
4 Test Execution

Whereas test design, even when supported by tools, requires insight and ingenuity in
similar measure to other facets of software design, test execution must be su�ciently
automated for frequent reexecution without little human involvement. This chapter
describes approaches for creating the run-time support for generating and managing test
data, creating sca�olding for test execution, and automatically distinguishing between
correct and incorrect test case executions.

4.1 Overview

Designing tests is creative; executing them should be as mechanical as compiling the
latest version of the product, and indeed a product build is not complete until it has
passed a suite of test cases. In many organizations, a complete build-and-test cycle
occurs nightly, with a report of success or problems ready each morning. The purpose of
run-time support for testing is to enable frequent hands-free reexecution of a test suite.
A large suite of test data may be generated automatically from a more compact and
abstract set of test case speci�cations. For unit and integration testing, and sometimes
for system testing as well, the software under test may be combined with additional
"sca�olding" code to provide a suitable test environment, which might, for example,
include simulations of other software and hardware resources. Executing a large number
of test cases is of little use unless the observed behaviors are classi�ed as passing or failing.
The human eye is a slow, expensive, and unreliable instrument for judging test outcomes,
so test sca�olding typically includes automated test oracles. The test environment often
includes additional support for selecting test cases (e.g., rotating nightly through portions
of a large test suite over the course of a week) and for summarizing and reporting results.

4.2 From Test Case Speci�cations to Test Cases

If the test case speci�cations produced in test design already include concrete input values
and expected results, as for example in the category-partition method, then producing
a complete test case may be as simple as �lling a template with those values. A more
general test case speci�cation (e.g., one that calls for "a sorted sequence, length greater
than 2, with items in ascending order with no duplicates") may designate many possible
concrete test cases, and it may be desirable to generate just one instance or many. There
is no clear, sharp line between test case design and test case generation. A rule of thumb
is that, while test case design involves judgment and creativity, test case generation
should be a mechanical step. Automatic generation of concrete test cases from more

1

4 Test Execution

abstract test case speci�cations reduces the impact of small interface changes in the
course of development. Corresponding changes to the test suite are still required with
each program change, but changes to test case speci�cations are likely to be smaller and
more localized than changes to the concrete test cases. Instantiating test cases that satisfy
several constraints may be simple if the constraints are independent (e.g., a constraint
on each of several input parameter values), but becomes more di�cult to automate when
multiple constraints apply to the same item. Some well-formed sets of constraints have no
solution at all ("an even, positive integer that is not the sum of two primes"). Constraints
that appear to be independent may not be. For example, a test case speci�cation that
constrains both program input and output imposes a conjunction of two constraints
on output (it conforms to the given output constraint and it is produced by the given
input). General test case speci�cations that may require considerable computation to
produce test data often arise in model-based testing. For example, if a test case calls
for program execution corresponding to a certain traversal of transitions in a �nite state
machine model, the test data must trigger that traversal, which may be quite complex
if the model includes computations and semantic constraints (e.g., a protocol model
in Promela; see Chapter 8). Fortunately, model-based testing is closely tied to model
analysis techniques that can be adapted as test data generation methods. For example,
�nite state veri�cation techniques typically have facilities for generating counter-examples
to asserted properties. If one can express the negation of a test case speci�cation, then
treating it as a property to be veri�ed will result in a counter-example from which a
concrete test case can be generated.

4.3 Sca�olding

During much of development, only a portion of the full system is available for testing. In
modern development methodologies, the partially developed system is likely to consist
of one or more runnable programs and may even be considered a version or prototype
of the �nal system from very early in construction, so it is possible at least to execute
each new portion of the software as it is constructed, but the external interfaces of the
evolving system may not be ideal for testing; often additional code must be added. For
example, even if the actual subsystem for placing an order with a supplier is available
and fully operational, it is probably not desirable to place a thousand supply orders each
night as part of an automatic test run. More likely a portion of the order placement
software will be "stubbed out" for most test executions. Code developed to facilitate
testing is called sca�olding, by analogy to the temporary structures erected around a
building during construction or maintenance. Sca�olding may include test drivers (sub-
stituting for a main or calling program), test harnesses (substituting for parts of the
deployment environment), and stubs (substituting for functionality called or used by the
software under test), in addition to program instrumentation and support for recording
and managing test execution. A common estimate is that half of the code developed in a
software project is sca�olding of some kind, but the amount of sca�olding that must be
constructed with a software project can vary widely, and depends both on the application

2

4 Test Execution

domain and the architectural design and build plan, which can reduce cost by exposing
appropriate interfaces and providing necessary functionality in a rational order. The
purposes of sca�olding are to provide controllability to execute test cases and observabil-
ity to judge the outcome of test execution. Sometimes sca�olding is required to simply
make a module executable, but even in incremental development with immediate inte-
gration of each module, sca�olding for controllability and observability may be required
because the external interfaces of the system may not provide su�cient control to drive
the module under test through test cases, or su�cient observability of the e�ect. It may
be desirable to substitute a separate test "driver" program for the full system, in order to
provide more direct control of an interface or to remove dependence on other subsystems.
Consider, for example, an interactive program that is normally driven through a graphi-
cal user interface. Assume that each night the program goes through a fully automated
and unattended cycle of integration, compilation, and test execution. It is necessary to
perform some testing through the interactive interface, but it is neither necessary nor
e�cient to execute all test cases that way. Small driver programs, independent of the
graphical user interface, can drive each module through large test suites in a short time.
When testability is considered in software architectural design, it often happens that
interfaces exposed for use in sca�olding have other uses. For example, the interfaces
needed to drive an interactive program without its graphical user interface are likely to
serve also as the interface for a scripting facility. A similar phenomenon appears at a
�ner grain. For example, introducing a Java interface to isolate the public functionality
of a class and hide methods introduced for testing the implementation has a cost, but
also potential side bene�ts such as making it easier to support multiple implementations
of the interface.

4.4 Generic versus Speci�c Sca�olding

The simplest form of sca�olding is a driver program that runs a single, speci�c test case.
If, for example, a test case speci�cation calls for executing method calls in a particular
sequence, this is easy to accomplish by writing the code to make the method calls in
that sequence. Writing hundreds or thousands of such test-speci�c drivers, on the other
hand, may be cumbersome and a disincentive to thorough testing. At the very least
one will want to factor out some of the common driver code into reusable modules.
Sometimes it is worthwhile to write more generic test drivers that essentially interpret
test case speci�cations. At least some level of generic sca�olding support can be used
across a fairly wide class of applications. Such support typically includes, in addition
to a standard interface for executing a set of test cases, basic support for logging test
execution and results. Figure 17.1 illustrates use of generic test sca�olding in the JFlex
lexical analyzer generator.
Fully generic sca�olding may su�ce for small numbers of hand-written test cases. For

larger test suites, and particularly for those that are generated systematically (e.g., using
the combinatorial techniques described in Chapter 11 or deriving test case speci�cations
from a model as described in Chapter 14), writing each test case by hand is impractical.

3

4 Test Execution

pub l i c f i n a l c l a s s IntCharSet {
. . .

pub l i c void add (I n t e r v a l i n t e r v a l l) { . . . }
}
package JFlex . t e s t s ;
import JFlex . IntCharSet ;
import JFlex . I n t e r v a l ;
import j u n i t . framework . TestCase ;
. . .
pub l i c c l a s s CharClassesTest extends TestCase { . . .
pub l i c void testAdd1 () {
IntCharSet s e t = new IntCharSet (new In t e r v a l (' a ' , ' h ')) ;
s e t . add (new In t e r v a l (' o ' , ' z ')) ;
s e t . add (new In t e r v a l ('A' , ' Z ')) ;
s e t . add (new In t e r v a l (' h ' , ' o ')) ;
a s s e r tEqua l s ("{ ['A'− 'Z '] [' a '− ' z '] }" , s e t . t oS t r i ng ()) ;
}
pub l i c void testAdd2 () {
IntCharSet s e t = new IntCharSet (new In t e r v a l (' a ' , ' h ')) ;
s e t . add (new In t e r v a l (' o ' , ' z ')) ;
s e t . add (new In t e r v a l ('A' , ' Z ')) ;
s e t . add (new In t e r v a l (' i ' , ' n ')) ;
a s s e r tEqua l s ("{ ['A'− 'Z '] [' a '− ' z '] }" ,
s e t . t oS t r i ng ()) ; } . . . }

Figure 4.1: Excerpt of JFlex 1.4.1 source code (a widely used open-source scanner gen-
erator) and accompanying JUnit test cases. JUnit is typical of basic test
sca�olding libraries, providing support for test execution, logging, and sim-
ple result checking (assertEquals in the example). The illustrated version of
JUnit uses Java re�ection to �nd and execute test case methods; later ver-
sions of JUnit use Java annotation (metadata) facilities, and other tools use
source code preprocessors or generators.

4

4 Test Execution

Note, however, that the Java code expressing each test case in Figure 17.1 follows a
simple pattern, and it would not be di�cult to write a small program to convert a large
collection of input, output pairs into procedures following the same pattern. A large
suite of automatically generated test cases and a smaller set of hand-written test cases
can share the same underlying generic test sca�olding. Sca�olding to replace portions
of the system is somewhat more demanding, and again both generic and application-
speci�c approaches are possible. The simplest kind of stub, sometimes called a mock,
can be generated automatically by analysis of the source code. A mock is limited to
checking expected invocations and producing precomputed results that are part of the
test case speci�cation or were recorded in a prior execution. Depending on system build
order and the relation of unit testing to integration in a particular process, isolating the
module under test is sometimes considered an advantage of creating mocks, as compared
to depending on other parts of the system that have already been constructed. The
balance of quality, scope, and cost for a substantial piece of sca�olding software - say,
a network tra�c generator for a distributed system or a test harness for a compiler - is
essentially similar to the development of any other substantial piece of software, including
similar considerations regarding specialization to a single project or investing more e�ort
to construct a component that can be used in several projects. The balance is altered in
favor of simplicity and quick construction for the many small pieces of sca�olding that
are typically produced during development to support unit and small-scale integration
testing. For example, a database query may be replaced by a stub that provides only a
�xed set of responses to particular query strings.

4.5 Test Oracles

It is little use to execute a test suite automatically if execution results must be manually
inspected to apply a pass/fail criterion. Relying on human intervention to judge test
outcomes is not merely expensive, but also unreliable. Even the most conscientious and
hard-working person cannot maintain the level of attention required to identify one failure
in a hundred program executions, little more one or ten thousand. That is a job for a
computer. Software that applies a pass/fail criterion to a program execution is called a
test oracle, often shortened to oracle. In addition to rapidly classifying a large number
of test case executions, automated test oracles make it possible to classify behaviors that
exceed human capacity in other ways, such as checking real-time response against latency
requirements or dealing with voluminous output data in a machine-readable rather than
human-readable form. Ideally, a test oracle would classify every execution of a correct
program as passing and would detect every program failure. In practice, the pass/fail
criterion is usually imperfect. A test oracle may apply a pass/fail criterion that re�ects
only part of the actual program speci�cation, or is an approximation, and therefore passes
some program executions it ought to fail. Several partial test oracles (perhaps applied
with di�erent parts of the test suite) may be more cost-e�ective than one that is more
comprehensive. A test oracle may also give false alarms, failing an execution that it
ought to pass. False alarms in test execution are highly undesirable, not only because of

5

4 Test Execution

the direct expense of manually checking them, but because they make it likely that real
failures will be overlooked. Nevertheless sometimes the best we can obtain is an oracle
that detects deviations from expectation that may or may not be actual failures. One
approach to judging correctness - but not the only one - compares the actual output or
behavior of a program with predicted output or behavior. A test case with a comparison-
based oracle relies on predicted output that is either precomputed as part of the test
case speci�cation or can be derived in some way independent of the program under test.
Precomputing expected test results is reasonable for a small number of relatively simple
test cases, and is still preferable to manual inspection of program results because the
expense of producing (and debugging) predicted results is incurred once and amortized
over many executions of the test case. Support for comparison-based test oracles is often
included in a test harness program or testing framework. A harness typically takes two
inputs: (1) the input to the program under test (or can be mechanically transformed to
a well-formed input), and (2) the predicted output. Frameworks for writing test cases as
program code likewise provide support for comparison-based oracles. The assertEquals
method of JUnit, illustrated in Figure 17.1, is a simple example of comparison-based
oracle support. Comparison-based oracles are useful mainly for small, simple test cases,
but sometimes expected outputs can also be produced for complex test cases and large
test suites. Capture-replay testing, a special case of this in which the predicted output
or behavior is preserved from an earlier execution, is discussed in this chapter. A related
approach is to capture the output of a trusted alternate version of the program under
test. For example, one may produce output from a trusted implementation that is for
some reason unsuited for production use; it may too slow or may depend on a component
that is not available in the production environment. It is not even necessary that the
alternative implementation be more reliable than the program under test, as long as
it is su�ciently di�erent that the failures of the real and alternate version are likely
to be independent, and both are su�ciently reliable that not too much time is wasted
determining which one has failed a particular test case on which they disagree. A third
approach to producing complex (input, output) pairs is sometimes possible: It may be
easier to produce program input corresponding to a given output than vice versa. For
example, it is simpler to scramble a sorted array than to sort a scrambled array. A
common misperception is that a test oracle always requires predicted program output to
compare to the output produced in a test execution. In fact, it is often possible to judge
output or behavior without predicting it. For example, if a program is required to �nd a
bus route from station A to station B, a test oracle need not independently compute the
route to ascertain that it is in fact a valid route that starts at A and ends at B. Oracles
that check results without reference to a predicted output are often partial, in the sense
that they can detect some violations of the actual speci�cation but not others. They check
necessary but not su�cient conditions for correctness. For example, if the speci�cation
calls for �nding the optimum bus route according to some metric, partial oracle a validity
check is only a partial oracle because it does not check optimality. Similarly, checking
that a sort routine produces sorted output is simple and cheap, but it is only a partial
oracle because the output is also required to be a permutation of the input. A cheap
partial oracle that can be used for a large number of test cases is often combined with

6

4 Test Execution

Figure 4.2: A test harness with a comparison-based test oracle processes test cases con-
sisting of (program input, predicted output) pairs.

Figure 4.3: When self-checks are embedded in the program, test cases need not include
predicted outputs.

a more expensive comparison-based oracle that can be used with a smaller set of test
cases for which predicted output has been obtained. Ideally, a single expression of a
speci�cation would serve both as a work assignment and as a source from which useful
test oracles were automatically derived. Speci�cations are often incomplete, and their
informality typically makes automatic derivation of test oracles impossible. The idea is
nonetheless a powerful one, and wherever formal or semiformal speci�cations (including
design models) are available, it is worth- while to consider whether test oracles can be
derived from them. Some of the e�ort of formalization will be incurred either early, in
writing speci�cations, or later when oracles are derived from them, and earlier is usually
preferable. Model-based testing, in which test cases and test oracles are both derived
from design models are discussed in Chapter 14.

4.6 Self-Checks as Oracles

A program or module speci�cation describes all correct program behaviors, so an oracle
based on a speci�cation need not be paired with a particular test case. Instead, the
oracle can be incorporated into the program under test, so that it checks its own work
(see Figure 17.3). Typically these self-checks are in the form of assertions, similar to
assertions used in symbolic execution and program veri�cation (see Chapter 7), but
designed to be checked during execution.

7

4 Test Execution

Self-check assertions may be left in the production version of a system, where they
provide much better diagnostic information than the uncontrolled application crash the
customer may otherwise report. If this is not acceptable - for instance, if the cost of
a runtime assertion check is too high - most tools for assertion processing also provide
controls for activating and deactivating assertions. It is generally considered good de-
sign practice to make assertions and self-checks be free of side-e�ects on program state.
Side-e�ect free assertions are essential when assertions may be deactivated, because oth-
erwise suppressing assertion checking can introduce program failures that appear only
when one is not testing. Self-checks in the form of assertions embedded in program code
are useful primarily for checking module and subsystem-level speci�cations, rather than
overall program behavior. Devising program assertions that correspond in a natural way
to speci�cations (formal or informal) poses two main challenges: bridging the gap be-
tween concrete execution values and abstractions used in speci�cation, and dealing in a
reasonable way with quanti�cation over collections of values. Test execution necessarily
deals with concrete values, while abstract models are indispensable in both formal and
informal speci�cations. Chapter 7 (page 110) describes the role of abstraction functions
and structural invariants in specifying concrete operational behavior based on an abstract
model of the internal state of a module. The intended e�ect of an operation is described
in terms of a precondition (state before the operation) and postcondition (state after the
operation), relating the concrete state to the abstract model. Consider again a speci�-
cation of the get method of java.util.Map from Chapter 7, with pre- and postconditions
expressed as the Hoare triple:
(| 〈k, v〉 ∈ φ(dict)|)
o = dict.get(k)
(|o = v|)
f is an abstraction function that constructs the abstract model type (sets of key, value

pairs) from the concrete data structure. f is a logical association that need not be imple-
mented when reasoning about program correctness. To create a test oracle, it is useful
to have an actual implementation of f. For this example, we might implement a special
observer method that creates a simple textual representation of the set of (key, value)
pairs. Assertions used as test oracles can then correspond directly to the speci�cation.
Besides simplifying implementation of oracles by implementing this mapping once and
using it in several assertions, structuring test oracles to mirror a correctness argument
is rewarded when a later change to the program invalidates some part of that argument
(e.g., by changing the treatment of duplicates or using a di�erent data structure in the
implementation). In addition to an abstraction function, reasoning about the correctness
of internal structures usually involves structural invariants, that is, properties of the data
structure that are preserved by all operations. Structural invariants are good candidates
for self checks implemented as assertions. They pertain directly to the concrete data
structure implementation, and can be implemented within the module that encapsulates
that data structure. For example, if a dictionary structure is implemented as a red-black
tree or an AVL tree, the balance property is an invariant of the structure that can be
checked by an assertion within the module. Figure 17.4 illustrates an invariant check
found in the source code of the Eclipse programming invariant.

8

4 Test Execution

package org . e c l i p s e . j d t . i n t e r n a l . u i . t ex t ;
import java . t ex t . Cha ra c t e r I t e r a t o r ;
import org . e c l i p s e . j f a c e . t ex t . Assert ;
/**
*A <code>CharSequence</code> based implementation o f
* <code>Charac t e r I t e ra to r </code >.
* @since 3 .0
*/
pub l i c c l a s s SequenceCharac te r I t e ra to r implements Cha ra c t e r I t e r a t o r {
. . .
p r i va t e void i nva r i an t () {
Assert . i sTrue (f Index >= fF i r s t) ;
Assert . i sTrue (f Index <= fLas t) ;

}
. . .
pub l i c SequenceCharacte r I t e ra to r (CharSequence sequence , i n t f i r s t , i n t l a s t)

throws I l l ega lArgumentExcept ion {
i f (sequence == nu l l)
throw new Nul lPo interExcept ion () ;
i f (f i r s t < 0 | | f i r s t > l a s t)
throw new I l l ega lArgumentExcept ion () ;
i f (l a s t > sequence . l ength ())
throw new I l l ega lArgumentExcept ion () ;
fSequence= sequence ;
f F i r s t= f i r s t ;
fLas t= l a s t ;
f Index= f i r s t ;
i nva r i an t () ;
}
. . .
pub l i c char se t Index (i n t p o s i t i o n) {
i f (p o s i t i o n >= getBeginIndex () && po s i t i o n <= getEndIndex ())

f Index= po s i t i o n ;
e l s e

throw new I l l ega lArgumentExcept ion () ;
i nva r i an t () ;
r e turn cur r ent () ;

}
. . .

}

Figure 4.4: A structural invariant checked by run-time assertions. Excerpted from the
Eclipse programming environment, version 3. © 2000, 2005 IBM Corpora-
tion; used under terms of the Eclipse Public License v1.0.

9

4 Test Execution

There is a natural tension between expressiveness that makes it easier to write and un-
derstand speci�cations, and limits on expressiveness to obtain e�cient implementations.
It is not much of a stretch to say that programming languages are just formal spec-
i�cation languages in which expressiveness has been purposely limited to ensure that
speci�cations can be executed with predictable and satisfactory performance. An im-
portant way in which speci�cations used for human communication and reasoning about
programs are more expressive and less constrained than programming languages is that
they freely quantify over collections of values. For example, a speci�cation of database
consistency might state that account identi�ers are unique; that is, for all account records
in the database, there does not exist another account record with the same identi�er.
It is sometimes straightforward to translate quanti�cation in a speci�cation statement
into iteration in a program assertion. In fact, some run-time assertion checking systems
provide quanti�ers that are simply interpreted as loops. This approach can work when
collections are small and quanti�ers are not too deeply nested, particularly in combina-
tion with facilities for selectively disabling assertion checking so that the performance
cost is incurred only when testing. Treating quanti�ers as loops does not scale well to
large collections and cannot be applied at all when a speci�cation quanti�es over an
in�nite collection.[1] For example, it is perfectly reasonable for a speci�cation to state
that the route found by a trip-planning application is the shortest among all possible
routes between two points, but it is not reasonable for the route planning program to
check its work by iterating through all possible routes. The problem of quanti�cation
over large sets of values is a variation on the basic problem of program testing, which
is that we cannot exhaustively check all program behaviors. Instead, we select a tiny
fraction of possible program behaviors or inputs as representatives. The same tactic is
applicable to quanti�cation in speci�cations. If we cannot fully evaluate the speci�ed
property, we can at least select some elements to check (though at present we know of no
program assertion packages that support sampling of quanti�ers). For example, although
we cannot a�ord to enumerate all possible paths between two points in a large map, we
may be able to compare to a sample of other paths found by the same procedure. As
with test design, good samples require some insight into the problem, such as recognizing
that if the shortest path from A to C passes through B, it should be the concatenation
of the shortest path from A to B and the shortest path from B to C. A �nal implemen-
tation problem for self-checks is that asserted properties sometimes involve values that
are either not kept in the program at all (so-called ghost variables) or values that have
been replaced ("before" values). A speci�cation of noninterference between threads in a
concurrent program may use ghost variables to track entry and exit of threads from a
critical section. The postcondition of an in-place sort operation will state that the new
value is sorted and a permutation of the input value. This permutation relation refers
to both the "before" and "after" values of the object to be sorted. A run-time assertion
system must manage ghost variables and retained "before" values and must ensure that
they have no side-e�ects outside assertion checking. [1]It may seem unreasonable for a
program speci�cation to quantify over an in�nite collection, but in fact it can arise quite
naturally when quanti�ers are combined with negation. If we say "there is no integer
greater than 1 that divides k evenly," we have combined negation with "there exists"

10

4 Test Execution

to form a statement logically equivalent to universal ("for all") quanti�cation over the
integers. We may be clever enough to realize that it su�ces to check integers between 2
and »k, but that is no longer a direct translation of the speci�cation statement.

4.7 Capture and Replay

Sometimes it is di�cult to either devise a precise description of expected behavior or
adequately characterize correct behavior for e�ective self-checks. For example, while
many properties of a program with a graphical interface may be speci�ed in a manner
suitable for comparison-based or self-check oracles, some properties are likely to require
a person to interact with the program and judge its behavior. If one cannot completely
avoid human involvement in test case execution, one can at least avoid unnecessary
repetition of this cost and opportunity for error. The principle is simple. The �rst time
such a test case is executed, the oracle function is carried out by a human, and the
interaction sequence is captured. Provided the execution was judged (by the human
tester) to be correct, the captured log now forms an (input, predicted output) pair for
subsequent automated retesting. The savings from automated retesting with a captured
log depends on how many build-and-test cycles we can continue to use it in, before it
is invalidated by some change to the program. Distinguishing between signi�cant and
insigni�cant variations from predicted behavior, in order to prolong the e�ective lifetime
of a captured log, is a major challenge for capture/replay testing. Capturing events
at a more abstract level suppresses insigni�cant changes. For example, if we log only
the actual pixels of windows and menus, then changing even a typeface or background
color can invalidate an entire suite of execution logs. Mapping from concrete state to
an abstract model of interaction sequences is sometimes possible but is generally quite
limited. A more fruitful approach is capturing input and output behavior at multiple
levels of abstraction within the implementation. We have noted the usefulness of a layer in
which abstract input events (e.g., selection of an object) are captured in place of concrete
events (left mouse button depressed with mouse positioned at 235, 718). Typically,
there is a similar abstract layer in graphical output, and much of the capture/replay
testing can work at this level. Small changes to a program can still invalidate a large
number of execution logs, but it is much more likely that an insigni�cant detail can
either be ignored in comparisons or, even better, the abstract input and output can
be systematically transformed to re�ect the intended change. Further ampli�cation of
the value of a captured log can be obtained by varying the logged events to obtain
additional test cases. Creating meaningful and well-formed variations also depends on
the abstraction level of the log. For example, it is simpler to vary textual content recorded
in a log than to make an equivalent change to a recorded bitmap representation of that
text. Open Research Issues Tools to generate some kinds of sca�olding from program
code have been constructed, as have tools to generate some kinds of test oracles from
design and speci�cation documents. Fuller support for creating test sca�olding might
bring these together, combining information derivable from program code itself with
information from design and speci�cation to create at least test harnesses and oracles.

11

4 Test Execution

Program transformation and program analysis techniques have advanced quickly in the
last decade, suggesting that a higher level of automation than in the past should now be
attainable.

4.8 Further Reading

Techniques for automatically deriving test oracles from formal speci�cations have been
described for a wide variety of speci�cation notations. Good starting points in this lit-
erature include Peters and Parnas [PP98] on automatic extraction of test oracles from a
speci�cation structured as tables; Gannon et al. [GMH81] and Bernot et al. [BGM91]
on derivation of test oracles from algebraic speci�cations; Doong and Frankl [DF94] on
an approach related to algebraic speci�cations but adapted to object-oriented programs;
Bochmann and Petrenko [vBP94] on derivation of test oracles from �nite state models,
particularly (but not only) for communication protocols; and Richardson et al. [RAO92]
on a general approach to deriving test oracles from multiple speci�cation languages,
including a form of temporal logic and the Z modeling language. Rosenblum [Ros95]
describes a system for writing test oracles in the form of program assertions and assesses
their value. Memon and So�a [MS03] assesses the impact of test oracles and automation
for interactive graphical user interface (GUI) programs. Ostrand et al. [OAFG98] de-
scribe capture/replay testing for GUI programs. Mocks for simulating the environment
of a module are described by Sa� and Ernst [SE04]. Husted and Massol [HM03] is a guide
to the popular JUnit testing framework. Documentation for JUnit and several similar
frameworks for various languages and systems are also widely available on the Web. Re-
lated Topics Readers interested primarily in test automation or in automation of other
aspects of analysis and test may wish to continue reading with Chapter 23. Exercises
17.1 Voluminous output can be a barrier to naive implementations of comparison- based
oracles. For example, sometimes we wish to show that some abstraction of program
behavior is preserved by a software change. The naive approach is to store a detailed
execution log of the original version as predicted output, and compare that to a detailed
execution log of the modi�ed version. Unfortunately, a detailed log of a single execu-
tion is quite lengthy, and maintaining detailed logs of many test case executions may be
impractical. Suggest more e�cient approaches to implementing comparison-based test
oracles when it is not possible to store the whole output. 17.2 We have described as an
ideal but usually unachievable goal that test oracles could be derived automatically from
the same speci�cation statement used to record and communicate the intended behav-
ior of a program or module. To what extent does the "test �rst" approach of extreme
programming (XP) achieve this goal? Discuss advantages and limitations of using test
cases as a speci�cation statement. 17.3 Often we can choose between on-line self-checks
(recognizing failures as they occur) and producing a log of events or states for o�-line
checking. What considerations might motivate one choice or the other?

12

