
1 Making tests executable

This chapter deals with the practical issues of how to take a suite of abstract tests,
generated from an abstract model, and make them executable on the real SUT. This
concretization phase is an important part of the model-based testing process, and it can
take a signi�cant amount of e�ort. In some applications of model-based testing, the
amount of time spent on concretization can be the same as the time spent on modeling;
in other applications concretization is less time-consuming (for example, between 25 and
45 percent of the modeling time in the case studies in Section 2.6.3). Section 8.1 discusses
the challenges that can arise, gives an overview of the various approaches, and brie�y
discusses some examples. Section 8.2 gives an extended example of how these approaches
work. It shows how the test suite generated for the eTheater case study in Section 7.2
can be trans- formed into executable test scripts, written in the Ruby scripting language,
and executed on an implementation of the eTheater system.

1.1 Principles of test adaptation

Having used model-based testing to generate a nice test suite, we almost always want
to automate the execution of that test suite. The Qui-Donc example in Chapter 5 was
one exception to this, where we decided it was better to execute the generated tests
manually because the test execution involved interacting with a telephone system with
voice output. But in most cases, we want to automate the execution of the generated
tests so that our whole test process is automated and so that we can execute more tests,
execute tests more often for regression testing, reduce our test execution costs, reduce
the overall testing time, and so on. The problem that we face in trying to execute tests
generated from a model is that the generated tests are highly abstract, just like the
model, so they usually do not contain enough concrete detail to be directly executable.
In other words, the API of the model does not exactly match the API of the SUT. Recall
from Section 3.1 some of the kinds of abstraction that are commonly used when designing
a model for testing purposes:

Common abstractions

• Model only one aspect of the SUT, not all its behavior.

• Omit inputs and outputs that are not relevant to the test goals.

• Take a simpli�ed view of complex data values, such as enumerating a few typical
values.

1

1 Making tests executable

• Assume that the SUT has already been initialized to match a particular testing
scenario.

• De�ne a single model operation that corresponds to a sequence of SUT operations,
or to just one part of an SUT operation.

One important dimension of testing is whether to do online or o�ine testing.

Online vs o�ine testing

Online testing is where tests are executed as they are generated, so the model-based
testing tool is tightly coupled to the SUT.

O�ine testing decouples the generation and execution phases, so the test execution can
be completely inde- pendent of the model-based test generation process. This book
contains several examples of each of these. Online testing is

To execute the generated tests, we must �rst initialize the SUT so that it is ready for
our test suite, add the missing details into the tests, and �x any mismatches between
the API of the model and the SUT so that our tests can connect to the SUT interface.
We also have to manage the relationships among abstract values in the model and real-
world values or objects in the SUT. This requires expanding the abstract model values
into more complex concrete values that can be used as SUT inputs. For example, an
enumerated constant in the model might have to be expanded into a complex data value
such as a record that contains several �elds. To be able to check SUT outputs against
the model, we must either transform the expected outputs from the model into concrete
values or get concrete outputs from the SUT and transform them back into abstract
values so that we can check them against the model. If the model is deterministic, we
can use either approach; but if it is nondeterministic, then the latter approach is better.
If the SUT creates new objects during the testing process, it is often necessary to keep
track of the identity of those objects, not just their values. This requires maintaining
a mapping table from the abstract objects in the model to the corresponding concrete
objects that have been created by the SUT. Each time the model creates a new abstract
value A, the SUT performs the corresponding operation and creates a concrete object
C; then we add the pair (A, C) into the mapping table so that future uses of A in the
model can be translated into uses of C in the SUT. These techniques are all examples
of the di�erence in abstraction levels between the model and the SUT. Figure 8.1 shows
the main approaches to bridging this abstraction gap.

• The adaptation approach, (a), is to manually write some adapter code that bridges
the gap. This is essentially a wrapper around the SUT that provides a more abstract
view of the SUT to match the abstraction level of the model.

• The transformation approach, (b), is to transform the abstract tests into concrete
test scripts.

2

1 Making tests executable

Figure 1.1: Figure 8.1 Three approaches to bridging the semantic gap between abstract
tests and the concrete SUT.

• The mixed approach, (c), is a combination of the other two approaches. It is
sometimes useful to add some adapter code around the SUT to raise its abstraction
level part of the way toward the model and make testing easier, and then transform
the abstract tests into a more concrete form that matches the adapter interface.
Some bene�ts of this mixed approach are that the transformation can be easier,
since the levels of abstraction are closer, and the adapter can be less model-speci�c,
which may allow it to be reused for several di�erent models or di�erent testing
scenarios.

We explore the adaptation and transformation alternatives more in the next two sub-
sections and then discuss which approach is best for each kind of application. As an
analogy, the transformation approach is like compiling the abstract tests down into some
lower-level language, while the adaptation approach is like interpreting the abstract test
sequences. The mixed approach is like a bytecode system, which compiles the input
language down to byte- codes, and then interprets those bytecodes.

1.1.1 The Adaptation Approach

The adaptation approach involves writing some adapter code that wraps around the SUT,
manages the low-level details of interacting with the SUT, and presents a more abstract
view of the SUT to the model. Essentially, this adapter code acts as an interpreter for
the abstract operation calls of the model, executing them with the help of the SUT. More
speci�cally, the adapter code is responsible for the following tasks:

Adaptation

Setup: Set up the SUT so that it is ready for testing. This involves con�guring and
initializing the SUT so that it re�ects the test scenario assumed by the model.

3

1 Making tests executable

Concretization: Translate each model-level abstract operation call and its abstract input
values into one or more concrete SUT calls with and its the appropriate input values.

Abstraction: Obtain the SUT results from those concrete calls, and translate them back
into abstract values, and then pass them back to the model for comparison with
the expected results in order to produce the test verdict.

Teardown: Shut down the SUT at the end of each test sequence or at the end of each
batch of tests.

There are many possible architectures for connecting the model-based testing tool,
the adapter, and the SUT. Most of the test harness architectures invented over the last
decades for automating the execution of manually designed tests can be applied to model-
based testing as well. Earlier in this book, we discussed two examples of the adaptation
approach that nicely illustrate some typical solutions.

1.1.2 The Transformation Approach

The transformation approach involves transforming each abstract test into an executable
test script. The resulting test scripts are typically in one of the following notations:

• A standard programming language, such as Java or C

• A scripting language, such as TCL, JavaScript, or VBScript

• A standard test notation, such as TTCN-3 [WDT+ 05]

• A proprietary test notation, such as the TSL (Test Script Language) of Mercury
WinRunner or some company-speci�c test notation

The transformation process may be performed by a single-purpose translation program
that always produces output in a particular language or by a more generic engine that is
capable of transforming abstract tests into several languages because it is parameterized
by various templates and mappings for each output language. For example, we might
de�ne a TCL template for each abstract operation, which contains the TCL code for
calling that operation in the SUT, with placeholders for the parameter values. This would
allow a generic transformation engine to build a concrete test script by transforming the
calls in an abstract test sequence into a sequence of these TCL templates, with actual
parameter values replacing the placeholders. In reality, the transformation process is
likely to be more complex than this because the following factors must be taken into
account.

• Some concrete setup and teardown code will be needed. This could be written man-
ually (for example, in TCL) and then inserted automatically by the transformation
engine at the beginning and end of each test sequence or test run.

4

1 Making tests executable

• The template for each operation may be quite complex because there is not neces-
sarily a one-to-one mapping between the signature of the abstract operation and
the SUT operations. For example, it may have to call several SUT operations to
implement the abstract operation; it typically has to generate any missing input
parameters; it must trap exceptions produced by the SUT and check if they were
expected or not; and it may have to call some SUT query operations to check
that the internal state of the SUT agrees with the expected state from the model.
Note that some of the oracle checking may be done within the template for each
operation, and other parts of the oracle checking may be done by separate query
operations in the abstract test sequence.

• The model uses abstract constants and values�these must be translated into the
concrete values used by the SUT. This can often be done by de�ning a mapping from
each abstract value to a corresponding concrete value or into a concrete expression
that generates a suitable value. For example, we might map the enumeration type
{BadPIN , GoodPIN } into the two concrete PINs 1111 and 2593 or map Bad-
PIN into an expression like rand.Next(2000), which randomly generates a di�erent
incorrect PIN on each call.

• When testing nondeterministic SUTs, an abstract test may have a tree structure
rather than being a simple sequence. This requires the transformation engine to
be more sophisticated to handle such structures. It must generate an executable
test script that includes conditional statements to check the SUT outputs and then
take the appropriate branch through the tree to the next part of the test.

• Traceability between the concrete test scripts and the abstract tests must be main-
tained, and it is often desirable to directly record within each generated test script
the traceability links back to the model and the informal requirements. This can
be done by inserting these traceability links as comments within the test scripts
or as executable statements so that the traceability information can be displayed
whenever a test fails.

The structure of the transformed test suite is almost as important as the code within
each test script. When you have hundreds or thousands of tests, their naming conventions
and organization into hierarchies of folders become very important. Most companies that
have a mature testing process have standards for the organization and version manage-
ment of their test suites, and it is desirable for the executable test suites generated via
model- based testing to follow the same standards.
For example, in addition to generating the executable code of the test scripts, it may

be desirable to generate a test plan, which describes, in English, the structure of the test
suite, the rationale for each test in the suite, the settings used to generate the tests, who
generated the tests, when they were generated, and so on.
Another important issue is version management of the tests. Typically, each generated

test suite is put into a version control system so that it can be recorded, managed, and
used for regression testing. But with the trans- formation approach, we have the abstract

5

1 Making tests executable

test suite as well as the concrete (executable) test scripts, so it is necessary to decide
which artifacts to put under version control. Just the executable test scripts? Or the
abstract test suite as well? Or should we instead store the model and the test selection
criteria that were used to generate the tests? The answers depend on the culture and
practice of your company, but deciding on the answers to these questions is an important
part of adopting model-based testing into an existing testing process.

Key Point The transformation approach can produce test scripts that �t smoothly into
your existing test management practices, with similar language, structure, and
naming conventions as manually written test scripts.

We will see some examples of the transformation approach later in this chapter and
other examples in Sections 9.5 and 10.4. Before looking at those examples, we give some
guidelines for choosing between the transformation and adaptation approaches.

1.1.3 Which Approach Is Better?

For online testing, it is almost always better to use the adaptation approach because
online testing requires a tightly integrated, two-way connection be- tween the model-
based testing tool and the SUT. This is easiest to achieve when the model-based testing
can directly connect to the adapter API and the adapter is in turn directly connected to
the SUT interface.
For o�ine testing, we can choose between the adaptation approach or the transforma-

tion approach, or use a mixture of the two. If we use the transformation approach, then
we obtain a suite of executable test scripts that can be executed directly on the SUT.
If we use the adaptation approach, then our suite of abstract tests e�ectively becomes
executable because the adapter acts as an interpreter, mapping each abstract call into
SUT operations and translating the SUT results back to the abstract level. With the
mixed approach, we transform the abstract tests into executable test scripts that call an
adapter layer to handle the low-level details of SUT interaction.
The transformation approach has the advantage that it can produce test scripts in the

same language and with the same naming and structuring conventions that are already
used for manually written tests. This can make the adoption of model-based testing less
disruptive on the overall testing process by allowing existing test management tools, test
repositories, test execution platforms, and test reporting processes to remain unchanged.
Essentially, model-based testing is replacing the test design and test scripting stages of the
testing process by new techniques and tools, but the rest of the testing process remains the
same. For these reasons, we suggest that you generally consider the adaptation approach
�rst when you are doing online testing and consider the transformation approach �rst
when doing o�ine testing. However, this is not a hard-and-fast rule�other combinations
are possible, and it is quite common to use the adaptation approach for o�ine testing
as well as for online testing. The best approach for your project depends on political,
technical, and human factors as well as on the available tools and the nature of the
project.

6

1 Making tests executable

Key Point For online testing, use the adaptation approach. For o�ine testing, the trans-
formation approach has some advantages (less disruption), and it is often useful to
combine it with the adaptation approach.

7

