown to "embed" the
halting problem, that is, the existence of an infallible algorithmic check for the property
of interest would imply the existence of a program that solves the halting problem, which
we know to be impossible.
In theory, undecidability of a property S merely implies that for each veri�cation

technique for checking S, there is at least one "pathological" program for which that
technique cannot obtain a correct answer in �nite time. It does not imply that veri�cation
will always fail or even that it will usually fail, only that it will fail in at least one case. In
practice, failure is not only possible but common, and we are forced to accept a signi�cant
degree of inaccuracy.
Program testing is a veri�cation technique and is as vulnerable to undecidability as

other techniques. Exhaustive testing, that is, executing and checking every possible
behavior of a program, would be a "proof by cases," which is a perfectly legitimate way
to construct a logical proof. How long would this take? If we ignore implementation
details such as the size of the memory holding a program and its data, the answer is
"forever." That is, for most programs, exhaustive testing cannot be completed in any
�nite amount of time.
Suppose we do make use of the fact that programs are executed on real machines with

�nite representations of memory values. Consider the following trivial Java class:

class Tr i v i a l {
stat ic int sum(int a , int b) {

return a+b ;
}

}

5

1 A Framework for Test and Analysis

Figure 1.3: Veri�cation trade-o� dimensions

The Java language de�nition states that the representation of an int is 32 binary digits,
and thus there are only 232 Ö 232 = 264 ≈ 1021 di�erent inputs on which the method
Trivial.sum() need be tested to obtain a proof of its correctness. At one nanosecond
(10−9 seconds) per test case, this will take approximately 1012 seconds, or about 30,000
years.
A technique for verifying a property can be inaccurate in one of two directions (Figure

1.3). It may be pessimistic, meaning that it is not guaranteed to accept a program even
if the program does possess the property being analyzed, or it can be optimistic if it
may accept some programs that do not possess the property (i.e., it may not detect all
violations). Testing is the classic optimistic technique, because no �nite number of tests
can guarantee correctness. Many automated program analysis techniques for properties
of program behaviors[3] are pessimistic with respect to the properties they are designed
to verify. Some analysis techniques may give a third possible answer, "don't know." We
can consider these techniques to be either optimistic or pessimistic depending on how
we interpret the "don't know" result. Perfection is unobtainable, but one can choose

6

1 A Framework for Test and Analysis

techniques that err in only a particular direction. A software veri�cation technique that
errs only in the pessimistic direction is called a conservative analysis. It might seem
that a conservative analysis would always be preferable to one that could accept a faulty
program. However, a conservative analysis will often produce a very large number of
spurious error reports, in addition to a few accurate reports. A human may, with some
e�ort, distinguish real faults from a few spurious reports, but cannot cope e�ectively with
a long list of purported faults of which most are false alarms. Often only a careful choice
of complementary optimistic and pessimistic techniques can help in mutually reducing
the di�erent problems of the techniques and produce acceptable results.
In addition to pessimistic and optimistic inaccuracy, a third dimension of compromise

is possible: substituting a property that is more easily checked, or constraining the class
of programs that can be checked. Suppose we want to verify a property S, but we are
not willing to accept the optimistic inaccuracy of testing for S, and the only available
static analysis techniques for S result in such huge numbers of spurious error messages
that they are worthless. Suppose we know some property S´ that is a su�cient, but
not necessary, condition for S (i.e., the validity of S´ implies S, but not the contrary).
Maybe S´ is so much simpler than S that it can be analyzed with little or no pessimistic
inaccuracy. If we check S´ rather than S, then we may be able to provide precise error
messages that describe a real violation of S´ rather than a potential violation of S.
Many examples of substituting simple, checkable properties for actual properties of

interest can be found in the designof modern programming languages. Consider, for
example, the property that each variable should be initialized with a value before its
value is used in an expression. In the C language, a compiler cannot provide a precise
static check for this property, because of the possibility of code like the following:

1 int i , sum ;
2 int f i r s t =1;
3 for (i =0; i <10; ++i) {
4 i f (f i r s t) {
5 sum=0; f i r s t =0;
6 }
7 sum += i ;
8 }

It is impossible in general to determine whether each control �ow path can be executed,
and while a human will quickly recognize that the variable sum is initialized on the �rst
iteration of the loop, a compiler or other static analysis tool will typically not be able to
rule out an execution in which the initialization is skipped on the �rst iteration. Java
neatly solves this problem by making code like this illegal; that is, the rule is that a
variable must be initialized on all program control paths, whether or not those paths can
ever be executed.

7

1 A Framework for Test and Analysis

'

&

$

%

A Note on Terminology

Many di�erent terms related to pessimistic and optimistic inaccuracy appear
in the literature on program analysis. We have chosen these particular terms
because it is fairly easy to remember which is which. Other terms a reader is
likely to encounter include:

Safe A safe analysis has no optimistic inaccuracy; that is, it accepts only correct
programs. In other kinds of program analysis, safety is related to the
goal of the analysis. For example, a safe analysis related to a program
optimization is one that allows that optimization only when the result of
the optimization will be correct.

Sound Soundness is a term to describe evaluation of formulas. An analysis of a
program P with respect to a formula F is sound if the analysis returns True
only when the program actually does satisfy the formula. If satisfaction of
a formula F is taken as an indication of correctness, then a sound analysis
is the same as a safe or conservative analysis. If the sense of F is reversed
(i.e., if the truth of F indicates a fault rather than correctness) then a
sound analysis is not necessarily conservative. In that case it is allowed
optimistic inaccuracy but must not have pessimistic inaccuracy. (Note,
however, that use of the term sound has not always been consistent in the
software engineering literature. Some writers use the term unsound as we
use the term optimistic.)

Complete Completeness, like soundness, is a term to describe evaluation of for-
mulas. An analysis of a program P with respect to a formula F is complete
if the analysis always returns True when the program actually does satisfy
the formula. If satisfaction of a formula F is taken as an indication of
correctness, then a complete analysis is one that admits only optimistic
inaccuracy. An analysis that is sound but incomplete is a conservative
analysis.

Software developers are seldom at liberty to design new restrictions into the program-
ming languages and compilers they use, but the same principle can be applied through
external tools, not only for programs but also for other software artifacts. Consider, for
example, the following condition that we might wish to impose on requirements docu-
ments:

1. Each signi�cant domain term shall appear with a de�nition in the glossary of the
document.

This property is nearly impossible to check automatically, since determining whether a
particular word or phrase is a "signi�cant domain term" is a matter of human judgment.
Moreover, human inspection of the requirements document to check this requirement will
be extremely tedious and error-prone. What can we do? One approach is to separate the

8

1 A Framework for Test and Analysis

decision that requires human judgment (identifying words and phrases as "signi�cant")
from the tedious check for presence in the glossary.

1. 1.a Each signi�cant domain term shall be set o� in the requirements document by
the use of a standard style term. The default visual representation of the term
style is a single underline in printed documents and purple text in on-line displays.

2. 1.b Each word or phrase in the term style shall appear with a de�nition in the
glossary of the document.

Property (1a) still requires human judgment, but it is now in a form that is much more
amenable to inspection. Property (1b) can be easily automated in a way that will be
completely precise (except that the task of determining whether de�nitions appearing in
the glossary are clear and correct must also be left to humans).
As a second example, consider a Web-based service in which user sessions need not

directly interact, but they do read and modify a shared collection of data on the server.
In this case a critical property is maintaining integrity of the shared data. Testing for
this property is notoriously di�cult, because a "race condition" (interference between
writing data in one process and reading or writing related data in another process) may
cause an observable failure only very rarely.
Fortunately, there is a rich body of applicable research results on concurrency control

that can be exploited for this application. It would be foolish to rely primarily on direct
testing for the desired integrity properties. Instead, one would choose a (well- known,
formally veri�ed) concurrency control protocol, such as the two-phase locking protocol,
and rely on some combination of static analysis and program testing to check confor-
mance to that protocol. Imposing a particular concurrency control protocol substitutes
a much simpler, su�cient property (two-phase locking) for the complex property of in-
terest (serializability), at some cost in generality; that is, there are programs that violate
two-phase locking and yet, by design or dumb luck, satisfy serializability of data access.
It is a common practice to further impose a global order on lock accesses, which again

simpli�es testing and analysis. Testing would identify execution sequences in which data
is accessed without proper locks, or in which locks are obtained and relinquished in an
order that does not respect the two-phase protocol or the global lock order, even if data
integrity is not violated on that particular execution, because the locking protocol failure
indicates the potential for a dangerous race condition in some other execution that might
occur only rarely or under extreme load.
With the adoption of coding conventions that make locking and unlocking actions

easy to recognize, it may be possible to rely primarily on �ow analysis to determine
conformance with the locking protocol, with the role of dynamic testing reduced to a
"back-up" to raise con�dence in the soundness of the static analysis. Note that the
critical decision to impose a particular locking protocol is not a post-hoc decision that
can be made in a testing "phase" at the end of development. Rather, the plan for
veri�cation activities with a suitable balance of cost and assurance is part of system
design.

9

1 A Framework for Test and Analysis

[3]Why do we bother to say "properties of program behaviors" rather than "program
properties?" Because simple syntactic properties of program text, such as declaring vari-
ables before they are used or indenting properly, can be decided e�ciently and precisely.

1.3 Varieties of Software

The software testing and analysis techniques presented in the main parts of this book were
developed primarily for procedural and object-oriented software. While these "generic"
techniques are at least partly applicable to most varieties of software, particular appli-
cation domains (e.g., real-time and safety-critical software) and construction methods
(e.g., concurrency and physical distribution, graphical user interfaces) call for particular
properties to be veri�ed, or the relative importance of di�erent properties, as well as
imposing constraints on applicable techniques. Typically a software system does not fall
neatly into one category but rather has a number of relevant characteristics that must
be considered when planning veri�cation.
As an example, consider a physically distributed (networked) system for scheduling

a group of individuals. The possibility of concurrent activity introduces considerations
that would not be present in a single-threaded system, such as preserving the integrity
of data. The concurrency is likely to introduce nondeterminism, or else introduce an
obligation to show that the system is deterministic, either of which will almost certainly
need to be addressed through some formal analysis. The physical distribution may make
it impossible to determine a global system state at one instant, ruling out some simplistic
approaches to system test and, most likely, suggesting an approach in which dynamic
testing of design conformance of individual processes is combined with static analysis of
their interactions. If in addition the individuals to be coordinated are �re trucks, then
the criticality of assuring prompt response will likely lead one to choose a design that
is amenable to strong analysis of worst-case behavior, whereas an average- case analysis
might be perfectly acceptable if the individuals are house painters.
As a second example, consider the software controlling a "soft" dashboard display in

an automobile. The display may include ground speed, engine speed (rpm), oil pressure,
fuel level, and so on, in addition to a map and navigation information from a global
positioning system receiver. Clearly usability issues are paramount, and may even im-
pinge on safety (e.g., if critical information can be hidden beneath or among less critical
information). A disciplined approach will not only place a greater emphasis on validation
of usability throughout development, but to the extent possible will also attempt to cod-
ify usability guidelines in a form that permits veri�cation. For example, if the usability
group determines that the fuel gauge should always be visible when the fuel level is below
a quarter of a tank, then this becomes a speci�ed property that is subject to veri�cation.
The graphical interface also poses a challenge in e�ectively checking output. This must
be addressed partly in the architectural design of the system, which can make automated
testing feasible or not depending on the interfaces between high-level operations (e.g.,
opening or closing a window, checking visibility of a window) and low-level graphical
operations and representations.

10

1 A Framework for Test and Analysis

Summary

Veri�cation activities are comparisons to determine the consistency of two or more soft-
ware artifacts, or self-consistency, or consistency with an externally imposed criterion.
Veri�cation is distinct from validation, which is consideration of whether software ful�lls
its actual purpose. Software development always includes some validation and some ver-
i�cation, although di�erent development approaches may di�er greatly in their relative
emphasis.
Precise answers to veri�cation questions are sometimes di�cult or impossible to obtain,

in theory as well as in practice. Veri�cation is therefore an art of compromise, accepting
some degree of optimistic inaccuracy (as in testing) or pessimistic inaccuracy (as in many
static analysis techniques) or choosing to check a property that is only an approximation
of what we really wish to check. Often the best approach will not be exclusive reliance on
one technique, but careful choice of a portfolio of test and analysis techniques selected to
obtain acceptable results at acceptable cost, and addressing particular challenges posed
by characteristics of the application domain or software.

Further Reading

The "V" model of veri�cation and validation (of which Figure 2.1 is a variant) appears
in many software engineering textbooks, and in some form can be traced at least as far
back as Myers' classic book [Mye79]. The distinction between validation and veri�cation
as given here follow's Boehm [Boe81], who has most memorably described validation as
"building the right system" and veri�cation as "building the system right."
The limits of testing have likewise been summarized in a famous aphorism, by Dijkstra

[Dij72] who pronounced that "Testing can show the presence of faults, but not their
absence." This phrase has sometimes been interpreted as implying that one should always
prefer formal veri�cation to testing, but the reader will have noted that we do not draw
that conclusion. Howden's 1976 paper [How76] is among the earliest treatments of the
implications of computability theory for program testing.
A variant of the diagram in Figure 2.2 and a discussion of pessimistic and optimistic

inaccuracy were presented by Young and Taylor [YT89]. A more formal characteriza-
tion of conservative abstractions in static analysis, called abstract interpretation, was
introduced by Cousot and Cousot in a seminal paper that is, unfortunately, nearly un-
readable [CC77]. We enthusiastically recommend Jones's lucid introduction to abstract
interpretation [JN95], which is suitable for readers who have a �rm general background
in computer science and logic but no special preparation in programming semantics.
There are few general treatments of trade-o�s and combinations of software testing

and static analysis, although there are several speci�c examples, such as work in com-
munication protocol conformance testing [vBDZ89, FvBK+91]. The two-phase locking
protocol mentioned in Section 2.2 is described in several texts on databases; Bernstein
et al. [BHG87] is particularly thorough.

11

1 A Framework for Test and Analysis

Exercises

2.1 The Chipmunk marketing division is worried about the start-up time of the new
version of the RodentOS operating system (an (imaginary) operating system of Chip-
munk). The marketing division representative suggests a software requirement stating
that the start-up time shall not be annoying to users.
Explain why this simple requirement is not veri�able and try to reformulate the re-

quirement to make it veri�able.

2.2 Consider a simple speci�cation language SL that describes systems diagrammat-
ically in terms of functions, which represent data transformations and correspond to
nodes of the diagram, and �ows, which represent data �ows and correspond to arcs of
the diagram.[4] Diagrams can be hierarchically re�ned by associating a function F (a
node of the diagram) with an SL speci�cation that details function F. Flows are labeled
to indicate the type of data.
Suggest some checks for self-consistency for SL.

2.3 A calendar program should provide timely reminders; for example, it should remind
the user of an upcoming event early enough for the user to take action, but not too early.
Unfortunately, "early enough" and "too early" are qualities that can only be validated
with actual users. How might you derive veri�able dependability properties from the
timeliness requirement?

2.4 It is sometimes important in multi-threaded applications to ensure that a sequence
of accesses by one thread to an aggregate data structure (e.g., some kind of table) appears
to other threads as an atomic transaction. When the shared data structure is maintained
by a database system, the database system typically uses concurrency control protocols
to ensure the atomicity of the transactions it manages. No such automatic support is
typically available for data structures maintained by a program in main memory.
Among the options available to programmers to ensure serializability (the illusion of

atomic access) are the following:
The programmer could maintain very coarse-grain locking, preventing any interleaving

of accesses to the shared data structure, even when such interleaving would be harmless.
(For example, each transaction could be encapsulated in an single synchronized Java
method.) This approach can cause a great deal of unnecessary blocking between threads,
hurting performance, but it is almost trivial to verify either automatically or manually.
Automated static analysis techniques can sometimes verify serializability with �ner-

grain locking, even when some methods do not use locks at all. This approach can still
reject some sets of methods that would ensure serializability.
The programmer could be required to use a particular concurrency control protocol

in his or her code, and we could build a static analysis tool that checks for conformance
with that protocol. For example, adherence to the common two-phase-locking protocol,
with a few restrictions, can be checked in this way.

12

1 A Framework for Test and Analysis

We might augment the data accesses to build a serializability graph structure repre-
senting the "happens before" relation among transactions in testing. It can be shown
that the transactions executed in serializable manner if and only if the serializability
graph is acyclic.
Compare the relative positions of these approaches on the three axes of veri�cation

techniques: pessimistic inaccuracy, optimistic inaccuracy, and simpli�ed properties.

2.5 When updating a program (e.g., for removing a fault, changing or adding a func-
tionality), programmers may introduce new faults or expose previously hidden faults. To
be sure that the updated version maintains the functionality provided by the previous
version, it is common practice to reexecute the test cases designed for the former versions
of the program. Reexecuting test cases designed for previous versions is called regression
testing.
When testing large complex programs, the number of regression test cases may be

large. If updated software must be expedited (e.g., to repair a security vulnerability
before it is exploited), test designers may need to select a subset of regression test cases
to be reexecuted.
Subsets of test cases can be selected according to any of several di�erent criteria.

An interesting property of some regression test selection criteria is that they do not to
exclude any test case that could possibly reveal a fault.
How would you classify such a property according to the sidebar of page 21?
[4]Readers expert in Structured Analysis may have noticed that SL resembles a simple

Structured Analysis speci�cation

13

