
6 Logic for programming

6.1 Propositional logic

Propositional logic

The aim of logic in computer science is to develop languages to model the situations we
encounter as computer science professionals, in such a way that we can reason about them
formally. Reasoning about situations means constructing arguments about them; we want
to do this formally, so that the arguments are valid and can be defended rigorously, or
executed on a machine. Consider the following argument:

Example 1.1

If the train arrives late and there are no taxis at the station, then John is late for his
meeting. John is not late for his meeting. The train did arrive late. Therefore, there
were taxis at the station.

Intuitively, the argument is valid, since if we put the �rst sentence and the third
sentence together, they tell us that if there are no taxis, then John will be late. The
second sentence tells us that he was not late, so it must be the case that there were taxis.
Much of this book will be concerned with arguments that have this structure, namely,

that consist of a number of sentences followed by the word `therefore' and then another
sentence. The argument is valid if the sentence after the `therefore' logically follows from
the sentences before it. Exactly what we mean by `follows from' is the subject of this
chapter and the next one. Consider another example:
Example 1.2 If it is raining and Jane does not have her umbrella with her, then she

will get wet. Jane is not wet. It is raining. Therefore, Jane has her umbrella with her.
This is also a valid argument. Closer examination reveals that it actually has the same

structure as the argument of the previous example! All we have done is substituted some
sentence fragments for others:

Propositions

Example 1.1 Example 1.2

the train is late it is raining

there are taxis at the station Jane has her umbrella with her

John is late for his meeting Jane gets wet.

The argument in each example could be stated without talking about trains and rain,
as follows:
If p and not q, then r. Not r. p. Therefore, q.

1



6 Logic for programming

In developing logics, we are not concerned with what the sentences really mean, but
only in their logical structure. Of course, when we apply such reasoning, as done above,
such meaning will be of great interest.

6.2 Declarative sentences

In order to make arguments rigorous, we need to develop a language in which we can
express sentences in such a way that brings out their logical structure. The language
we begin with is the language of propositional logic. It is based on propositions, or
declarative sentences which one can, in principle, argue as being true or false. Examples
of declarative sentences are:

1. The sum of the numbers 3 and 5 equals 8.

2. Jane reacted violently to Jack's accusations.

3. Every even natural number >2 is the sum of two prime numbers.

4. All Martians like pepperoni on their pizza.

5. Albert Camus�etait un�ecrivain fran�cais.

6. Die W� urde des Menschen ist unantastbar.

These sentences are all declarative, because they are in principle capable of being de-
clared `true', or `false'. Sentence (1) can be tested by appealing to basic facts about
arithmetic (and by tacitly assuming an Arabic, decimal representation of natural num-
bers). Sentence (2) is a bit more problematic. In order to give it a truth value, we need
to know who Jane and Jack are and perhaps to have a reliable account from someone
who witnessed the situation described. In principle, e.g., if we had been at the scene,
we feel that we would have been able to detect Jane's violent reaction, provided that
it indeed occurred in that way. Sentence (3), known as Goldbach's conjecture, seems
straightforward on the face of it. Clearly, a fact about all even numbers >2 is either
true or false. But to this day nobody knows whether sentence (3) expresses a truth or
not. It is even not clear whether this could be shown by some �nite means, even if it
were true. However, in this text we will be content with sentences as soon as they can,
in principle, attain some truth value regardless of whether this truth value re�ects the
actual state of a�airs suggested by the sentence in question. Sentence (4) seems a bit
silly, although we could say that if Martians exist and eat pizza, then all of them will
either like pepperoni on it or not. (We have to introduce predicate logic in Chapter 2 to
see that this sentence is also declarative if no Martians exist; it is then true.) Again, for
the purposes of this text sentence (4) will do. Et alors, qu'est-ce qu'on pense des phrases
(5) et (6)? Sentences (5) and (6) are �ne if you happen to read French and German a
bit. Thus, declarative statements can be made in any natural, or arti�cial, language.

2



6 Logic for programming

NOT Declarative sentences

The kind of sentences we won't consider here are non-declarative ones, like

� Could you please pass me the salt?

� Ready, steady, go!

� May fortune come your way.

Primarily, we are interested in precise declarative sentences, or statements about the
behaviour of computer systems, or programs. Not only do we want to specify such
statements but we also want to check whether a given program, or system, ful�ls a
speci�cation at hand. Thus, we need to develop a calculus of reasoning which allows us
to draw conclusions from given assumptions, like initialised variables, which are reliable
in the sense that they preserve truth: if all our assumptions are true, then our conclusion
ought to be true as well. A much more di�cult question is whether, given any true
property of a computer program, we can �nd an argument in our calculus that has
this property as its conclusion. The declarative sentence (3) above might illuminate the
problematic aspect of such questions in the context of number theory. The logics we
intend to design are symbolic in nature. We translate a certain su�ciently large subset
of all English declarative sentences into strings of symbols. This gives us a compressed
but still complete encoding of declarative sentences and allows us to concentrate on the
mere mechanics of our argumentation. This is important since speci�cations of systems
or software are sequences of such declarative sentences. It further opens up the possibility
of automatic manipulation of such speci�cations, a job that computers just love to do1.

Atomic sentences

Our strategy is to consider certain declarative sentences as being atomic, or indecom-

posable, like the sentence

`The number 5 is even.'

We assign certain distinct symbols p, q, r, . . ., or sometimes p1, p2, p3, . . . to
each of these atomic sentences and we can then code up more complex sentences in a
compositional way. For example, given the atomic sentences

p: `I won the lottery last week.'

q: `I purchased a lottery ticket.'

r: `I won last week's sweepstakes.'

we can form more complex sentences according to the rules below:

11 There is a certain, slightly bitter, circularity in such endeavours: in proving that a certain computer

program P satis�es a given property, we might let some other computer program Q try to �nd a

proof that P satis�es the property; but who guarantees us that Q satis�es the property of producing

only correct proofs? We seem to run into an in�nite regress.

3



6 Logic for programming

¬ The negation of p is denoted by ¬p and expresses `I did not win the lottery last week,'
or equivalently `It is not true that I won the lottery last week.'∨

Given p and r we may wish to state that at least one of them is true: `I won the lottery
last week, or I won last week's sweepstakes;' we denote this declarative sentence by
p
∨

r and call it the disjunction of p and r 2.∧
Dually, the formula p

∧
r denotes the rather fortunate conjunction of p and r: `Last

week I won the lottery and the sweepstakes.'

� Last, but de�nitely not least, the sentence `If I won the lottery last week, then I
purchased a lottery ticket.' expresses an implication between p and q, suggesting
that q is a logical consequence of p. We write p � q for that3 . We call p the
assumption of p � q and q its conclusion.

↔ `If and only if it is Sunday, I'm happy' expresses an equivalence between p and q,
suggesting that q is a logical consequence of p and also p is a logical consequence
of q. We write p ←→ q for that.

Of course, we are entitled to use these rules of constructing propositions repeatedly. For
example, we are now in a position to form the proposition p

∧
q� ¬r

∨
q which means

that `if p and q then not r or q'. You might have noticed a potential ambiguity in this
reading. One could have argued that this sentence has the structure `p is the case and if
q then . . . ' A computer would require the insertion of brackets, as in (p

∧
q) � ((¬r)∨

q) to disambiguate this assertion. However, we humans get annoyed by a proliferation
of such brackets which is why we adopt certain conventions about the binding priorities
of these symbols. Convention 1.3 ¬ binds more tightly than

∨
and

∧
, and the latter two

bind more tightly than �. Implication � is right-associative: expressions of the form p
� q � r denote p � (q � r).

Di�erenza tra → e ↔
Nota che alcune volte usare ↔ è più completo che usare la semplice implicazione �.
Ad esempio se ho un metodo isPositive(x) che restituisce vero se x e positivo e false se

non lo è, allora la completa carratterizzazione del metodo è x > 0 ↔ isPositive(x). Se
scrivessi solo x > 0 → isPositive(x) allora con x negativo il metodo sarebbe libero di
ritornare quello che vuole (true o false).

6.3 Natural deduction

How do we go about constructing a calculus for reasoning about propositions, so that
we can establish the validity of Examples 1.1 and 1.2? Clearly, we would like to have
a set of rules each of which allows us to draw a conclusion given a certain arrangement
of premises. In natural deduction, we have such a collection of proof rules. They allow
us to infer formulas from other formulas. By applying these rules in succession, we may
infer a conclusion from a set of premises. Let's see how this works. Suppose we have a

4



6 Logic for programming

set of formulas φ1 , φ2 , φ3, . . . , φn , which we will call premises, and another formula,
ψ, which we will call a conclusion. By applying proof rules to the premises, we hope to
get some more formulas, and by applying more proof rules to those, to eventually obtain
the conclusion. This intention we denote by

φ1,φ2, ...,φn`ψ

This expression is called a sequent ; it is valid if a proof for it can be found. The sequent
for Examples 1.1 and 1.2 is p

∧
¬q � r, ¬r, p q. Constructing such a proof is a creative

exercise, a bit like programming. It is not necessarily obvious which rules to apply, and
in what order, to obtain the desired conclusion. Additionally, our proof rules should be
carefully chosen; otherwise, we might be able to `prove' invalid patterns of argumentation.
For example, we expect that we won't be able to show the sequent p, q p

∧
¬q. For

example, if p stands for `Gold is a metal.' and q for `Silver is a metal,' then knowing
these two facts should not allow us to infer that `Gold is a metal whereas silver isn't.'
Let's now look at our proof rules. We present about �fteen of them in total; we will go
through them in turn and then summarise at the end of this section.

6.3.1 Rules for natural deduction

The rules for conjunction Our �rst rule is called the rule for conjunction (
∧
): and-

introduction. It allows us to conclude φ
∧
ψ, given that we have already concluded φ

and ψ separately. We write this rule as

φ ψ

φ
∧
ψ

∧
i.

Above the line are the two premises of the rule. Below the line goes the conclusion.
(It might not yet be the �nal conclusion of our argument; we might have to apply more
rules to get there.) To the right of the line, we write the name of the rule;

∧
i is read

`and-introduction'. Notice that we have introduced a
∧

(in the conclusion) where there
was none before (in the premises). For each of the connectives, there is one or more rules
to introduce it and one or more rules to eliminate it. The rules for and-elimination are
these two:

φ
∧
ψ

φ

∧
e1.

φ
∧
ψ

ψ

∧
e2.(1.1)

The rule
∧
e1 says: if you have a proof of φ

∧
ψ, then by applying this rule you can get

a proof of φ. The rule
∧
e2 says the same thing, but allows you to conclude ψ instead.

Observe the dependencies of these rules: in the �rst rule of (1.1), the conclusion φ has to
match the �rst conjunct of the premise, whereas the exact nature of the second conjunct
ψ is irrelevant. In the second rule it is just the other way around: the conclusion ψ has
to match the second conjunct ψ and φ can be any formula. It is important to engage in
this kind of pattern matching before the application of proof rules.

5



6 Logic for programming

Example 1.4 Let's use these rules to prove that p
∧

q, r |= q
∧

r is valid. We start
by writing down the premises; then we leave a gap and write the conclusion:
p
∧

q
r
...
q
∧

r
The task of constructing the proof is to �ll the gap between the premises and the

conclusion by applying a suitable sequence of proof rules. In this case, we apply
∧
e2 to

the �rst premise, giving us q. Then we apply
∧
i to this q and to the second premise,

r, giving us q
∧

r. That's it! We also usually number all the lines, and write in the
justi�cation for each line, producing this:

1 p
∧

q premise
2 r premise
3 q

∧
e2 1

4 q
∧

r
∧
i 3, 2

Demonstrate to yourself that you've understood this by trying to show on your own
that (p

∧
q)

∧
r, s

∧
t |= q

∧
s is valid. Notice that the φ and ψ can be instantiated not

just to atomic sentences, like p and q in the example we just gave, but also to compound
sentences. Thus, from (p

∧
q)

∧
r we can deduce p

∧
q by applying

∧
e1, instantiating

φ to p
∧

q and ψ to r. If we applied these proof rules literally, then the proof above
would actually be a tree with root q

∧
r and leaves p

∧
q and r, like this:

p
∧
q

q
∧
e2 r

q
∧
r

∧
i

However, we �attened this tree into a linear presentation which necessitates the use of
pointers as seen in lines 3 and 4 above. These pointers allow us to recreate the actual
proof tree. Throughout this text, we will use the �attened version of presenting proofs.
That way you have to concentrate only on �nding a proof, not on how to �t a growing
tree onto a sheet of paper. If a sequent is valid, there may be many di�erent ways of
proving it. So if you compare your solution to these exercises with those of others, they
need not coincide. The important thing to realise, though, is that any putative proof can
be checked for correctness by checking each individual line, starting at the top, for the
valid application of its proof rule.

The rules of double negation Intuitively, there is no di�erence between a formula φ
and its double negation ¬¬φ, which expresses no more and nothing less than φ itself.
The sentence `It is not true that it does not rain.' is just a more contrived way of saying
`It rains.' Conversely, knowing `It rains,' we are free to state this fact in this more
complicated manner if we wish. Thus, we obtain rules of elimination and introduction
for double negation:
¬¬φ φ ¬¬e ¬¬i. φ ¬¬φ (There are rules for single negation on its own, too, which we

will see later.)
Example 1.5 The proof of the sequent p, ¬¬(q

∧
r) most of the proof rules discussed

so far: ¬¬p
∧

r below uses 1 2 3 4 5 6 p ¬¬(q
∧

r)¬¬p q
∧

r r ¬¬p
∧

r premise premise

6



6 Logic for programming

¬¬i 1 ¬¬e 2
∧
e2 4

∧
i 3, 5 Example 1.6 We now prove the sequent (p

∧
q)

∧
r, s

∧
t |=

q
∧

s which you were invited to prove by yourself in the last section. Please compare the
proof below with your solution: 1 2 3 4 5 6 (p

∧
q)

∧
r s

∧
t p

∧
q q s q

∧
s premise

premise
∧
e1 1

∧
e2 3

∧
e1 2

∧
i 4, 5

7


