
(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 1

Test Execution

Modulo 2.2

Capitolo 17 del libro

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 2

Learning objectives

• Appreciate the purpose of test automation
– Factoring repetitive, mechanical tasks from

creative, human design tasks in testing

• Recognize main kinds and components of test
scaffolding

• Understand some key dimensions in test
automation design
– Design for testability: Controllability and

observability
– Degrees of generality in drivers and stubs
– Comparison-based oracles and self-checks

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 3

Automating Test Execution

• Designing test cases and test suites is creative
– Like any design activity: A demanding intellectual

activity, requiring human judgment

• Executing test cases should be automatic
– Design once, execute many times

• Test automation separates the creative human
process from the mechanical process of test
execution

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 4

Generation: From Test Case
Specifications to Test Cases

• Test design often yields test case specifications,
rather than concrete data
– Ex: “a large positive number”, not 420023
– Ex: “a sorted sequence, length > 2”, not “Alpha,

Beta, Chi, Omega”

• Other details for execution may be omitted
• Generation creates concrete, executable test

cases from test case specifications

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 5

Example Tool Chain for Test
Case Generation & Execution

• We could combine ...
– A combinatorial test case generation (citlab) to

create test data
• Optional: Constraint-based data generator to “concretize”

individual values, e.g., from “positive integer” to 42

– DDSteps to convert from spreadsheet data to JUnit
test cases

– JUnit to execute concrete test cases

• Many other tool chains are possible ...
– depending on application domain

Photo: (c) Scott Robinson (clearlyambiguous on Flickr) , creative commons attribution license

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 6

Scaffolding

• Code produced to
support development
activities (especially
testing)
– Not part of the “product”

as seen by the end user
– May be temporary (like

scaffolding in construction
of buildings

• Includes
– Test harnesses, drivers,

and stubs

Image by Kevin Dooley under Creative Commons license

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 7

Scaffolding ...

• Test driver
– A “main” program for running a test

• May be produced before a “real” main program
• Provides more control than the “real” main program

– To driver program under test through test cases

• Test stubs
– Substitute for called functions/methods/objects

• Test harness
– Substitutes for other parts of the deployed

environment
• Ex: Software simulation of a hardware device

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 8

Unit Testing - Esempio
Esempio

foo(int x2, int y2) {

……
gig(x2+2);
……
}

testFoo() {
……
foo(x1+1, y1-1);
// controllo

}

gig(int x3) {

……

}

 foo: test unit

Metodo da testare

 testFoo: test driver

Metodo che testa foo

Simula una unità chiamante

gig: test stub (opzionale)

Simula un metodo chiamato da foo in
modo di isolare il caso di test dal resto
del sistema

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 9

Controllability & Observability

GUI input (MVC “Controller”)

Program Functionality

Graphical ouput (MVC “View”)

Example: We want
automated tests, but
interactive input provides
limited control and graphical
output provides limited
observability

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 10

Controllability & Observability

GUI input (MVC “Controller”)

Program Functionality

Graphical ouput (MVC “View”)

API

Test driver

Capture wrapper

Log behavior

A design for automated test
includes provides interfaces
for control (API) and
observation (wrapper on
ouput).

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 11

Generic or Specific?

• How general should scaffolding be?
– We could build a driver and stubs for each test case
– ... or at least factor out some common code of the

driver and test management (e.g., JUnit)
– ... or further factor out some common support code,

to drive a large number of test cases from data (as
in DDSteps)

– ... or further, generate the data automatically from
a more abstract model (e.g., network traffic model)

• A question of costs and re-use
– Just as for other kinds of software

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 12

DDSTEPS

JUnit extension making test cases data driven.
Uses external test data (in Excel, XML etc)
which is injected into your test case using
standard JavaBeans properties. Data enables
and integrates toolkits such as jWebUnit and
DbUnit. 100% JUnit compatible.

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 13

Example: FIT test
Fit works by reading tables in
HTML files, produced with a tool
like Microsoft Word. Each table
is interpreted by a "fixture" that
programmers write. The fixture
checks the examples in the table
by running the actual program.

In this example, the team is
building a product to calculate
employee pay. The team has
worked together to create a Fit
document that includes some
examples of how hourly pay
should be calculated.

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 14

Unit Testing - Esempio

 foo: test unit

Metodo da testare

 testFoo: test driver

Metodo che testa foo

Simula una unità chiamante

gig: test stub (opzionale)

Simula un metodo chiamato da
foo in modo di isolare il caso di
test dal resto del sistema

Esempio

foo(int x2, int y2) {
……
gig(x2+2);
……
}

testFoo() {
……
foo(x1+1, y1-1);
// controllo

}

gig(int x3) {

……

}

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 15

Oracles

• Did this test case succeed, or fail?
– No use running 10,000 test cases automatically if the

results must be checked by hand!

• Range of specific to general, again
– ex. JUnit: Specific oracle (“assert”) coded by hand

in each test case
– Typical approach: “comparison-based” oracle with

predicted output value
– Not the only approach!

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 16

Comparison-based oracle

• With a comparison-based oracle, we need predicted
output for each input
– Oracle compares actual to predicted output, and reports

failure if they differ

• Fine for a small number of hand-generated test cases
– E.g., for hand-written JUnit test cases

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 17

Self-Checking Code as Oracle

• An oracle can also be written as self-checks
– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically
generated test suites, but often only a partial check
– e.g., structural invariants of data structures
– recognize many or most failures, but not all

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 18

Oracle examples

Comparison-based
Use assertion as in Junit
assertEquals(x,y)

Self-Checking codes
Use assertion in Java (part of the language)
assert (s != null)
....

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 19

Capture and Replay

• Sometimes there is no alternative to human
input and observation
– Even if we separate testing program functionality

from GUI, some testing of the GUI is required

• We can at least cut repetition of human testing
• Capture a manually run test case, replay it

automatically
– with a comparison-based test oracle: behavior same

as previously accepted behavior
• reusable only until a program change invalidates it
• lifetime depends on abstraction level of input and output

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 20

Esempio
● Record and playback any web application. Recording saves

time and helps non-technical users contribute to
automation.

● The Sahi Controller helps easily identify and experiment
with elements on any browser.

● The same script works on all browsers.

 _click(_link("Login"));
 _setValue(_textbox("username"), $usr);
 _setValue(_password("password"), $pwd);
 _click(_submit("Login"));

(c) 2007 Mauro Pezzè &
Michal Young

 Ch 17, slide 21

Summary

• Goal: Separate creative task of test design from
mechanical task of test execution
– Enable generation and execution of large test suites
– Re-execute test suites frequently (e.g., nightly or

after each program change)

• Scaffolding: Code to support development and
testing
– Test drivers, stubs, harness, including oracles
– Ranging from individual, hand-written test case

drivers to automatic generation and testing of large
test suites

– Capture/replay where human interaction is required

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Unit Testing - Esempio
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

