
KeY Quicktour for JML

Work in progress

The KeY Team
This article is a variant of [BHS] by

Thomas Baar, Reiner Hähnle, and Steffen Schlager.

April 18, 2013

1

1 Introduction

When we started writing this document, we aimed at providing a short tuto-
rial accompanying the reader at her/his first steps with the KeY system. The
KeY-Tool is designed as an integrated environment for creating, analysing, and
verifying software models and their implementation. The reader shall learn how
to install and use the basic functionality of the KeY-Tool. Besides practical
advises how to install and get KeY started, we show along a small project how
to use the KeY-Tool to verify programs.

Verification means to prove that a program complies with its specification
in a mathematical rigorous way. In order to fulfil this task, the specification
needs to be given in a formal language with a precise defined meaning. In
the current version of the document we focus on the popular Java Modeling
Language (JML) [LPC+11, LBR04] as specification language.

In the next sections we show how to verify a JML annotated (specified)
JavaCard program. Therefore features KeY a calculus for the complete Java-
Card language including advanced features like transactions.

Besides JML, the KeY-Tool supports JavaCardDL as specification languages.
For a longer discussion on the architecture, design philosophy, and theo-

retical underpinnings of the KeY-Tool please refer to [BHS07, ABB+05]. The
formalization of the heap has changed significantly with KeY 2.0. For the new
heap model we refer to [Wei11].

In case of questions or comments don’t hesitate to contact the KeY-support
team at support@key-project.org .

1.1 Version Information

This tutorial was tested for KeY version 2.0.

1.2 Installation

You can choose between different methods to install and use KeY. We recom-
mend for this tutorial the Java Web Start variant described in Sect. 1.2.1.

1.2.1 The KeY-Prover by Java Web Start

Java Web Start is a Java Technology which allows to start applications directly
from a website. No installation is needed. You can visit our homepage

http://www.key-project.org/download

which contains a link to Java Web Start the KeY-Prover.
Please note that you have to have installed the Java Web Start facility (which

should come along with your Java distribution).

2

mailto:support@key-project.org
http://www.key-project.org/download

1.2.2 Bytecode and Sourcecode Installation

The download site offers also the binary and source code version of KeY. If
you intend to choose one of them, please note that you need to download
several third party libraries. The required libraries are packaged in a single
tar-gzipped archive that is also linked from our main download site http:

//www.key-project.org/download. Please follow the instructions given in the
README files.

3

http://www.key-project.org/download
http://www.key-project.org/download

2 Tutorial Example

2.1 Scenario

The tutorial example is a small paycard application consisting of two pack-
ages paycard and gui. Package paycard contains all classes implementing the
program logic and has no dependencies to the gui package.

Package paycard consists of the classes: PayCard, LogFile and LogRecord.
The gui package contains ChargeUI, IssueCardUI, and the main class Start.

In order to compile the project change to the jml directory and execute the
following command:

javac -sourcepath . gui/*.java (use gui\ under Windows)
Executing from the same directory

java -classpath . gui.Start

starts the application. Try this now1.
The first dialog when executing the main method in Start asks the customer

(i.e. the user of the application) to obtain a paycard. A paycard can be charged
by the customer with a certain amount of money and thereafter used for cashless
payment until the pre-loaded money is eaten up.

To prevent the risk for the customer when loosing the paycard, there is a
limit up-to-which money can be loaded/charged on the paycard. Depending
on the limit there are three paycard variants offered by the bank: a standard
paycard with a limit of 1000, a junior paycard with a limit of 100, or a paycard
with a user-defined limit. The initial balance of a newly issued paycard is zero.

In the second dialog coming up after obtaining a paycard, the customer
may charge her/his paycard with a certain amount of money. But the charge
operation is only successful if the current balance of the paycard plus the amount
to charge is less than the limit of the paycard. Otherwise, i.e., if the current
balance plus the amount to charge is greater or equal the limit of the paycard, the
charge operation does not change the balance on the paycard and an attribute
counting unsuccessful operations is increased.

The KeY-Tool aims to formally prove that the implementation actually sat-
isfies such requirements. For example, one can formally verify the invariant that
the balance on the paycard is always less than the limit of the paycard.

The intended semantics of some classes is specified with the help of invariants
denoted in the Java Modeling Language (JML) [LPC+11, LBR04]. Likewise,
the behavior of most methods is described in form of pre-/postconditions in the
JML. We do not go into details on how JML specifications for Java classes are
created. The tools downloadable from http://jmlspecs.org/download.shtml

may be helpful here. In particular, we require and assume that all JML
specifications are complying to the JML standards [LPC+11]. KeY’s
JML front-end is no substitute for the JML parser / type checker.

1potentially arising warnings can be safely ignored here

4

2.2 A First Look on the JML Specification

Before we can verify that the program satisfies the property mentioned in the
previous section, we need to express it in JML. The remaining section tries
to give a short, intuitive impression on how such a specification looks like. In
Sect. 3 JML specifications are explained in a bit more depth.

Load the file paycard/PayCard.java in an editor of your choice and search
for method isValid. You should see something like

/*@

@ public normal_behavior

@ requires true;

@ ensures \result == (unsuccessfulOperations<=3);

@ assignable \nothing;

@*/

public /*@pure@*/ boolean isValid() {

if (unsuccessfulOperations<=3) {

return true;

} else {

return false;

}

}

JML specifications are annotated as special marked comments2 in Java files.
Comment containing JML annotations have an ‘at’ sign directly after the com-
ment sign as start marker and multi-line comments also as end-marker.

The JML annotation in the above listing represents a JML method contract.
A contract states that when the caller of a method ensures that certain condi-
tions (precondition + certain invariants (see Sect. 4)) then the method ensures
that after the execution the postcondition holds3.

The precondition is true. This means the precondition does not place ad-
ditional4 conditions the caller has to fulfill in order to be guaranteed that after
the execution of the method its postcondition holds.

The ensures clause specifies the method’s postcondition and states simply
that the return value of the method is true if and only if there have not been
more than 3 unsuccessful operations. Otherwise false is returned.

For the other parts of the method specification see Sect. 4.

2It is also possible to have them in a separate file (not yet supported by KeY).
3The complete semantics is more complex; see Sect. 4 and [LPC+11].
4There might be conditions stemming from invariants.

5

3 How to Verify JML Specifications with the
KeY-Tool

JML specifications, in particular pre- and postconditions, can be seen as ab-
stractions of an implementation. In this context, an implementation is called
correct if it actually implies properties expressed in its specification. The KeY-
Tool includes functionality to verify the correctness of an implementation with
respect to its specification.

In this section we describe how to start (Sect. 3.1) the KeY-Prover and load
the tutorial example (Sect. 3.2) as well as a short overview about the graphical
user interface and its options (Sect. 3.3). Last but not least, we explain how to
configure the KeY-Prover to follow the tutorial example (Sect. 3.4).

3.1 Starting the KeY-Prover

In order to verify a program, you first need to start the KeY prover. This is
done either by using the webstart mechanism (see Sect. 1.2.1) or by calling the
runProver script of your KeY distribution5, e.g., by running

bin/runProver

3.2 Loading the Tutorial Example

After downloading and unpacking this quicktour you should find a directory jml

containing the two subdirectories paycard and gui. We refer to the directory
jml as top-level directory.

1. You have to choose the Java source files you want to verify. They contain
both the source code and the JML annotations. You can do this by either

• adding on the command line the path to the paycard directory:

bin/runProver <path_to_quicktour>/jml/paycard

(Windows: replace ’/’ by ’\’)

• opening File | Load and selecting the paycard package directory after
having started runProver without any arguments.

KeY will then load the tutorial example and parse the JML annotations. If
you get an error dialog similar to the one in Fig. 1 than you have selected
the jml directory instead of its subdirectory paycard.

If you have your own projects you want to verify you can proceed similarly.
Please note, that KeY supports by default only a very limited selection of
the standard library classes (the complete list can be found in [Red]), how
to extend them and how to configure more complex projects that use 3rd
party libraries is described in brief in App. D.

6

Figure 1: Error dialog complaining about an unknown type

2. Now the Proof Management window should appear as shown in Fig. 2(a).

In the left part of the window title Contract Targets, the Proof Manage-
ment lists all packages, classes/interfaces and methods of the project to
be verified in a tree structure similar to standard file managers.

The browser allows you to select the proof obligation (kind of property),
you want to verify. Selecting method charge of class PayCard offers three
contracts (Fig. 2(b))

one exceptional behavior and two normal behavior contracts. Select that
normal behavior contract which in its postcondition talks about balance,
and confirm by pressing the button OK. More details about the contract
configurator will be given in Sect. 4.

3. You should now see the KeY-Prover window with the loaded proof obli-
gation as in Fig. 3. The prover is able to handle predicate logic as well
as Dynamic Logic. The KeY-Prover was developed as a part of the KeY-
Project and is implemented in Java. It features interactive application of
proof rules as well as automatic application controlled by strategies. In
the near future more powerful strategies will be available.

In Sect. 4.3, we show how to prove some of the proof obligations generated
for the tutorial example.

3.3 The KeY-Prover

We assume that you have performed the steps described in the previous section
and that you see now something similar to Fig. 3. In this section we describe
the GUI of the KeY-Tool and its different components. Most of the components
in the GUI are also labelled with a tooltip.

The KeY-Prover window consists of a menubar, a toolbar (all buttons ex-
plained in C) and three panes where the lower left pane is additionally tabbed.
Each pane is described below.

5In this case we assume that you have installed the KeY-Tool as described in Sect. 1.2.2.

7

(a) Proof Obligation Browser after startup with expanded paycard package

(b) Proof Obligation Browser listing proof obligations for method charge of class PayCard

Figure 2: The Proof Obligation Browser window

8

Figure 3: The KeY-Prover with loaded contract for method charge of class
PayCard

Upper left pane: Every problem you want to prove with the KeY-Prover is
loaded in a proof environment. In this pane all currently loaded problems
respectively their proof environments are listed.

Lower left pane: This pane contains the following five tabs.

Proof: This pane (see Fig. 4(a)) contains the whole proof tree which
represents the current proof. The nodes of the tree correspond to
sequents (goals) at different proof stages. Click on a node to see
the corresponding sequent and the rule that was applied on it in the
following proof step (except the node is a leaf). Leaf nodes of an
open proof branch are colored red whereas leaves of closed branches
are colored green.

Pushing the right mouse button on a node of the proof tree will
open a pop-up context menu. If you choose now Prune Proof, the
proof tree will be cut off at this node, so all nodes lying below will
be deleted. Choosing Apply Strategy will start an automatic proof
search (see later Automatic Proving), but only on that branch which
the node you had clicked on belongs to. Reverting a proof step is
possible by choosing Goal Back in the pop-up context menu.

The context menu also contains commands that allow to hide closed
subtrees, to blind out inner nodes, to collapse, or expand the tree.
The commands help to keep track of a proof.

9

Goals: In this pane the open goals of a certain proof (corresponding to
one entry in the upper left pane) are listed. To work on a certain
goal just click on it and the selected sequent will be shown in the
right pane.

Rules: In this pane (Fig. 4(b)), all the rules available in the system are
indicated. KeY distinguishes between axiomatic taclets (rules that
are always true in the given logic), lemmas (that are derived from and
thus provable by axiomatic taclets) and built-in rules (for example
how certain expressions can be simplified).

By clicking on a rule of the list, the description of that rule is shown
in the box below the rule list.

Proof Search Strategy: This tab (see Fig. 4(c)) allows you to define the
active strategy from a set of available strategies. There are several
parameters and only the most important ones will be covered here,
a complete list can be found in B:

Max. Rule Applications You can set the number Naut of auto-
matic rule applications using the slider. Even if the automatic
strategy can still apply rules after Naut applications, automatic
proving stops.

Stop At Choose when strategy execution shall stop. Possible val-
ues are Default: strategy stops when no rules are applicable or
the maximal number of steps is reached and Unclosable: strat-
egy stops in all situations when Default stops but also already
when the first goal is encountered on which no further rule is
(automatically) applicable.

Proof splitting Influences usage of rules branching a proof tree.
Only rules working on formulas not on programs fall under the
chosen policy, i.e., program rules causing splits are still applied
even if splitting is switched off. The values are free (withour re-
strictions), Delayed (allows still splitting but prefers other rules)
and Off (no splitting).

Loop treatment This allows to set up how while-loops are treated.
They can be left untouched (None), handled using stated invari-
ant contracts (Invariant), or repeatedly unrolled (Expand).

Method treatment Methods can also be left untouched (None),
have their method contracts applied (Contracts), or be inlined,
i.e. have the method body expanded in place (Expand).

Dependency contract For the simplification of heap terms setting
this option to On the information in JML’s accessible clause is
used.

Arithmetic treatment The KeY-Prover has several options for the
treatment of arithmetic expressions:

Basic: Using this option, polynomial expressions are simplified.
In the antecedent Gröbner Bases are computed polynomi-

10

als. Linear inequations are handled using (partial) Omega
procedures.

DefOps: Using the option DefOps, mathematical symbols such
as:
/, %, jdiv, jmod, range predicates, such as int RANGE, short MIN

and symbols for mathematical operations on integers with
a certain semantic such as addJint or mulJshort, are ex-
panded. This means for example constants, such as short MIN,
are replaced by their concrete values (in this case -32768) and
range predicates, such as inInt are replaced by their ranges
(in this case i ≤ int MAX ∧ int MIN ≤ i).

Model Search: Setting the model search option, the KeY-Prover
supports non-linear equations and model search. Addition-
ally multiplication of inequations with each other and sys-
tematic case distinctions (cuts) can be performed. This method
is guaranteed to find counterexamples for invalid goals that
only contain polynomial (in)equations. Such counterexam-
ples turn up as trivially unprovable goals. It is also able to
prove many more valid goals involving (in)equations, but will
in general not terminate on such goals.

Quantifier treatment Sometimes quantifiers within the sequent
have to be instantiated. This can be either done manually (None)
or automatically with different alternatives:

No Splits Instantiate a quantifier only if this will not cause the
proof to split.

Unrestricted Instantiates a quantifier even when causing splits.
However the startegy tries to predict the number of caused
open branches and will prefer those with no or only few splits.

No Splits with Progs Chooses between the No Splits and
Unrestricted behaviour depending on programs present in
the sequent. If a program is still present the No splits be-
haviour is used. Otherwise quantifiers are instantiated unre-
stricted

Right pane: In this pane you can either inspect inner, already processed, nodes
of the proof tree or you can continue the proof by applying rules to the
open goals, whichever you choose in the left pane.

Rules can be applied either interactively or non-interactively using strate-
gies:

Interactive Proving: By moving the mouse over the current goal you
will notice that a subterm of the goal is highlighted (henceforth called
the focus term). Pressing the left mouse button displays a list of all
proof rules currently applicable to the focus term.

11

A proof rule is applied to the focus term simply by selecting one of
the applicable rules and pressing the left mouse button. The effect
is that a new goal is generated. By pushing the button Goal Back
in the main window of the KeY-Prover it is possible to undo one or
several rule applications. Note, that it is currently not possible to
backtrack from an already closed goal.

Automatic Proving: Automatic proof search is performed applying so-
called strategies which can be seen as a collection of rules suited for a
certain task. To determine which strategy should be used select the
tab item Proof Search Strategy in the left pane as described above.

To start (respectively continue) the proof push the run strategy-
button on the toolbar labelled with the B - symbol.

3.4 Configure the KeY-Prover

In this section we explain how to configure the KeY-Prover to follow the tuto-
rial and give a few explanations about the implications of the chosen options.
Most of the options are accessible via the KeY-Prover menu. An exhaustive
list is available as part of Appendix A. In order to verify or change some of
the necessary options it is necessary to have a proof obligation loaded into the
KeY-Prover as described in Sect. 3.2.

The menu bar consists of different pull down menus:

File menu for file related actions like loading and saving of problems resp.
proofs, or opening the Proof Management window

View menu for changing the look of the KeY-Prover

Proof menu for changing and viewing proof specific options

Options menu for configuring general options affecting any proof

About menu (as the name says)

KeY provides a complete calculus for the Java Card 2.2.x version including
additional features like transactions. Further it provides some more concepts
of real Java like class and object initialisation. This quicktour is meant to help
with the first steps in the system.

For simplicity, we deactivate some advanced concepts and configure the KeY-
Prover to use the normal arithmetic integers to model Java integer types, which
will avoid to deal with modulo arithmetics. Important: Please note that this
configuration is unsound with respect to the Java semantics.

In order to configure the KeY-Prover in the mentioned way select Options
| Taclet Options. The dialog shows a list of available options. Clicking on
an option in the list also shows a short explanation for the option. The list

12

(a) The Proof tree tab (b) The Rules tab

(c) The Proof Search Strategy tab

Figure 4: Selected components of the KeY-Tool graphical user interface

13

below explains the options necessary for this tutorial6. Please ensure that for
each option the value as given in parentheses directly after the option name is
selected. In case you have to change one or more values, you will have to reload
the tutorial example in order to activate them.

javacard: (jcOff) There are two values for this option jcOn and jcOff. Switching
on or off all taclets axiomatising JavaCard specific features like transac-
tion.

initialisation: (disableStaticInitialisation) Specifies whether static initialisation
should be considered.

intRules: (arithmeticSemanticsIgnoringOF) Here you can choose between dif-
ferent semantics for Java integer arithmetic (for details see [Sch02, Sch07,
BHS07]). Three choices are offered:

javaSemantics (Java semantics): Corresponds exactly to the semantics
defined in the Java language specification. In particular this means,
that arithmetical operations may cause over-/underflow. This setting
provides correctness but allows over-/underflows causing unwanted
side-effects.

arithmeticSemanticsIgnoringOF (Arithmetic semantics ignoring overflow):
Treats the primitive finite Java types as if they had the same seman-
tics as mathematical integers with infinite range. Thus this setting
does not fulfil the correctness criteria.

arithmeticSemanticsCheckingOF (Arithmetic semantics prohibiting over-
flow): Same as above but the result of arithmetical operations is not
allowed to exceed the range of the Java type as defined in the lan-
guage specification. This setting not only enforces the java semantics
but also ascertains that no overflow occur.

Please activate Minimize Interaction in the Options menu in order reduce
interaction with the system.

As a last preparation step change to the Proof Search Strategy tab in the
lower left pane and choose the following setting:

• Max. Rule Applications should be set to a value greater or equal 500. A
too low value will cause the prover to leave automatic mode too early. In
this case you might have to press the run strategy button more often than
described in the tutorial.

• Java DL must be selected with the following sub options:

– Stop at: Default

– Proof splitting: Delayed (Normal should also work)

6App. A contains a list of all available options.

14

– Loop treatment: Invariant

– Method treatment: Expand

– Query treatment: Expand

– Expand Local Queries: On

– Arithmetic treatment: Basic is sufficient for this tutorial (when using
division, modulo or similar you will need at least DefOps)

– Quantifier treatment: No Splits with Progs is a reasonable choice for
most of the time

– User-specific taclets: all Off

15

4 Provable properties

In the following the ideas behind the various options for verification are de-
scribed informally. A formal description of the generated proof obligations is
contained in [BHS07, Wei11]. For further details on the mapping between JML
specifications and the formulae of the JavaDL logic used in KeY please con-
sult [Eng05].

Examples of usage within the context of the case study in this tutorial are
described in Sect. 4.3.

4.1 Informal Description of Proof Obligations

The current implementation of the KeY-Prover generates two kinds of proof
obligations – functional contracts and dependency contracts7. Method contracts
describe the behaviour of a method and properties covered by method contracts
include:

• properties for method specifications: we show that a method fulfils its
method contract,

• properties for class/object specifications: we show that a method preserves
invariants of the object on which the call is invoked.

For the verification of programs, dependency contracts are used to be able to
rely on the properties of, e.g. the object invariant, in parts of the proof where
method calls are invoked or other instructions are performed which change the
memory locations on the heap. If these method calls only change memory
locations on the heap, which do not affect those location on which the invariant
at most depends on, it is still possible to use the stated properties of the invariant
after such a method call. However, if the method calls also change location on
the heap on which the invariant depends on, it is not possible to rely on those
properties anymore and it has to be proven that the invaraint still holds. For a
more detailed description see [Wei11].

4.1.1 The Logic in Use

In this section we make a short excursion to the formalism underlying the KeY-
Tool. As we follow a deduction based approach towards software verification,
logics are the basic formalism used. More precise a typed first-order dynamic
logic called JavaCardDL.

We do not intend here to give a formal introduction into the used logic, but
we explain the intended meaning of the formulas. Further we assume that the
reader has some basic knowledge if classical first-order logic.

In addition to classical first-order logic, dynamic logic knows two additional
operators called modalities, namely the diamond 〈·〉· and box [·]·modality. Their

7For a detailed description of both contracts see [Wei11].

16

first argument takes a piece of JavaCard code and the second argument an arbi-
trary formula. Let p be a program and φ an arbitrary formula in JavaCardDL
then

• 〈p〉φ is a formula in JavaCardDL, meaning, program p terminates and in
its final state formula φ holds.

• [p]φ is a formula in JavaCardDL, meaning, if program p terminates then
in its final state formula φ holds.

The notion state is a central one. Simplified a state can be seen as current
snapshot of the memory when running a program. It describes the values of
each variable or field. A formula in JavaCardDL is evaluated in such a state.

Let i, j denote program variables. Some formulas in JavaCardDL:

• The formula
i
.
= 0 −> 〈i = i+ 1; 〉i > 0

is a formula in JavaCardDL. The formual states:

If the value of i is 0 then the program i = i+ 1; terminates and
in the final state (the state reached after executing the program)
the program variable i is greater than 0.

The diamond operator states implicitly that the program must terminate
normally, i.e., no infinite loop/recursion and no uncaught exception).

Replacing the diamond in the formula above by a box

i
.
= 0 −> [i = i+ 1;]i > 0

changes the termination aspect and does not require that the program
terminates, i.e., this formula is already satisfied if in each state where the
value of i is 0 and if the program i = i + 1; terminates then in its final
state i is greater than 0.

• A typical kind formula you will encounter is one with an update in front
like

{i := a || j := b} 〈tmp = i; i = j; j = tmp; 〉i .= b & j
.
= a

Intuitively, an update can be seen as an assignment, the two vertical
strokes indicate that the two assignments a to i and b to j are performed
in parallel (simultaneously). The formula behind the update is then valid
if in the state reached executing the two ‘assignments’, the program ter-
minates (diamond!) and in the final state the content of the variables i
and j have been swapped.

17

4.1.2 Sequents

Deduction with the KeY-Prover is based on a sequent calculus for a Dynamic
Logic for JavaCard (JavaDL) [BHS07, Bec01].

A sequent has the form φ1, . . . , φm ` ψ1, . . . , ψn (m,n ≥ 0), where the φi
and ψj are JavaDL-formulas. The formulas on the left-hand side of the sequent
symbol ` are called antecedent and the formulas on the right-hand side are
called succedent. The semantics of a sequent is the same as that of the formula
(φ1 ∧ . . . ∧ φm)→ (ψ1 ∨ . . . ∨ ψn) (m,n ≥ 0).

4.2 Proof-Obligations

In general a proof obligation is a formula that has to be proved valid. When we
refer to a proof obligation, we mean usually the designated formula occurring
in the root sequent of the proof. A method contract for a method m of a class
C consists in general of a

precondition pre describing the method specific8 conditions which a caller of
the method has to fulfil before calling the method in order to be guaranteed
that the

postcondition post holds after executing the method and that the

assignable/modifies clause mod is respected. This means that at most the
locations described by mod are modified in the final state.

termination marker indicating if termination of the method is required. Ter-
mination required (total correctness) has termination marker diamond, i.e.
the method must terminate when the called in a state where the precon-
dition is fulfilled. The marker box does not require termination (partial
correctness), i.e., the contract must only be fulfilled if the method termi-
nates.

In addition each object O has a possibly empty set of invariants invO as-
signed to them.

For the general description we refer to this general kind of contract. Map-
ping of JML specification to this general contract notion is slightly indicated in
Sect. 4.3. More details can be found in [BHS07, Eng05, Wei11].

4.3 Application to the Tutorial Example

Now we apply the described proof obligations to the tutorial example. First
we demonstrate the generation of proof obligations, then we show how these
can be handled by the KeY-Prover. Please make sure that the default settings
of the KeY-Prover are selected (see Chapter 3.3) and the maximum number of
automatic rule applications is 5000. Be warned that the names of the proof
rules and the structure of the proof obligations may be subject to changes in
the future.

8Additional conditions stem from invariants.

18

4.3.1 Method Specifications

Normal Behavior Specification Case. In the left part of the Proof Obli-
gation Browser, expand the directory paycard. From the now available classes
select PayCard and then the method isValid. This method is specified by the
JML annotation

public normal_behavior

requires true;

ensures result == (unsuccessfulOperations<=3);

assignable \nothing;

This JML method specification treats the normal_behavior case, i.e., a
method satisfying the precondition (JML boolean expression following the re-

quires keyword) must not terminate abruptly throwing an exception. Further
each method satisfying the precondition must

• terminate (missing diverges clause),

• satisfy the postcondition – the JML boolean expression after the ensures

keyword, and

• only change the locations expressed in the assignable clause; here: must
not change any location. The assignable clause is actually redundant in
this concrete example, as the method is already marked as pure which
implies assignable \nothing.

Within KeY you can now prove that the implementation satisfies the different
aspects of the specification, i.e., that if the precondition is satisfied then the
method actually terminates normally and satisfies the postconditon and that
the assignable clause is respected. In addition it is also proven that the object
invariants of the object on which the methodcall is invoked are preserved.

The contracts pane in the Proof Management window offers only one proof
obligation: JML normal behavior opertaion contract. It summarizes all
parts of the specification which will be considered in the proof.

The selected contract says that a call to this method, if the object invariant
holds (pre self.<inv >), always terminates normally and that the return

value is true iff the parameter unsuccessfulOperations is ≤ 3, Additionally
the object invariant holds after the method call, therefore it is preserved. The
sequent displayed in the large prover window after loading the proof obligation
exactly reflects this property. We confirm the selection by pressing the Start
proof button.

Start the proof by pushing the Start-button (the one with the green “play”
symbol). The proof is closed automatically by the strategies. It might be
necessary that you have to push the button more than once if there are more rule
applications needed than you have specified with the “Max. Rule Applications”
slider.

19

Exceptional Behavior Specification Case. An example of an exceptional
behavior specification case can be found in the JML specification of method
charge(int amount) in class PayCard. The exceptional case reads

public exceptional_behavior

requires amount <= 0;

This JML specification is for the exceptional case. In contrast to the nor-
mal behavior case, the precondition here states under which circumstances the
method is expected to terminate abruptly by throwing an exception.

Use the Proof Management (either by clicking onto the button or
File | Proof Management). Continue as before, but select this time method
charge(int amount) of class PayCard. In contrast to the previous example,
the contracts pane offers you three contracts: two for the normal behavior case
and one for the exceptional case. As we want to prove the contract for the
exceptional case select the contract named: JML exceptional behavior operation
contract.

The KeY proof obligation for this specification requires that if the parameter
amount is negative or equal to 0, then the method throws a IllegalArgument-

Exception.
Start the proof again by pushing the run strategy-button. The proof is closed

automatically by the strategies.

Generic Behavior Specification Case. The method specification for method
createJuniorCard in PayCard is:

ensures \result.limit==100;

This is a lightweight specification, for which KeY provides a proof obligation
that requires the method to terminate (maybe abruptly) and to ensure that, if
it terminates normally, the limit attribute of the result equals 100 in the post-
state. By selecting the createJuniorCard method, choosing JML operation
contract named contract in the Contract Configurator, an appropriate JavaDL
formula is loaded in the prover. The proof can be closed automatically by the
automatic strategy.

4.3.2 Type Specifications

The instance invariant of type PayCard is

public invariant log.\inv

&& balance >= 0 && limit > 0

&& unsuccessfulOperations >= 0 && log != null;

The invariant specifies that the balance of a paycard must be non-negativ,
that it must be possible to charge it with some money (limit > 0) and that the
number of unsuccessfulOperations cannot be negative. Further the invariant
expresses that the log file, which keeps track of the transactions must always

20

exist (log != null) and that the instance referred to by log has to satisfy the
instance invariant of its own class type (log.\inv).

The method charge of PayCard must preserve this invariant unless it does
not terminate. This proof obligation is covered by proving that self.<inv>

must be satisfied in the precondition and must hold in the postcondition. This
has to be covered by all specification cases and is included in the specification
in the Contract Configurator(self.<inv> in the pre- and in the postcondition).

There is one exception: if a method is annotated with the keyword helper,
the proof obligation will not include the invariants. An example for such a
method is isValid() of class PayCard. If a method is declared as helper method,
the invariant of the object on which the method is called does not have to hold
for its pre- and postcondition, for more details see [Wei11]. The advantage is
a simpler proof obligation, however the disadvantage is that in order to show
that the method fulfills its contract, it is not possible to rely on the invariants.

In addition invariants can also be annotated with an accessible clause. In
this clause all fields and locations have to be included, on which the invariant
at most depends on. For example, the invariant of class LogRecord is

!empty ==> (balance >= 0 && transactionId >= 0);

and it is annotated with the accessible clause

accessible \inv: this.empty, this.balance,

transactionCounter, this.transactionId;

This means the invariant of class LogRecord depends at most on the fields
or locations and therefore given in the accessible clause. If one of these fields
is changed, it has to be proven, whether the invariant still holds. The accessible
clause can simplify proofs, because in cases where the heap is changed but not
the mentioned fields and the validity of the invariant is proven before, we know
that the invariant still holds.

4.3.3 Proof-Supporting JML Annotations

In KeY, JML annotations are not only input to generate proof obligations but
also support proof search. An example are loop invariants. In our scenario
there is a class LogFile which keeps track of a number of recent transactions
by storing the balances at the end of the transactions. Consider the constructor
LogFile() of that class. To prove the normal behavior specification proof obli-
gation of the method, one needs to reason about the incorporated while loop.
Basically there are two possibilities do this in KeY: use induction or use loop
invariants. In general, both methods require interaction with the user during
proof construction. For loop invariants, however, no interaction is needed if the
JML loop invariant annotation is used. In the example the loop invariant,
written in the JML notation, indicates that the array logArray contains newly
created entries (fresh(logArray[x])) and these entries are not null in the
array from the beginning up to position i:

21

/*@ loop_invariant

@ 0 <= i && i <= logArray.length &&

@ (\forall int x; 0 <= x && x < i; logArray[x] != null && \fresh(logArray[x]))

@ && LogRecord.transactionCounter >= 0;

@ assignable logArray[*], LogRecord.transactionCounter;

@ decreases logArray.length - i;

@*/

while(i<logArray.length){

logArray[i++] = new LogRecord();

}

If the annotation had been skipped, we would have been asked during the
proof to enter an invariant or an induction hypothesis. With the annotation no
further interaction is required to resolve the loop.

Select the contract JML normal behavior operation contract of LogFile’s
method LogFile(), and press OK.

Choose Loop treatment None and start the prover. When no further rules
can be applied automatically, select the while loop including the leading updates,
press the mouse button, select the rule loopInvariant and then Apply Rule. This
rule makes use of the invariants and assignables specified in the source code.
Restart the strategies and run them until all goals are closed.

As can be seen, KeY makes use of an extension to JML, which is that
assignable clauses can be attached to loop bodies, in order to indicate the loca-
tions that can at most be changed by the body. Doing this makes formalizing
the loop invariant considerably simpler as the specifier needs not to add infor-
mation to the invariant specifying all those program variables and fields that are
not changed by the loop. Of course one has to check that the given assignable
clause is correct, this is done by the invariant rule. We refer to [BHS07] for
further discussion and pointers on this topic.

22

5 Notes

The KeY-Tool is still very much work in progress so that parts of this tutorial
may be outdated as you read it. Moreover, the JML semantics are still subject to
discussions, and there is no formal semantics specification for JML. Differences
between the JML semantics of other tools and the (implicitly given) semantics
in KeY are therefore possible. The JML dialect of KeY even extends JML in
some points (as we have seen above for assignable clauses in loop invariants).

• Supported platforms:

– Linux and MacOS X are tested, Solaris should work as well

– Windows NT, 2000 and XP should work when using the KeY byte
code version.

• Restrictions of the KeY-Prover:

– manual not yet available

• Restrictions on JDK:

– Problem: Sometimes windows show up “rolled up” and only the title
bar is visible. This happens only if you use JRE 1.5.
Solution: Use JDK 1.6

– Problem: tool tips are flickering occasionally
Workaround: reduce the number of tool tip lines in the menu View

23

A List of Menu Options

In the following we describe some menu items available in the main menu of the
KeY-Prover. In this quicktour we will restrict ourselves to the most important
ones.

File File related actions

| Load Example: Opens a file browser with included example files.

| Load: Loads a problem or proof file; selecting a directory opens the
proof managment window with the generated proof obligation for
the chosen specification language

| Reload: Reloads last file loaded.

| Edit last opened file: If a default external editor is set, this action
opens the last opened file in the default external editor.

| Save: Saves the current selected proof. Note, that if there are several
proofs loaded (see the upper left pane) only the one currently worked
on is saved.

| Proof Management: Allows browsing through the available proof obli-
gations respectively contracts.

| Prove: | User-Defined Taclets: Loads user-defined taclets and gener-
ates the corresponding proof obligation.

| KeY’s Taclets: Creates proof obligations for some selected taclets.

| Taclets using the batch mode:

| Load User-defined Taclets: Allows to activate and deactivate theories
given as taclet collection in a .key file.

| Recent Files: List the last five loaded files (if they are still present).

| Exit: Quits the KeY-Prover (be warned: the current proof is lost!).

View Settings influencing the look of the user interface

| Use Pretty Syntax: If set, infix notation for functions and predicates
are used.

| Use Unicode Symbols: If set, unicode symbols instead of ASCII sym-
bols are used for logical symbols.

| Font size Changes the font size of the right prover pane

| Smaller: Decreases the font size.

| Larger: Increases the font size.

| ToolTip options: Configures the tooltip shown when hovering over a
taclet in the list of applicable taclets.

| Visual Node Diff: Opens a new window which allows to view the dif-
ference between two chosen proof nodes.

24

Proof Proof specific options

| Start: Run the proof (semi-)automatically w.r.t. to current strategy
options.

| Goal Back: Undo one proof step.

| Abandon Task: Quits the currently active proof. All other loaded prob-
lems will stay in the KeY-Prover.

| Search in proof tree: Opens a textfield in the proof pane, which allows
to search for a string in the proof tree.

| Search in sequent view: Opens a window with a textfield in the lower-
left corner of the current goal pane, which allows to search for a string
in the sequent view.

| Show used contracts:

| Show Active Taclet Options: Shows the taclet options chosen for the
current proof.

| Show All Active Settings: Opens a window displaying all settings used
in the current proof.

| Show Proof Statistics: Shows some general statistics about the proof
size and interactive steps.

| Show Known Types: Lists all types present in the current proof envi-
ronment.

Options General options

| Taclet Options: In the following, each taclet option is described briefly.
The respective default settings are given in parenthesis. The meaning
of all settings is beyond the scope of this quicktour. Please use the
default settings unless you know what you are doing. Note that this
list is not complete.

javacard: (jcOff) There are two values for this option jcOn and jcOff.
Switching on or off all taclets axiomatising JavaCard specific fea-
tures like transaction. If switched off, the taclet options transac-
tions and transactionsAbort have no effect.

assertions: (on) There exists are different values for this option

on evaluates assert statements and raises an AssertionException

if the condition evaluates to false. This behaviour models
the behaviour of the Java virtual machine with assertions
enabled globally.

off skips evaluation of assert statement. In particular, the argu-
ments of the assert statements are not evaluated at all. This
behaviour models the behaviour of the Java virtual machine
with assertions disabled globally.

25

safe using this option ensures that the shown property is valid no
matter if assertions are globally enabled or disabled. Proofs
with this option are typically harder.

Please note: There is no support other than option safe for en-
abling or disabling assertions package or class wise.

initialisation: (disableStaticInitialisation) Specifies whether static ini-
tialisation should be considered.

intRules: (arithmeticSemanticIgnoringOF) Here you can choose be-
tween different semantics for Java integer arithmetic (for details
see [Sch02, Sch07, BHS07]). Three choices are offered:

javaSemantics (Java semantics): Corresponds exactly to the se-
mantics defined in the Java language specification. In par-
ticular this means, that arithmetical operations may cause
over-/underflow. This setting provides correctness but al-
lows over-/underflows causing unwanted side-effects. This
corresponds to the code_java_math macro in JML.

arithmeticSemanticsIgnoringOF (Arithmetic semantics ignoring
overflow, default): Treats the primitive finite Java types as if
they had the same semantics as mathematical integers with
infinite range. Thus this setting does not fulfil the correct-
ness criteria. This corresponds to the code_bigint_math

macro in JML.

arithmeticSemanticsCheckingOF (Arithmetic semantics prohibit-
ing overflow): Same as above but the result of arithmetical
operations is not allowed to exceed the range of the Java
type as defined in the language specification. This setting
not only enforces the java semantics but also ascertains that
no overflow occur. This corresponds to the code_safe_math

macro in JML.

programRules: (Java) Changes between different program languages9.

model fields The semantics of model fields is given by the represents
clause in the JML specification. The setting of this option de-
cides how the represents clauses are handeled. It has two possible
values treatAsAxiom and showSatisfiability:

treatAsAxiom: Represents clauses are seen as axioms. If this
option is set the satisfiability of the represents clauses is not
shwon and therefore it may introduce inconsistent specifica-
tions, e.g., he following contradictory JML clause will not be
rejected:
//@ represents modelField == modelField + 1;

showSatisfiability: For every expansion of the represents clause,
the satisfiability of the definition has to be shown. Cross-
definition inconsistencies can still be formulated, however:

9Ensure that Java is selected.

26

//@ represents modelField1 == modelField2;

//@ represents modelField2 == modelField1 + 1;

runtime exceptions There are two possible ways for the KeY-Prover
in handling runtime exceptions – ban or allow.

ban: If runtime exceptions are banned, KeY treats the occurence
of runtime exceptions as irrecoverable program failure. Set-
ting this option results in smaller proofs and is complete for
defensive programmed programs, i.e. programs which do not
intentionally use corner cases.

allow: If runtime exceptions are allowed, KeY treats runtime
exceptions as defined in the Java language specification, i.e.
implicit runtime exceptions10 are raised and therefore such
exceptions have to be considered in the proof. Setting this
option results in larger proofs.

The current setting of the taclet options can be viewed by choosing
Proof | Show Active Taclet Options.

| Minimize Interaction If this option is used and the automtaic strategy
is used, KeY tries to minimize user interaction. That means that for
example, if the KeY-Prover is able to find instantiations by itself, the
user is not asked to provide them.

| Right Click for Macros

| One Step Simplification In the KeY-Prover one step simplification is
a mechanism to automatically apply several simplifying and normal-
ization rule applications to the sequent. For the user these rule ap-
plications are aggregated into one visible rule application One Step
Simplification in the proof tree. Setting this option often leads to
simpler sequents and results in finding a proof faster, but the user
lacks transparency of the proof, because the rule applications of the
one step simplifier are not shown in very detail compared to all other
rule applications in the KeY-Prover.

| SMT Solvers: This option allows you to choose one or more external
decision procedures that can be invoked during proofs and to set op-
tions for each external solver seperately. There is a native interface
to Simplify. A variety of other provers CVC3, Yices, and Z3 are di-
rectly supported via SMTLIB [BRST08]. In addition, translations of
taclets to the SMTLIB language can be written to a text file (Taclet
Translation) to be loaded by any SMT prover. There are further
options on the set of taclets to translate.

10With implicit exceptions, we mean exceptions not explicitely programmed by the devel-
oper using throw new java.lang.exception.

27

B List of all Strategy Tab Settings

Max. Rule Applications You can set the number Naut of automatic rule
applications using the slider. Even if the automatic strategy can still
apply rules after Naut applications, automatic proving stops.

Stop At Choose when strategy execution shall stop. Possible values are Default:
strategy stops when no rules are applicable or the maximal number of steps
is reached and Unclosable: strategy stops in all situations when Default

stops but also already when the first goal is encountered on which no
further rule is (automatically) applicable.

Proof splitting Influences usage of rules branching a proof tree. Only rules
working on formulas not on programs fall under the chosen policy, i.e.,
program rules causing splits are still applied even if splitting is switched off.
The values are free (withour restrictions), Delayed (allows still splitting
but prefers other rules) and Off (no splitting).

Loop treatment This allows to set up how while-loops are treated. They
can be left untouched (None), handled using stated invariant contracts
(Invariant), or repeatedly unrolled (Expand).

Block treatment It is possible to specify Java blocks with contracts. This
option allows to set how KeY treats such contracts.

contract: If this option is set, Java blocks are replaced by their contract.
Three properties have to be shown in the proof:

• the validity of the contract

• the pre condition if the contract is satisfied

• the use case of the contract

expand: If this option is set, Java blocks are expanded and block con-
tracts are not used.

Method treatment Methods can also be left untouched (None), have their
method contracts applied (Contracts), or be inlined, i.e. have the method
body expanded in place (Expand).

Dependency contract For the simplification of heap terms setting this option
to On the information in JML’s accessible clause is used.

Query treatment A query is a method that is used as a function in the logic
and stems from the specification. There are three options for query treat-
ment in KeY:

On: Rewrite a query to a method call such that contracts or inlining
(dependent on the method treatment setting) can be used.

Restricted: Same as On but with restrictions:

28

• Priority of expanding queries that occur earlier on a branch is
higher than for queries introduced more recently. This approxi-
mates in a breath-first search with respect to query expansion.

• Reexpansion of identical query terms is suppressed.

• A query is not expanded if one of its arguments contains a literal
greater than a computed limit11, or smaller than a computed
limit. This helps detecting loops in a proof

• Queries are expanded after the loop body in the Preserves

Invariant branch of the loop invariant rule

• Queries are expanded in the Base Case and the conclusio of the
Step Case branch when using Auto Induction

Off: The query statements are ignored and the proof has to be done with-
out using them.

In addition the KeY-Prover offers a setting for the expansion of local
queries in certain safe cases. Safe cases are:

• the return type of the expanded method is known

• the object on which the methodcall is invoked is self or a parent of
self.

This setting is indepedent of the query treatment setting.

Arithmetic treatment The KeY-Prover has several options for the treatment
of arithmetic expressions:

Basic: Using this option, polynomial expressions are simplified. In the
antecedent Gröbner Bases are computed polynomials. Linear inequa-
tions are handled using (partial) Omega procedures.

DefOps: Using the option DefOps, symbols such as:
/, %, jdiv, jmod, ...
int RANGE, short MIN, ...
inInt, inByte, ...
addJint, mulJshort, ...
are expanded.

Model Search: Setting the model search option, the KeY-Prover sup-
ports non-linear equations and model search. Additionally multi-
plication of inequations with each other and systematic case dis-
tinctions (cuts) can be performed. This method is guaranteed to
find counterexamples for invalid goals that only contain polynomial
(in)equations. Such counterexamples turn up as trivially unprov-
able goals. It is also able to prove many more valid goals involving
(in)equations, but will in general not terminate on such goals.

11The computation of this limit is done with sophisticated methods for loop detection and
would go beyond the scope of this quicktour

29

Quantifier treatment Sometimes quantifiers within the sequent have to be
instantiated. This can be either done manually (None) or automatically
with different alternatives:

No Splits Instantiate a quantifier only if this will not cause the proof to
split.

Unrestricted Instantiates a quantifier even when causing splits. How-
ever the startegy tries to predict the number of caused open branches
and will prefer those with no or only few splits.

No Splits with Progs Chooses between the No Splits and Unrestricted

behaviour depending on prgrams present in the sequent. If a program
is still present the No splits behaviour is used. Otherwise quanti-
fiers are instantiated unrestricted

C Handy Shortcuts and Buttons

In the following an overview of all shortcuts currently used in the KeY-Prover
is given. Additional, if buttons in the toolbar exist, their actions are listed here
as well.

Action/Command Shortcut Button in Toolbar

File related
Load Ctrl+O
Reload Ctrl+R
Save Ctrl+S

Proof Management Ctrl+M
Exit Ctrl+Q -
Edit last opened file -

Appearance
Use pretty syntax Ctrl+P -
Font size: smaller Ctrl+Up -
Font size: larger Ctrl+Down -

Proof specific
Start automatic strategy Ctrl+S
Abandon task Ctrl+W -
Undo last rule application Ctrl+Z
Search in proof tree Ctrl+F -
Search in sequent view F3 -
Prune tree below selected node -

SMT Solver -

Options
Taclet options Ctrl+T -
Toggle one Step Simplifier Ctrl+Shift+S

30

D Setting Up Own Projects

D.1 API of Supported Standard Library Classes

If not specified otherwise via a classpath directive, KeY includes a restricted
set of signatures of classes and methods from the default standard library. A
complete listing of them is available as separate document [Red].

Sorry this chapter needs still to be written. If you run into a situation where
you need information about the classpath directive, please

• look into the README.classpath file contained in the subdirectory doc/

of the source code distribution.

• do not hesitate to ask for further support at support@key-project.org.

31

References

[ABB+05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel,
Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski,
Andreas Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool.
Software and System Modeling, 4:32–54, 2005.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of Java
Card programs. In I. Attali and T. Jensen, editors, Java on Smart
Cards: Programming and Security. Revised Papers, Java Card 2000,
International Workshop, Cannes, France, LNCS 2041, pages 6–24.
Springer-Verlag, 2001.

[BHS] Thomas Baar, Reiner Hähnle, and Steffen Schlager. Key quicktour.
See http://www.key-project.org/download/.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY Approach. LNCS
4334. Springer-Verlag, 2007.

[BRST08] Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare
Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2008.

[Eng05] Christian Engel. A translation from jml to java dynamic logic. Stu-
dienarbeit, Fakultät für Informatik, Universität Karlsruhe, January
2005.

[LBR04] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary de-
sign of JML: A behavioral interface specification language for Java.
Technical Report 98-06y, Iowa State University, Department of Com-
puter Science, November 2004. See http://www.jmlspecs.org.

[LPC+11] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David Cok, Peter Mller, Joseph Kiniry, Patrice Chalin, and
Daniel M. Zimmerman. Jml reference manual. Department of
Computer Science, Iowa State University. Available from http:

//www.jmlspecs.org, July 2011.

[Red] JavaRedux - API. API documentation of a restricted subset of the
Java Standard Library Classes.

[Sch02] Steffen Schlager. Handling of Integer Arithmetic in the Verifi-
cation of Java Programs. Master’s thesis, Universität Karlsruhe,
2002. Available at: http://i12www.ira.uka.de/~key/doc/2002/

DA-Schlager.ps.gz.

[Sch07] Steffen Schlager. Symbolic Execution as a Framework for Deductive
Verification of Object-Oriented Programs. PhD thesis, Fakultät für
Informatik der Universität Karlsruhe, February 2007.

32

http://www.key-project.org/download/
http://www.jmlspecs.org
http://www.jmlspecs.org
http://www.jmlspecs.org
http://i12www.ira.uka.de/~key/doc/2002/DA-Schlager.ps.gz
http://i12www.ira.uka.de/~key/doc/2002/DA-Schlager.ps.gz

[Wei11] Benjamin Weiß. Deductive Verification of Object-Oriented Software:
Dynamic Frames, Dynamic Logic and Predicate Abstraction. PhD
thesis, Karlsruhe Institute of Technology, 2011.

33

	Introduction
	Version Information
	Installation

	Tutorial Example
	Scenario
	A First Look on the JML Specification

	How to Verify JML Specifications with the KeY-Tool
	Starting the KeY-Prover
	Loading the Tutorial Example
	The KeY-Prover
	Configure the KeY-Prover

	Provable properties
	Informal Description of Proof Obligations
	Proof-Obligations
	Application to the Tutorial Example

	Notes
	List of Menu Options
	List of all Strategy Tab Settings
	Handy Shortcuts and Buttons
	Setting Up Own Projects
	API of Supported Standard Library Classes

