
S C I E N C E P A S S I O N T E C H N O L O G Y

www.ist.tugraz.at i ST

Software Testing & Verification Course
University of Bergamo, Italy

Guest Lecture: Combinatorial Methods &
Related Modelling Techniques in Testing

Dimitris E. Simos, SBA Research & TU Graz, Austria
May 31, 2017

2

Software Testing & Verification

Agenda of the Lecture

Structure

Part I: Combinatorial methods in testing (introduction)
Part II: Configuration testing
Part III: Input testing

Goal
Learn the basic principles of combinatorial testing

Focus

1. Basic understanding of combinatorial testing principles
2. Software failures and their relation to combinatorial methods
3. Creation of configuration and input models
4. Examples and exercises in CITLAB tool

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

3

Software Testing & Verification

Further Reading from CT Textbook (Optional)

Chapters 1, 2, 3 and 4

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

4

Software Testing & Verification

Part I

Combinatorial Methods in
Testing

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

5

Software Testing & Verification

Outline of Part I: Combinatorial Methods in Testing

1. Motivation

2. Software Failures and the Interaction Rule

3. Two Forms of Combinatorial Testing

4. Covering Arrays

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

5

Software Testing & Verification

Outline of Part I: Combinatorial Methods in Testing

1. Motivation

2. Software Failures and the Interaction Rule

3. Two Forms of Combinatorial Testing

4. Covering Arrays

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

5

Software Testing & Verification

Outline of Part I: Combinatorial Methods in Testing

1. Motivation

2. Software Failures and the Interaction Rule

3. Two Forms of Combinatorial Testing

4. Covering Arrays

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

5

Software Testing & Verification

Outline of Part I: Combinatorial Methods in Testing

1. Motivation

2. Software Failures and the Interaction Rule

3. Two Forms of Combinatorial Testing

4. Covering Arrays

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

6

Motivation

Should we Care for Software Testing?

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

7

Motivation

Should we Really Care for Software Testing?

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

8

Motivation

You cannot Test Everything

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

9

Motivation

A Large Example for Testing

Suppose we have a system with on-off switches
34 switches = 234 = 1.7× 1010 possible settings
What if we knew no failure involves more than 2 switch
settings interacting?

How do we test this? (topic of this lecture)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

10

Motivation

Motivation for Combinatorial Methods

Key Observations

Software testing may consume up to half of the overall software
development cost

Combinatorial explosion: Exhaustive search of input space
increases time needed exponentially
Added level of complexity for real-world testing (modelling behavior
of faults)

How can we estimate the residual risk that remains after testing?
How can we guarantee aspects of test quality (e.g. test
coverage, locating faults)?

In this Lecture
Formulate problems of software testing as combinatorial problems
and then use efficient methods to tackle them

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

11

Software Failures and the Interaction Rule

Interaction Fault

Interaction Fault
That causes failure only when certain values (settings) of two or
more factors (parameters or variables) occur together

One factor fault: Single value of a factor is enough to trigger
failure (not interaction fault)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

12

Software Failures and the Interaction Rule

t-way Faults from NVD (National Vulnerability Database)

Pairwise (2-way) Interaction Fault

Two particular values of a pair of factors combined together to trigger
a software failure

Example: Single character search string in conjunction with a
single character replacement string, which causes an “off by one
overflow”

3-way Interaction Fault

Three particular values of a triplet of factors combined together to
trigger a software failure

Example: Directory traversal vulnerability when register

globals is enabled and magic quotes is disabled and.. (dot
dot) in the page parameter

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

13

Software Failures and the Interaction Rule

Empirical Evidence: Fault Coverage vs. Interactions

Rick Kuhn, Yu Lei, and Raghu Kacker. 2008. Practical Combinatorial Testing: Beyond

Pairwise. IT Professional 10, 3 (May 2008), 19-23.

1-way interaction: enter value age > 100 and device crashes
2-way interaction: age > 100 and zip-code = 5001, DB push fails

3-way interaction: a = 2 and b = FALSE and update = Tuesday, system enters infinite

loop
Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

14

Software Failures and the Interaction Rule

Interaction Rule and its Relation to Software Assurance

Interaction Rule
Most failures are induced by single factor faults or by the joint
combinatorial effect (interaction) of two factors, with progressively
fewer failures induced by interactions between three or more factors

Some Remarks:

The maximum degree of interaction in actual real-world faults so
far observed is relatively small (six to eight)

So tests that cover all such few parameter (factor) interactions
can be very effective

In other words, testing all t-way combinations can provide
strong assurance

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

15

Two Forms of Combinatorial Testing

Combinatorial Testing (CT)

What is Combinatorial Testing?

Combinatorial Strategy for Higher Interaction Testing

Where it can be Applied?

To system configurations, input data or both

Key Facts:

Coverage is perceived as a quality measure of system
configurations (configuration testing) or test input data (input
testing) of the System under Test (SUT)
CT guarantees 100% coverage of t-way combinations of k
parameters, t < k ; provided by mathematical objects, called
covering arrays, that are later transformed to software artifacts
If all faults are triggered by the interaction of t or fewer
parameters, then testing all t-way combinations can provide
strong assurance

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

16

Two Forms of Combinatorial Testing

Two Approaches to Combinatorial Testing

1. Use combinations of configuration parameter values: run the
same test set against all t-way combinations of configuration
options

2. Use combinations of input parameter values: construct a test
suite that covers all t-way combinations of input transaction fields

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

17

Two Forms of Combinatorial Testing

Configuration Testing: Example

Example

Application must run on any configuration of OS, browser, protocol,
CPU and DBMS (very efficient for interoperability testing)

Figure: Pairwise test configurations

There is no Linux and IE configuration? CA tools can avoid such
invalid combinations (details later)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

18

Two Forms of Combinatorial Testing

Input Testing: Example

Example

Testing of a booking application (many input fields)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

19

Two Forms of Combinatorial Testing

The Combinatorial Test Design Process (I)

Modelling of input space or the environment is not exclusive and
one might apply either one or both depending on the SUT

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

20

Two Forms of Combinatorial Testing

The Combinatorial Test Design Process (II)

Combinatorial Test Design Process

1. Model the input space and/or configuration space; The model is
expressed in terms of factors (parameters) and respective levels
(values)

2. The model is input to (mainly) an algorithmic procedure to
generate a combinatorial object which is simply an array of
symbols

3. Every row of the generated array is used to output a test case for
testing the System Under Test (SUT)

Benefit
Steps 2 and 3 can be automated

Note
We consider combinatorial testing as a black-box testing technique

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

21

Two Forms of Combinatorial Testing

Overview of a Combinatorial Testing Framework

Combinatorial
Test Set

Generator

Test case
execution

Test set

System
Under
Test
(SUT)

Combinatorial
Fault localization

Input Model
(Test Inputs or

Configurations)

Execution
oracle

failure inducing
combinations

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

22

Two Forms of Combinatorial Testing

Challenges for Combinatorial Testing

1. Modelling of the test space (configuration space and/or input
space) including specification of test factors, test settings and
their constraints

2. Efficient generation of t-way test suites, especially involving
support of constraints

3. Determination of the expected behavior of the SUT for each
possible test case and checking whether the actual behavior
agrees with the expected one

4. Identification of the failure-inducing test value combinations
from pass/fail results of CT

5. Integration of CT in the existing infrastructures for testing

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

23

Covering Arrays

Covering Arrays

Covering Arrays CA(N; t , k , v) of Strength t

A CA is an N × k array in which entries are from a finite set S of v
symbols each such that each N × t subarray contains each possible
t-tuple at least once

Covering Arrays CA(N; t , k , v) Properties

Cover all t-way combinations of k input parameters at least once
The parameter t is called the strength of the array
Input parameters have v total values each
Such a mathematical construct has N total rows (tests)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

24

Covering Arrays

Definition too Mathematical?

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

25

Covering Arrays

Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, c

Could be function, application, configuration file, etc.
Exhaustive test set: 23 = 8 tests
2-way covering array (test set): 4 tests

a b c (a, b) (b, c) (a, c)

0 0 0 (0, 0) (0, 0) (0, 0)
0 1 1 (0, 1) (1, 1) (0, 1)
1 0 1 (1, 0) (0, 1) (1, 1)
1 1 0 (1, 1) (1, 0) (1, 0)

Table: 2-way test set (left) covering all pairs of parameters (right)

Covering Arrays (CAs) for Software Testing

Used to generate tests for revealing software faults
Received attention from standardization bodies such as US NIST

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

25

Covering Arrays

Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, c

Could be function, application, configuration file, etc.
Exhaustive test set: 23 = 8 tests
2-way covering array (test set): 4 tests

a b c (a, b) (b, c) (a, c)
0 0 0 (0, 0) (0, 0) (0, 0)

0 1 1 (0, 1) (1, 1) (0, 1)
1 0 1 (1, 0) (0, 1) (1, 1)
1 1 0 (1, 1) (1, 0) (1, 0)

Table: 2-way test set (left) covering all pairs of parameters (right)

Covering Arrays (CAs) for Software Testing

Used to generate tests for revealing software faults
Received attention from standardization bodies such as US NIST

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

25

Covering Arrays

Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, c

Could be function, application, configuration file, etc.
Exhaustive test set: 23 = 8 tests
2-way covering array (test set): 4 tests

a b c (a, b) (b, c) (a, c)
0 0 0 (0, 0) (0, 0) (0, 0)
0 1 1 (0, 1) (1, 1) (0, 1)

1 0 1 (1, 0) (0, 1) (1, 1)
1 1 0 (1, 1) (1, 0) (1, 0)

Table: 2-way test set (left) covering all pairs of parameters (right)

Covering Arrays (CAs) for Software Testing

Used to generate tests for revealing software faults
Received attention from standardization bodies such as US NIST

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

25

Covering Arrays

Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, c

Could be function, application, configuration file, etc.
Exhaustive test set: 23 = 8 tests
2-way covering array (test set): 4 tests

a b c (a, b) (b, c) (a, c)
0 0 0 (0, 0) (0, 0) (0, 0)
0 1 1 (0, 1) (1, 1) (0, 1)
1 0 1 (1, 0) (0, 1) (1, 1)

1 1 0 (1, 1) (1, 0) (1, 0)

Table: 2-way test set (left) covering all pairs of parameters (right)

Covering Arrays (CAs) for Software Testing

Used to generate tests for revealing software faults
Received attention from standardization bodies such as US NIST

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

25

Covering Arrays

Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, c

Could be function, application, configuration file, etc.
Exhaustive test set: 23 = 8 tests
2-way covering array (test set): 4 tests

a b c (a, b) (b, c) (a, c)
0 0 0 (0, 0) (0, 0) (0, 0)
0 1 1 (0, 1) (1, 1) (0, 1)
1 0 1 (1, 0) (0, 1) (1, 1)
1 1 0 (1, 1) (1, 0) (1, 0)

Table: 2-way test set (left) covering all pairs of parameters (right)

Covering Arrays (CAs) for Software Testing

Used to generate tests for revealing software faults
Received attention from standardization bodies such as US NIST

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

25

Covering Arrays

Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, c

Could be function, application, configuration file, etc.
Exhaustive test set: 23 = 8 tests
2-way covering array (test set): 4 tests

a b c (a, b) (b, c) (a, c)
0 0 0 (0, 0) (0, 0) (0, 0)
0 1 1 (0, 1) (1, 1) (0, 1)
1 0 1 (1, 0) (0, 1) (1, 1)
1 1 0 (1, 1) (1, 0) (1, 0)

Table: 2-way test set (left) covering all pairs of parameters (right)

Covering Arrays (CAs) for Software Testing

Used to generate tests for revealing software faults
Received attention from standardization bodies such as US NIST

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

26

Covering Arrays

How to Use this Knowledge in Testing?

Example

Testing of a word-processing application having 10 effects to highlight
text (each can be on or off)

The font-processing function receives these settings as input
(210 = 1024 possible combinations)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

27

Covering Arrays

How Many Tests would it Take?

What if our budget is too limited for these 210 = 1024 tests?

Testing of 3-way Interactions

There are
(10

3

)
= 120 3-way interactions of the application

settings (font-processing effects)
Naively, we need 120× 23 = 960 tests
Since we can pack 3 triples into each test, we need no more than
320 tests

Each test exercises many triples (3-tuples)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

28

Covering Arrays

Resulting 3-way Test Set for Word Applicationa

aThanks to Rick Kuhn, NIST

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

29

Covering Arrays

Covering Arrays give Minimum Tests (I)

Testing Scenario

Testing of an industrial switch network with 29 factors (switches) each
one having 2 test settings (ON/OFF)

Exhaustive testing: Number of possible (29-way) tests:

229 = 536, 870, 912
Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

30

Covering Arrays

Covering Arrays give Minimum Tests (II)

Testing Scenario

Testing of an industrial switch network with 29 factors (switches) each
one having 2 test settings (ON/OFF)

Pairs of test settings, e.g. number of 2-tuples to cover:(29
2

)
× 22 = 406× 4 = 1624

How many tests needed to cover all such 1624 pairs? (guess)

A CA of only 10 rows can cover all 1624 pairs

Each row is a test (comprised of test settings)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

30

Covering Arrays

Covering Arrays give Minimum Tests (II)

Testing Scenario

Testing of an industrial switch network with 29 factors (switches) each
one having 2 test settings (ON/OFF)

Pairs of test settings, e.g. number of 2-tuples to cover:(29
2

)
× 22 = 406× 4 = 1624

How many tests needed to cover all such 1624 pairs? (guess)

A CA of only 10 rows can cover all 1624 pairs

Each row is a test (comprised of test settings)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

31

Software Testing & Verification

Part II

Configuration Testing

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

32

Software Testing & Verification

Outline of Part II: Configuration Testing

5. Preliminaries

6. Runtime Environment Configurations

7. Invalid Combinations and Constraints

8. Highly Configurable Software Systems

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

32

Software Testing & Verification

Outline of Part II: Configuration Testing

5. Preliminaries

6. Runtime Environment Configurations

7. Invalid Combinations and Constraints

8. Highly Configurable Software Systems

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

32

Software Testing & Verification

Outline of Part II: Configuration Testing

5. Preliminaries

6. Runtime Environment Configurations

7. Invalid Combinations and Constraints

8. Highly Configurable Software Systems

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

32

Software Testing & Verification

Outline of Part II: Configuration Testing

5. Preliminaries

6. Runtime Environment Configurations

7. Invalid Combinations and Constraints

8. Highly Configurable Software Systems

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

33

Preliminaries

Configuration Space

Configuration Space

The configuration space of a (test) environment P consists of all
possible (existing) settings of the environment factors (parameters)
under which P could be used

Example: Test Configuration of a Printer

Windows 7, DSL connection and a PC with 8 GB of memory, is
one possible configuration
Different versions of OS and printer drivers, can be combined to
create several test configurations of a printer

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

34

Preliminaries

Methodology: How to Create a Configuration Model

Model the Configuration Space

1. Identify all possible settings of the environment
2. Map them to configurable parameters
3. Select (combinations of) values of configurable parameters
4. Express the resulting model in terms of factors (parameters) and

respective levels (values)

The model is plugged-into the combinatorial test design process
to generate test cases (using a proper algorithmic procedure)

Combinatorial Aspect: Achieve combinatorial coverage of all
possible t-way configuration parameter values

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

35

Runtime Environment Configurations

Configuration Testing: Example

Example

Application must run on any configuration of OS, browser, protocol,
CPU and DBMS (very efficient for interoperability testing)

Figure: Pairwise test configurations

There is no Linux and IE configuration? CA tools can avoid such
invalid combinations (today’s lecture)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

36

Runtime Environment Configurations

Exercise: Interoperability Testing

Our Task

App should work on all combinations of platform options
Develop a set of test configurations in CITLAB tool
That allows testing across all t-way combinations of these
options

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

37

Runtime Environment Configurations

Testing of an Application (Our Configuration Space)

Five configuration parameters

A total of 72 configurations may be set

At t = 5 the number of tests is the same as exhaustive testing
(why?)

List of configuration options (below)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

38

Runtime Environment Configurations

CITLAB Input

CITLAB input includes the names of parameters, types, and
possible values

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

39

Runtime Environment Configurations

Output Test Configurations covering 2-way Combinations

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

40

Runtime Environment Configurations

Number of Combinatorial Tests

CT results in drastically smaller test sets (even for such a small
example)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

41

Runtime Environment Configurations

What is the Relation of the Test Set to Covering Arrays?

Fixed-value CA(N; t , k , v): An N × k matrix such that every
t-columns contains all t-tuples at least once
Another notation CA(N, vk , t)
In past example, not all parameter had the same number of
parameter values!

Mixed-value covering array CA(N, vk1
1 , vk2

2 , . . . , vkn
n , t) is a

variation of fixed value CA

k1 columns have v1 distinct values, k2 columns have v2 distinct
values,. . .,kn columns have vn distinct values,
k = k1 + k2 + . . .+ kn

Hint
To see the abstract mathematical object replace the domain range of
the configuration parameters with {0,1,2} for three-value parameters
and {0,1} for two-value parameters
Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

42

Invalid Combinations and Constraints

Constraints among Parameter Values

So far, we have assumed that the set of possible values for
parameters never changes

Thus, a covering array of t-way combinations of possible values
would contain combinations that:

either would occur in the systems under test
or could occur and must therefore be tested

Some Combinations never occur in Practice
The IE browser is never used on Linux systems; so, it would be
impossible to create a configuration that specified IE on a Linux
system

Practical testing requires the consideration of constraints!

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

43

Invalid Combinations and Constraints

How to deal with Invalid Combinations?

We cannot simply delete tests with these untestable
combinations
That would result in losing other combinations that are
essential to test but are not covered by other tests
Example: deleting tests 4 and 5 would mean that we would also
lose the test for Linux with the IPv4 and IPv6 protocol

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

44

Invalid Combinations and Constraints

Specification of Constraints

We can define constraints, which tell the tool not to include
specified combinations in the generated test configurations
Example: (OS !="XP") => (Browser="Firefox")

Constraints (usually) reduce the size of the test set
Result in revised test configuration array (below)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

45

Invalid Combinations and Constraints

Constraints among Parameters

Other untestable combinations may arise in practice

Some parameters become inactive when others are set to
particular values

Example

Suppose testers also wanted to consider additional software, i.e.
Java and Microsoft .Net
Desirable to add two additional parameters: java version and
dot net version

However, Java can be present on both Windows and Linux
platforms, but we must deal with the problem that .Net will not
be present on a Linux system

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

46

Invalid Combinations and Constraints

Specification of Constraints among Parameters

Two different parameter sets:

If (OS == "Windows") then the parameters are OS, browser,

protocol, cpu, dbms, java version, dot net version

If (OS == "Linux") then the parameters are OS, browser,

protocol, cpu, dbms, java version

Note
Practical testing problems may be more complex than this example,
and may have multiple constraints among parameters

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

47

Highly Configurable Software Systems

Exercise: Testing Android Configurations

Our Task

App should work on all combinations of platform options
Develop a set of test configurations in CITLAB tool
That allows testing across all t-way combinations of these
options

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

48

Highly Configurable Software Systems

Testing Android Configurations (Our Configuration Space)

Resource configuration file for Android apps
A total of 35 options may be set

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

49

Highly Configurable Software Systems

Android Configuration Model

This set of Android options has 172,800 possible configurations

3× 3× 4× 3× 5× 4× 4× 5× 4 = 172,800 configurations

A 334452 system

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

50

Highly Configurable Software Systems

Cost and Practical Considerations

If each test suite can be run in 15 min

Roughly 24 staff-years to complete the testing for an app

With salary and benefit costs for each tester of 150,000 EUR,
the cost of testing an app will be more than 3 million EUR

Virtually impossible to return a profit for most apps

Number of combinatorial tests is a fraction of an exhaustive test
set

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

51

Software Testing & Verification

Part III

Input Testing

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

52

Software Testing & Verification

Outline of Part III: Input Testing

9. Preliminaries

10. Partitioning the Input Space

11. Input Variables versus Test Parameters

12. Detectability of Faults

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

52

Software Testing & Verification

Outline of Part III: Input Testing

9. Preliminaries

10. Partitioning the Input Space

11. Input Variables versus Test Parameters

12. Detectability of Faults

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

52

Software Testing & Verification

Outline of Part III: Input Testing

9. Preliminaries

10. Partitioning the Input Space

11. Input Variables versus Test Parameters

12. Detectability of Faults

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

52

Software Testing & Verification

Outline of Part III: Input Testing

9. Preliminaries

10. Partitioning the Input Space

11. Input Variables versus Test Parameters

12. Detectability of Faults

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

53

Preliminaries

Input Space

Input Space

The input space of a (test) program P consists of k -tuples of values
that could be input to P during execution

Example: Sample Program

Consider program P that takes two integers x > 0 and y > 0 as
inputs (i.e. P(x , y))
The input space of P is the set of all pairs of positive integers

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

54

Preliminaries

Input Testing: Example

Example

Testing of a booking application (many input fields)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

55

Preliminaries

Methodology: How to Create an Input Model

Model the Input Space

1. Identify possible parameters of the (test) program
2. Map them to input parameters
3. Select (combinations of) input data values
4. Express the resulting model in terms of factors (parameters) and

respective levels (values)

The model is plugged-into the combinatorial test design process
to generate test cases (using a proper algorithmic procedure)

Combinatorial Aspect: Combinatorial coverage of input data
values is required for tests constructed

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

56

Partitioning the Input Space

Testing of F-16 Ventral Fin

Problem: Unknown factors causing failures of F-16 ventral fin
LANTIRN pod carriage on the F-16

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

57

Partitioning the Input Space

F-16 Ventral Fin Damage on Flight with LANTIRNa

aThanks to Rick Kuhn. US NIST

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

58

Partitioning the Input Space

Input Model for Testing of F-16 Ventral Fin

Original solution: Lockheed Martin engineers spent many
months with wind tunnel tests and expert analysis to consider
interactions that could cause the problem
CT solution: modelling and simulation using CITLAB

How were the parameter values selected??
Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

59

Partitioning the Input Space

Methods to Select Representative Values

Modelling Methods

Category or equivalence partitioning and boundary value analysis

Objective: partition the input space such that any value selected
from the partition will affect the system under test in the
same way as any other value in the same class of the partition

That is, from a testing standpoint, the values in the same class of
a partition are equivalent (hence the name ”equivalence class”)

Thus, ideally if a test case contains a parameter x that has value
y , replacing y with any other value from the same class of the
partition will not affect the test case result

This ideal may not always be achieved in practice

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

60

Input Variables versus Test Parameters

Testing of an Access Control Module

SUT: Access Control Module
A program that implements a certain policy

Access is allowed if and only if:

The subject is an employee

AND the current time is between 9 a.m. and 5 p.m.
AND it is not a weekend
OR the subject is an employee with a special authorization code
OR the subject is an auditor AND the time is between 9 a.m. and 5
p.m. (not constrained to weekdays)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

61

Input Variables versus Test Parameters

Exercise: Testing an Access Control Module

Our Task

The values for a particular access attempt would be passed to a
module that returns a ”grant” or ”deny” access decision
Using a function call such as access decision(emp, time,

day, auth, aud)

Develop a suitable input parameter model

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

62

Input Variables versus Test Parameters

Testing of an Access Control Module (Our Input Space)

We are dealing with input parameters rather than configuration
options
Select representative values (supplemented with extreme values)
for the hour parameter

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

63

Input Variables versus Test Parameters

How to Select Representative Values?

Select values from various points on the range of a parameter
(simple approach)

However, partitions are best determined from the specification

Example: Access Control Module

9 AM and 5 PM are significant; so 0540 (9h past midnight in minutes)
and 1020 (17h past midnight in minutes) could be used to determine
the appropriate partitions

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

64

Input Variables versus Test Parameters

Boundary Value Analysis

Ideally, the program should behave the same for any of the times
within the partitions
It should not matter whether the time is 4:00 AM or 7:03 AM (the
specification treats both these times the same)
Similarly, it should not matter which time between the hours of 9
AM and 5 PM is chosen
The access control program should behave the same for 10:20
AM and 2:33 PM

Boundary Value Analysis

Select values at each boundary and at the smallest possible unit on
either side of the boundary, for three values per boundary

One possible selection of values for the time parameter would
then be: 0000, 0539, 0540, 0541, 1019, 1020, 1021, and 1440

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

65

Input Variables versus Test Parameters

Number of Tests for the Access Control Module

The total number of combinations is 2× 8× 7× 2× 2 = 448

Generating covering arrays for t = 2 through 4 results in the
following number of tests

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

66

Detectability of Faults

Sample of Faulty Code (2-way Interaction Fault)

If two boolean conditions are true, faulty code is executed
resulting in a failure

The branches pressure < 10 and volume > 300 are correct and
the fault occurs in the code that is reached when these
conditions are true
Any 2-way covering array with values for pressure and volume
that will make the conditions true can detect the problem

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

67

Detectability of Faults

Exercise: Detecting a t-way Fault

Our Task
Develop a t-way covering array, for suitable t , capable of detecting the
following fault:
if ((A < 10 || B > 0) && C > 90) faulty code

else correct code

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

68

Detectability of Faults

Solution

A 2-way array is needed, because either A && C or B && C will
cause a branch into the faulty code

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

69

Conclusion

Summary

Highlights

1. Applications of combinatorial methods to problems of software
testing:

interaction rule and t-way interaction faults
can be used as configuration testing and/or input testing

2. Combinatorial testing guarantees 100% t-way coverage

provided by mathematical objects, called covering arrays
many available CA generation tools

3. Many practical exercises for configuration testing and input
testing using the CITLAB tool

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

70

Conclusion

Questions - Comments

Thank you for your Attention!

dsimos@ist.tugraz.at

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i ST

	Combinatorial Methods in Testing
	Motivation
	Software Failures and the Interaction Rule
	Two Forms of Combinatorial Testing
	Covering Arrays

	Configuration Testing
	Preliminaries
	Runtime Environment Configurations
	Invalid Combinations and Constraints
	Highly Configurable Software Systems

	Input Testing
	Preliminaries
	Partitioning the Input Space
	Input Variables versus Test Parameters
	Detectability of Faults

