SCIENCE = PASSION = TECHNOLOGY ﬂ-grlan.

Software Testing & Verification Course
University of Bergamo, Italy

Guest Lecture: Combinatorial Methods &
Related Modelling Techniques in Testing

» www.ist.tugraz.at |) S]T

Software Testing & Verification Ty

Agenda of the Lecture

= Part I: Combinatorial methods in testing (introduction)
= Part II: Configuration testing
= Part lll: Input testing

Goal
Learn the basic principles of combinatorial testing

Focus

1. Basic understanding of combinatorial testing principles

2. Software failures and their relation to combinatorial methods
3. Creation of configuration and input models

4. Examples and exercises in CITLAB tool

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Software Testing & Verification Ty

Further Reading from CT Textbook (Optional)

CHAPMAN & HALL/CRC
SOFTWARE ENGINEERING AND S

Introduction to
Combinatorial
Testing

EAD
el B3

g:
i
$

N
dn

Number of parameters invohed i aults:

= Chapters 1,2,3 and 4

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i ST

Software Testing & Verification Ty

Part |

Combinatorial Methods in
Testing

Dimitris E. Simos, SBA Research & Institute for Software Technology Ny
May 31, 2017 i ST

Software Testing & Verification Ty

Outline of Part I: Combinatorial Methods in Testing

1. Motivation
Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Software Testing & Verification Ty

Outline of Part I: Combinatorial Methods in Testing
1. Motivation

2. Software Failures and the Interaction Rule

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Software Testing & Verification Ty

Outline of Part I: Combinatorial Methods in Testing
1. Motivation
2. Software Failures and the Interaction Rule

3. Two Forms of Combinatorial Testing

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Software Testing & Verification Ty

Outline of Part I: Combinatorial Methods in Testing
1. Motivation
2. Software Failures and the Interaction Rule
3. Two Forms of Combinatorial Testing

4. Covering Arrays

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Motivation

n Should we Care for Software Testing?

"Beware of bugs in
the above code; I
have only proved
it correct, no
tried it."

Donald Knuth

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

[S)T]

Motivation

Should we Really Care for Software Testing?

Finding 90% of flaws is pretty good, right?

FTy. B
LF my < o

"Relax, our engineers found

90 percent of the flaws.”

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

I don't think I
want to get on

that plane.

Motivation Ty

You cannot Test Everything

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

Motivation Ty

n A Large Example for Testing

= Suppose we have a system with on-off switches
= 34 switches = 2% = 1.7 x 10'% possible settings

= What if we knew no failure involves more than 2 switch
settings interacting?

= How do we test this? (topic of this lecture)

Dimitris E. Simos, SBA Research & Institute for Software Technology Ny
May 31, 2017 i ST

Ty

Motivation

Motivation for Combinatorial Methods

Key Observations

= Software testing may consume up to half of the overall software
development cost

= Combinatorial explosion: Exhaustive search of input space
increases time needed exponentially

= Added level of complexity for real-world testing (modelling behavior
of faults)

= How can we estimate the residual risk that remains after testing?

= How can we guarantee aspects of test quality (e.g. test
coverage, locating faults)?

In this Lecture
Formulate problems of software testing as combinatorial problems
and then use efficient methods to tackle them

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Software Failures and the Interaction Rule

Ty
Interaction Fault

Interaction Fault

That causes failure only when certain values (settings) of two or
more factors (parameters or variables) occur together

= One factor fault: Single value of a factor is enough to trigger
failure (not interaction fault)

What does an interaction fault look like?

How does an interaction fault manifest itself in code?
Example: altitude_adj == 0 && volume < 2.2 (2-way interaction)
if (altitude_adj==0) {

// do something
if (volume<22) { faulty code! BOOM! }

else { good code, no problem}
} else {

// do something else
}
A test with altitude_adj == 0 and volume = 1 would find this

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

i S)T]

Software Failures and the Interaction Rule Ty

t-way Faults from NVD (National Vulnerability Database)

Pairwise (2-way) Interaction Fault

Two particular values of a pair of factors combined together to trigger
a software failure

= Example: Single character search string in conjunction with a
single character replacement string, which causes an “off by one
overflow”

3-way Interaction Fault

Three particular values of a triplet of factors combined together to
trigger a software failure

= Example: Directory traversal vulnerability when register_
globals is enabled and magic_quotes is disabled and.. (dot
dot) in the page parameter

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Software Failures and the Interaction Rule

Ty

Empirical Evidence: Fault Coverage vs. Interactions

100 =
Y —
90 7
80 // Z
g 70
g 60 //
g sy
= 4 L
£ - Medical devices
S 30 I
= 20 — — Browser 1
— - - Server

=

— NASA distributed DB

o
N~

8 4
Interactions

5

= Rick Kuhn, Yu Lei, and Raghu Kacker. 2008. Practical Combinatorial Testing: Beyond

Pairwise. IT Professional 10, 3 (May 2008), 19-23.

= 1-way interaction: enter value age > 100 and device crashes
= 2-way interaction: age > 100 and zip-code = 5001, DB push fails

= 3-way interaction: a = 2 and b = FALSE and update = Tuesday, system enters infinite

loop

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

Software Failures and the Interaction Rule Ty

LY [nteraction Rule and its Relation to Software Assurance

Interaction Rule

Most failures are induced by single factor faults or by the joint
combinatorial effect (interaction) of two factors, with progressively
fewer failures induced by interactions between three or more factors

Some Remarks:

= The maximum degree of interaction in actual real-world faults so
far observed is relatively small (six to eight)

= So tests that cover all such few parameter (factor) interactions
can be very effective

= |n other words, testing all t-way combinations can provide
strong assurance

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Two Forms of Combinatorial Testing Ty

Combinatorial Testing (CT)

What is Combinatorial Testing?

Combinatorial Strategy for Higher Interaction Testing

Where it can be Applied?

To system configurations, input data or both

Key Facts:

= Coverage is perceived as a quality measure of system
configurations (configuration testing) or test input data (input
testing) of the System under Test (SUT)

= CT guarantees 100% coverage of t-way combinations of k
parameters, t < k; provided by mathematical objects, called
covering arrays, that are later transformed to software artifacts

= |f all faults are triggered by the interaction of t or fewer
parameters, then testing all t-way combinations can provide

strong assurance

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Two Forms of Combinatorial Testing Ty

Two Approaches to Combinatorial Testing

Use combinations of configuration

values with existing test suite ~~~~777~ »| Configuration:
Browser
oS
Use combinations of input values DBMS
in generating tests Server
: e
* v
Inputs:
Product
Amount System under test
Quantity
Pmt method
Shipping method

1. Use combinations of configuration parameter values: run the
same test set against all t-way combinations of configuration
options

2. Use combinations of input parameter values: construct a test
suite that covers all t-way combinations of input transaction fields

Dimitris E. Simos, SBA Research & Institute for Software Technology Q)
May 31, 2017 i)S

T

Two Forms of Combinatorial Testing

Ty

Configuration Testing: Example

Application must run on any configuration of OS, browser, protocol,
CPU and DBMS (very efficient for interoperability testing)

Test (o)

o I L ST SR
o
17}
>

—
5]

0OsX

Browser
1IE
Firefox
1E
Firefox
1E
Firefox
IE
Firefox
Firefox
Firefox

Protocol

1Pv4
IPve
1Pv6
TPv4
1Pv4
1Pv4
1Pve
1Pv4
1Pv4
IPve

CPU
Intel
AMD
Intel
AMD
Intel
Intel
AMD
Intel
AMD
AMD

DBMS
MySQL
Sybase
Oracle
MySQL
Sybase
Oracle
MySQL
Sybase
Oracle
Oracle

Figure: Pairwise test configurations

= There is no Linux and IE configuration? CA tools can avoid such
invalid combinations (details later)

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017

[S)T]

Two Forms of Combinatorial Testing

iy,
Input Testing: Example

Testing of a booking application (many input fields)

* travelocity Many values per variable
Need to abstract values

[e Cotion Fcluscze N RS g ot But we can still increase information per test

TravelInfo Certer Flight Status Destination Guides Tran

| Packages | Hotels | cars | GIETE

O o Plan: flit, flt+hotel, flt+hotel+car

Flight Only Boo LummL..:J)

OFiight + Hotel \LDJJ}_U From: CONUS, HI, Europe, Asia ...
OFfight + Hotel + Car sadviazs To: CONUS, HI, Europe, Asia ...

o e Compare: yes, no

e - | Date-type: exact, 1to3, flex

© exactdates () +# 1103 days (O Flasible dates Depart: today, tomorrow, 1yr, Sun, Mon ...
o e Return: today, tomorrow, 1yr, Sun, Mon ...
Return: mmiddiyyyy |77 Anytime (s Aqu"s; 1! 2| 3| 4| 5| 6

Adults (18-64) Minors (2-17) Seniors (85+) Minors: 0, 1,2, 3,4,5

1 [0[] 0 v

Seniors: 0, 1,2, 3,4,5

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017 0@“

Two Forms of Combinatorial Testing

The Combinatorial Test Design Process (I)

factors (parameters)
and levels (values)

Model the input
space
(input testing)

Generate
combinatorial
object

Model the test f
enviroment
(configuration
testing)

fact;'s (parameters)
and levels (values)

Covering

Array

Generate input IS8t
data tests

Generate Test Set
Bkt g configurations

tests

= Modelling of input space or the environment is not exclusive and
one might apply either one or both depending on the SUT

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

[S)T]

Two Forms of Combinatorial Testing Ty

The Combinatorial Test Design Process (Il)

Combinatorial Test Design Process

1. Model the input space and/or configuration space; The model is
expressed in terms of factors (parameters) and respective levels
(values)

2. The model is input to (mainly) an algorithmic procedure to
generate a combinatorial object which is simply an array of
symbols

3. Every row of the generated array is used to output a test case for
testing the System Under Test (SUT)

Steps 2 and 3 can be automated

Note
We consider combinatorial testing as a black-box testing technique

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Two Forms of Combinatorial Testing

Overview of a Combinatorial Testing Framework

Input Model

(Test Inputs or

Configurations)

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017

Test set

Test case Execution
execution oracle

- - >

Combinatorial
Test Set
Generator

A

Combinatorial
Fault localization

failure inducing
combinations

[S)T]

Two Forms of Combinatorial Testing Ty

Challenges for Combinatorial Testing

1. Modelling of the test space (configuration space and/or input
space) including specification of test factors, test settings and
their constraints

2. Efficient generation of t-way test suites, especially involving
support of constraints

3. Determination of the expected behavior of the SUT for each
possible test case and checking whether the actual behavior
agrees with the expected one

4. Identification of the failure-inducing test value combinations
from pass/fail results of CT

5. Integration of CT in the existing infrastructures for testing

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Covering Arrays nflary,

Covering Arrays
Covering Arrays CA(N; t, k, v) of Strength t

A CAis an N x k array in which entries are from a finite set S of v
symbols each such that each N x t subarray contains each possible
t-tuple at least once

Covering Arrays CA(N; t, k, v) Properties

= Cover all t-way combinations of k input parameters at least once
= The parameter t is called the strength of the array

= |Input parameters have v total values each

= Such a mathematical construct has N total rows (tests)

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017 0@“

Covering Arrays

Definition too Mathematical?

"I think you should be more
explicit here in step two."

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

[S)T]

Covering Arrays nflary,
Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, ¢

= Could be function, application, configuration file, etc.
= Exhaustive test set: 2° = 8 tests
= 2-way covering array (test set): 4 tests

a b cl(ab) (b (a0

Table: 2-way test set (left) covering all pairs of parameters (right)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Covering Arrays nflary,
Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, ¢

= Could be function, application, configuration file, etc.
= Exhaustive test set: 2° = 8 tests
= 2-way covering array (test set): 4 tests

a
0

c| (ab) (bc) (a0
00 (0,0 (00

b
0

Table: 2-way test set (left) covering all pairs of parameters (right)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Covering Arrays nflary,
Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, ¢

= Could be function, application, configuration file, etc.
= Exhaustive test set: 2° = 8 tests
= 2-way covering array (test set): 4 tests

a b cl(ab) (b (a0
0 0 O H (0,0) (0,0) (0, 0)
o 1 1 0,1 (@(1,1) 0, 1)

Table: 2-way test set (left) covering all pairs of parameters (right)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Covering Arrays nflary,

Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, ¢

= Could be function, application, configuration file, etc.
= Exhaustive test set: 2% = 8 tests
= 2-way covering array (test set): 4 tests

a b cl(ab) (bo (a,c)
0 0 0] (0,0 (0,00 (0,0
0 1 1/ (1) 1,1 (0,1)
1 0 1 (1,0) (0, 1) (1, 1)

Table: 2-way test set (left) covering all pairs of parameters (right)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Covering Arrays

Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, ¢

= Could be function, application, configuration file, etc.
= Exhaustive test set: 2% =
= 2-way covering array (test set): 4 tests

= 8 tests

a b cl(ab) (b (a0
0 0 0] (0,0 (0,00 (0,0
o 1 1 0,1 (@(1,1) (0, 1)
1 0 1 (1,0) (0, 1) (1, 1)
i1 01 (1,1 (1,0 (1,0)

Table: 2-way test set (left) covering all pairs of parameters (right)

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017

i S)T]

Covering Arrays

Ty

Example of a Covering Array for Software Testing

System with 3 boolean input parameters a, b, ¢

= Could be function, application, configuration file, etc.

= Exhaustive test set: 2% = 8 tests

= 2-way covering array (test set): 4 tests

Table: 2-way test set (left) covering all pairs of parameters (right)

Covering Arrays (CAs) for Software Testing

= Used to generate tests for revealing software faults

a b cl(ab) (b (a0
0 0 0] (0,0 (0,00 (0,0
o 1 1 0,1 (@(1,1) 0, 1)
10 1/ (1,0 (0,1) (1,1)
i1 01 (1,1 (1,0 (1,0)

= Received attention from standardization bodies such as US NIST

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

[S)T]

Covering Arrays

Ty

Testing of a word-processing application having 10 effects to highlight
text (each can be on or off)

How to Use this Knowledge in Testing?

Font

BX]
Font | Character Spacing | Text Effects
Fert. Font stle: Sie:
Tines Regulr 12
[~] [Reatlar] @
Times New Romen Itac 3 {
Trebuchet M5 Boid 10
Tunga) | Bold Il 11
Tw CenMT [szmmlv
Font color

nor tomatic
ke [shadow [5mal ceps
[m] Datceps
0 [emboss
ubscry

[idden
[Dengrave

Times

Co JCe=)

= The font-processing function receives these settings as input
(

210 — 1024 possible combinations)
Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

[S)T]

Covering Arrays nflary,
How Many Tests would it Take?

= What if our budget is too limited for these 2'° = 1024 tests?

Testing of 3-way Interactions

= There are (') = 120 3-way interactions of the application
settings (font-processing effects)
= Naively, we need 120 x 23 = 960 tests

= Since we can pack 3 triples into each test, we need no more than
320 tests

= Each test exercises many triples (3-tuples)

[OK, OK, what’s the smallest number of tests we need?gﬂ

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Covering Arrays nflary,

Resulting 3-way Test Set for Word Application?
aThanks to Rick Kuhn. NIST

Font m

Automatic

Ffects

0O[0[0[0]0[O[O]O]O][O

1(1/1(1{1|1)1]11]1 Font | Chapacter Spacing | Text Effects |
1/1|1|ofl1]/o]|o]o|o]|1 R IS =
1/ofl1|1|of1]|o|1]0]0O er
1|loflolo|1|1]1|o|o0]o0 Tios o Roman O - o
0117110101110]0]1]0 Togn o |bolale il i
olol1|o|1]o|1|1|1]0 Mt |¥] 2oy
1(1|/0(1|]0|0O]J1]O0|1]O0 Font color: Underline style: ol
ololof1|1|1|o]o|1|1

o|lo|1]1]|o|o|1]|o|o0|1

o|li|o|1|1|o|lo|1]|0]|0O

1lolo|ofojo|o|1|1]|1

o|1|ojojo|1|1]|1]o0]|1

[Strikethrough [shadow [smal caps N
[bouble strikethrough utline [all caps N
[superscript [] Emboss [vidden]
[subscript [Jengrave q
v u /
e Prev
-
Paa -
= -7 _— Times
0 = effect off -
— This i 2 scalable priter Font, The screen image may not match printed output,
efrect on

13 tests for all 3-way combinations

210 = 1,024 tests for all combinations

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

Covering Arrays nflary,
Covering Arrays give Minimum Tests (I)

Testing Scenario

Testing of an industrial switch network with 29 factors (switches) each
one having 2 test settings (ON/OFF)

= Exhaustive testing: Number of possible (29-way) tests:
= 2% = 536,870,912

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Covering Arrays nflary,
Covering Arrays give Minimum Tests (ll)

Testing Scenario

Testing of an industrial switch network with 29 factors (switches) each
one having 2 test settings (ON/OFF)

= Pairs of test settings, e.g. number of 2-tuples to cover:
(%) x 22 = 406 x 4 = 1624

= How many tests needed to cover all such 1624 pairs? (guess)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Covering Arrays nflary,
Covering Arrays give Minimum Tests (ll)

Testing Scenario

Testing of an industrial switch network with 29 factors (switches) each
one having 2 test settings (ON/OFF)

= Pairs of test settings, e.g. number of 2-tuples to cover:

(%) x 22 = 406 x 4 = 1624

= How many tests needed to cover all such 1624 pairs? (guess)

A CA of only 10 rows can cover all 1624 pairs

= Each row is a test (comprised of test settings)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Software Testing & Verification Ty

Part Il

Configuration Testing

Dimitris E. Simos, SBA Research & Institute for Software Technology Ny
May 31, 2017 i ST

Software Testing & Verification

Outline of Part Il: Configuration Testing

5. Preliminaries

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

Software Testing & Verification Ty

Outline of Part Il: Configuration Testing
5. Preliminaries

6. Runtime Environment Configurations

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Software Testing & Verification Ty

Outline of Part Il: Configuration Testing
5. Preliminaries
6. Runtime Environment Configurations

7. Invalid Combinations and Constraints

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Software Testing & Verification Ty

Outline of Part Il: Configuration Testing
5. Preliminaries
6. Runtime Environment Configurations
7. Invalid Combinations and Constraints

8. Highly Configurable Software Systems

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Preliminaries Ty

Configuration Space
Configuration Space

The configuration space of a (test) environment P consists of all
possible (existing) settings of the environment factors (parameters)
under which P could be used

Example: Test Configuration of a Printer

= Windows 7, DSL connection and a PC with 8 GB of memory, is
one possible configuration

= Different versions of OS and printer drivers, can be combined to
create several test configurations of a printer

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Preliminaries Ty

Methodology: How to Create a Configuration Model

Model the Configuration Space

1. ldentify all possible settings of the environment

2. Map them to configurable parameters

3. Select (combinations of) values of configurable parameters

4. Express the resulting model in terms of factors (parameters) and
respective levels (values)

= The model is plugged-into the combinatorial test design process
to generate test cases (using a proper algorithmic procedure)

= Combinatorial Aspect: Achieve combinatorial coverage of all
possible t-way configuration parameter values

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Runtime Environment Configurations

Ty

Configuration Testing: Example

Application must run on any configuration of OS, browser, protocol,
CPU and DBMS (very efficient for interoperability testing)

Test (o)

o I L ST SR
o
17}
>

—
5]

0OsX

Browser
1IE
Firefox
1E
Firefox
1E
Firefox
IE
Firefox
Firefox
Firefox

Protocol

1Pv4
IPve
1Pv6
TPv4
1Pv4
1Pv4
1Pve
1Pv4
1Pv4
IPve

CPU
Intel
AMD
Intel
AMD
Intel
Intel
AMD
Intel
AMD
AMD

DBMS
MySQL
Sybase
Oracle
MySQL
Sybase
Oracle
MySQL
Sybase
Oracle
Oracle

Figure: Pairwise test configurations

= There is no Linux and IE configuration? CA tools can avoid such

invalid combinations (today’s lecture)

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017

[S)T]

Runtime Environment Configurations Ty

Exercise: Interoperability Testing

= App should work on all combinations of platform options
= Develop a set of test configurations in CITLAB tool

= That allows testing across all t-way combinations of these
options

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Runtime Environment Configurations

Testing of an Application (Our Configuration Space)

= Five configuration parameters

= A total of 72 configurations may be set

= At { = 5 the number of tests is the same as exhaustive testing

(why?)
= List of configuration options (below)

Parameter Values
Operating system XP, OS X, RHL
Browser IE, Firefox

Protocol 1Pv4, IPv6

CPU Intel, AMD

DBMS MySQL, Sybase, Oracle

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

Runtime Environment Configurations Ty

CITLAB Input

= CITLAB input includes the names of parameters, types, and
possible values

Model internet

Farameters:
Enumerative 05 { XP 05 X RHL };
Enumerative Browser { IE Firefox };
Enumerative Protocol { IPv4 IPv6 };
Enumerative CPU { Intel AMD };
Enumerative DBMS { MySQL Sybase Oracle };

end
Dimitris E. Simos, SBA Research & Institute for Software Technology .
May 31, 2017 i ST

Runtime Environment Configurations

Ty

Output Test Configurations covering 2-way Combinations

Test

~En o s W ha =

[=J--

05
P
XP
XP
05X
05X
Qs_X
RHL
RHL
RHL

Browser
IE
Firefox
Firefox
IE

IE
Firefox
Firefox
Firefox
IE

Protocol
IPvE
IPvd
IPvE
IPvd
IPvE
IPvE
IPvd
IPvE
IPvd

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017

CPU
AMD
Intel
AMD
AMD
AMD
Intel
Intel
AMD

Intel

DEMS
MySQL
Sybase
Cracle
MySCOL
Sybase
Oracle
MySCOL
Sybase
Cracle

Runtime Environment Configurations Ty

Number of Combinatorial Tests

= CT results in drastically smaller test sets (even for such a small

example)

t # Tests % of Exhaustive

2 10 14

3 18 25

4 36 50

5 72 100
Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Runtime Environment Configurations Ty

What is the Relation of the Test Set to Covering Arrays?

= Fixed-value CA(N; t, k,v): An N x k matrix such that every
t-columns contains all t-tuples at least once
= Another notation CA(N, vX, t)
= |n past example, not all parameter had the same number of
parameter values!
Mixed-value covering array CA(N, vi", vl ... vk t)isa
variation of fixed value CA

= k; columns have v4 distinct values, k» columns have v, distinct
values,. . .,k, columns have v, distinct values,

u k:k1+k2++kn

To see the abstract mathematical object replace the domain range of
the configuration parameters with {0, 1,2} for three-value parameters

and {0, 1} for two-value parameters

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Invalid Combinations and Constraints Ty

Constraints among Parameter Values

= So far, we have assumed that the set of possible values for
parameters never changes

= Thus, a covering array of t-way combinations of possible values
would contain combinations that:

= either would occur in the systems under test
= or could occur and must therefore be tested

Some Combinations never occur in Practice

The |IE browser is never used on Linux systems; so, it would be
impossible to create a configuration that specified IE on a Linux
system

Practical testing requires the consideration of constraints!

Dimitris E. Simos, SBA Research & Institute for Software Technology .
May 31, 2017 i ST

Invalid Combinations and Constraints

How to deal with Invalid Combinations?

= We cannot simply delete tests with these untestable

combinations

= That would result in losing other combinations that are
essential to test but are not covered by other tests

= Example: deleting tests 4 and 5 would mean that we would also
lose the test for Linux with the IPv4 and IPv6 protocol

Test 05
XP

XP

XP

05.%
05.%
05.%
RHL
RHL
RHL

B R T

w e

Browser
IE
Firefox
Firefox
IE

IE
Firefox
Firefox
Firefox
IE

Protocel
IPuE
IPud
1PvE
IPwd
IPvE
IPuE
P4
IPvE
1Pt

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017

CPU
AMD
Intel
AMD
AMD
AMD
Intel
Intel
AMD
Intel

DBMS
MySQL
Sybase
Oracle
MySQL
Sybase
Oracle
MySQL
Sybase
Oracle

Invalid Combinations and Constraints Ty

Specification of Constraints

= We can define constraints, which tell the tool not to include
specified combinations in the generated test configurations

= Example: (0S !="XP") => (Browser="Firefox")

= Constraints (usually) reduce the size of the test set

= Result in revised test configuration array (below)
Constraints:

05 != 05.XP =» Browser == Browser.Firefox

End

Test 05 Browser Protocol CPU DBMS

1 XP IE IPvd AMD MySOL

2 XP IE IPvd Intel Sybase

3 XP IE IPv6 Intel QOracle

4 0S X Firefox |Pvd Intel MySQL

5 05 X Firefox |PvE AMD Sybase

6 05X Firefox IPvE AMD Oracle

T RHL Firefox [Pv AMD MySOL

8 RHL Firefox [Pwd AMD Sybase

g RHL Firefox [Pvd Intel QOracle

0 XP Firefox IPvb Intel MySOL
Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i ST

Invalid Combinations and Constraints Ty

Constraints among Parameters

= Other untestable combinations may arise in practice

= Some parameters become inactive when others are set to
particular values

Example

= Suppose testers also wanted to consider additional software, i.e.
Java and Microsoft .Net

= Desirable to add two additional parameters: java version and
dot_net_version

However, Java can be present on both Windows and Linux
platforms, but we must deal with the problem that .Net will not
be present on a Linux system

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Invalid Combinations and Constraints Ty

Specification of Constraints among Parameters

Two different parameter sets:

= |[f (0S == "Windows") then the parameters are 0S, browser,
protocol, cpu, dbms, java_version, dot_net_version

= |[f (0S == "Linux") then the parameters are 0S, browser,
protocol, cpu, dbms, java_version

Practical testing problems may be more complex than this example,
and may have multiple constraints among parameters

Dimitris E. Simos, SBA Research & Institute for Software Technology .
May 31, 2017 i ST

Highly Configurable Software Systems nflary,
Exercise: Testing Android Configurations

= App should work on all combinations of platform options
= Develop a set of test configurations in CITLAB tool

= That allows testing across all t-way combinations of these
options

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Highly Configurable Software Systems

Ty

Testing Android Configurations (Our Configuration Space)

= Resource configuration file for Android apps

= A total of 35 options may be set

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017

HARDKEYBOARDHIDDEN_NO
HARDKEYBOARDHIDDEN_UNDEFINED
HARDKEYBOARDHIDDEN_YES

KEYBOARDHIDDEN_NO
KEYBOARDHIDDEN_UNDEFINED
KEYBOARDHIDDEN_YES

KEYBOARD_12KEY
KEYBOARD_NOKEYS
KEYBOARD_QWERTY
KEYBOARD_UNDEFINED

NAVIGATIONHIDDEN_NO
NAVIGATIONHIDDEN_UNDEFINED
NAVIGATIONHIDDEN_YES

NAVIGATION_DPAD
NAVIGATION_NONAV
NAVIGATION_TRACKBALL
NAVIGATION_UNDEFINED
NAVIGATION_WHEEL

ORIENTATION_LANDSCAPE
ORIENTATION_PORTRAIT
ORIENTATION_SQUARE
ORIENTATION_UNDEFINED

SCREENLAYOUT _LONG_MASK
SCREENLAYOUT _LONG_NO
SCREENLAYOUT_LONG_UNDEFINED
SCREENLAYOUT_LONG_YES

SCREENLAYOUT_SIZE_LARGE
SCREENLAYOUT_SIZE MASK
SCREENLAYOUT_SIZE NORMAL
SCREENLAYOUT _SIZE_SMALL
SCREENLAYOUT_SIZE_UNDEFINED

TOUCHSCREEN_FINGER
TOUCHSCREEN_NOTOUCH
TOUCHSCREEN_STYLUS
TOUCHSCREEN_UNDEFINED

Highly Configurable Software Systems nflary,

Android Configuration Model

= This set of Android options has 172,800 possible configurations
"= 3x3x4x3x5x4x4x5x4=172,800 configurations
= A 334452 gystem

Model Android|

Parameters:
Enumerative HARDKEYBOARDHIDDEN { NO UNDEFINED YES };
Enumerative KEYBOARDHIDDEN { NO UNDEFINED YES };
Enumerative KEYBOARD { 12KEY NOKEYS QWERTY UNDEFINED };
Enumerative NAVIGATIONHIDDEN { NO UNDEFINED YES };
Enumerative NAVIGATION { DPAD NONAV TRACKBALL UNDEFINED WHEEL };
Enumerative ORIENTATION { LANDSCAPE PORTRAIT SQUARE UNDEFINED };
Enumerative SCREENLAYOUT_LONG { MASK NO UNDEFINED YES };
Enumerative SCREENLAYOUT_SIZE { LARGE MASK NORMAL SMALL UNDEFINED };
Enumerative TOUCHSCREEN { FINGER NOTOUCH STYLUS UNDEFINED };

end

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Highly Configurable Software Systems nflary,
Cost and Practical Considerations

If each test suite can be run in 15 min
Roughly 24 staff-years to complete the testing for an app

With salary and benefit costs for each tester of 150,000 EUR,
the cost of testing an app will be more than 3 million EUR

Virtually impossible to return a profit for most apps
Number of combinatorial tests is a fraction of an exhaustive test

set

t # Tests % of Exhaustive
2 29 0.02

3 137 0.08

4 625 0.4

I 2532 15

6 9168 53

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
i)ST

May 31, 2017

Software Testing & Verification Ty

Part Ill

Input Testing

Dimitris E. Simos, SBA Research & Institute for Software Technology Ny
May 31, 2017 i ST

Software Testing & Verification

Outline of Part IlI: Input Testing

9. Preliminaries

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

Software Testing & Verification Ty

Outline of Part IlI: Input Testing

9. Preliminaries

10. Partitioning the Input Space

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Software Testing & Verification Ty

Outline of Part IlI: Input Testing
9. Preliminaries
10. Partitioning the Input Space

11. Input Variables versus Test Parameters

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Software Testing & Verification Ty

Outline of Part IlI: Input Testing
9. Preliminaries
10. Partitioning the Input Space
11. Input Variables versus Test Parameters

12. Detectability of Faults

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Preliminaries Ty

Input Space

Input Space

The input space of a (test) program P consists of k-tuples of values
that could be input to P during execution

Example: Sample Program

= Consider program P that takes two integers x > 0and y > 0 as
inputs (i.e. P(x,y))
= The input space of P is the set of all pairs of positive integers

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Preliminaries

iy,
Input Testing: Example

Testing of a booking application (many input fields)

* travelocity Many values per variable
Need to abstract values

[e Cotion Fcluscze N RS g ot But we can still increase information per test

TravelInfo Certer Flight Status Destination Guides Tran

| Packages | Hotels | cars | GIETE

O o Plan: flit, flt+hotel, flt+hotel+car
Flight Only Boo LLlluq Hotel .
OFiight + Hotel \LDJJ}_U From: CONUS, HI, Europe, Asia ...
OFtight + Hotel + Car Sz To: CONUS, HI, Europe, Asia ...
from: i Compare: yes, ho

[] Compare surrounding airports

,,,,,,,,,,,,,,,,, » Date-type: exact, 1103, flex
Depart: today, tomorrow, 1yr, Sun, Mon ...

(@ Exactdates () +£ 103 days () Flesdible dates

Depart iy || Arime [Return: today, tomorrow, 1yr, Sun, Mon ...
Return: mmidllyyyy |]| Anytime v Aqmts; 1,2,3,4,5,6

Adults (15-64) Minors (2-17) Seniors (65+) Minors: 0, 1, 2, 3, 4.5

1 (v 0 v 0 [w

Seniors: 0, 1,2, 3,4,5

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017 0@“

Preliminaries Ty

Methodology: How to Create an Input Model

Model the Input Space

1. ldentify possible parameters of the (test) program

2. Map them to input parameters

3. Select (combinations of) input data values

4. Express the resulting model in terms of factors (parameters) and
respective levels (values)

= The model is plugged-into the combinatorial test design process
to generate test cases (using a proper algorithmic procedure)

= Combinatorial Aspect: Combinatorial coverage of input data
values is required for tests constructed

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Partitioning the Input Space Ty

Testing of F-16 Ventral Fin

= Problem: Unknown factors causing failures of F-16 ventral fin
= LANTIRN pod carriage on the F-16

LANTIRN Pod
Location
Ventral Fin A04-14639006

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Partitioning the Input Space

F-16 Ventral Fin Damage on Flight with LANTIRNA
4Thanks to Rick Kuhn. US NIST
It’s not supposed to look like this:

A04-14639001

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017

Partitioning the Input Space Ty
Input Model for Testing of F-16 Ventral Fin

= Original solution: Lockheed Martin engineers spent many
months with wind tunnel tests and expert analysis to consider
interactions that could cause the problem

= CT solution: modelling and simulation using CITLAB

Aircraft 15, 40

Altitude 5k, 10k, 15k, 20k, 30k, 40k, 50k

hi-speed throttle, slow accel/dwell, L/R 5 deg
side slip, /R 360 roll, R/LL 5 deg side slip, Med
accel/dwell, R-L-R-L banking, Hi-speed to Low,
Maneuver 360 nose roll

WS OLLST] 40, 50, 60, 70, 80, 90, 100, 110, 120

How were the parameter values selected??

Dimitris E. Simos, SBA Research & Institute for Software Technology

May 31, 2017 | ‘S‘T

Partitioning the Input Space Ty
Methods to Select Representative Values

Modelling Methods

Category or equivalence partitioning and boundary value analysis

= Objective: partition the input space such that any value selected
from the partition will affect the system under test in the
same way as any other value in the same class of the partition

= That is, from a testing standpoint, the values in the same class of
a partition are equivalent (hence the name “equivalence class”)

= Thus, ideally if a test case contains a parameter x that has value
y, replacing y with any other value from the same class of the
partition will not affect the test case result

= This ideal may not always be achieved in practice

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Input Variables versus Test Parameters Ty,

ﬂ Testing of an Access Control Module

SUT: Access Control Module

A program that implements a certain policy

Access is allowed if and only if:

= The subject is an employee

= AND the current time is between 9 a.m. and 5 p.m.

= AND it is not a weekend

= OR the subject is an employee with a special authorization code

= OR the subject is an auditor AND the time is between 9 a.m. and 5
p.m. (not constrained to weekdays)

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Input Variables versus Test Parameters Ty,

Exercise: Testing an Access Control Module

= The values for a particular access attempt would be passed to a
module that returns a "grant” or "deny” access decision

= Using a function call such as access_decision(emp, time,
day, auth, aud)

= Develop a suitable input parameter model

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Input Variables versus Test Parameters Ty,

Testing of an Access Control Module (Our Input Space)

= We are dealing with input parameters rather than configuration
options

= Select representative values (supplemented with extreme values)
for the hour parameter

emp: boolean;

time: 0..1440; // time in minutes
day: {m, tu,w, th, £,sa,su};

auth: boolean;

aud: boolean;

Parameters and Values for Access Control Example

Parameter Values

emp 0,1

time 2

day m, tu,w,th, f,sa,su
auth 0,1

aud 0,1

Dimitris E. Simos, SBA Research & Institute for Software Technology Q)
May 31, 2017 i)S/T

Input Variables versus Test Parameters

How to Select Representative Values?

= Select values from various points on the range of a parameter
(simple approach)
= However, partitions are best determined from the specification

Example: Access Control Module

9 AM and 5 PM are significant; so 0540 (9h past midnight in minutes)
and 1020 (17h past midnight in minutes) could be used to determine

the appropriate partitions

0000 0540 1020 1440

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 i S)T]

Input Variables versus Test Parameters Ty,

Boundary Value Analysis

= |deally, the program should behave the same for any of the times
within the partitions

= |t should not matter whether the time is 4:00 AM or 7:03 AM (the
specification treats both these times the same)

= Similarly, it should not matter which time between the hours of 9
AM and 5 PM is chosen

= The access control program should behave the same for 10:20
AM and 2:33 PM

Boundary Value Analysis

Select values at each boundary and at the smallest possible unit on
either side of the boundary, for three values per boundary

= One possible selection of values for the time parameter would
then be: 0000, 0539, 0540, 0541, 1019, 1020, 1021, and 1440

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Input Variables versus Test Parameters Ty,

Number of Tests for the Access Control Module

= The total number of combinations is2 x 8 x 7 x 2 x 2 = 448

= Generating covering arrays for t = 2 through 4 results in the
following number of tests

t # Tests
2 56
3 112
4 224

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Detectability of Faults nflary,

E Sample of Faulty Code (2-way Interaction Fault)

= |f two boolean conditions are true, faulty code is executed
resulting in a failure

if (pressure<10) {
//do something
if (volume >300) {
//faulty code! BOOM!
} else {
//good code, no problem

}
} else {
//do something else

}

= The branches pressure < 10 and volume > 300 are correct and
the fault occurs in the code that is reached when these
conditions are true

= Any 2-way covering array with values for pressure and volume
that will make the conditions true can detect the problem

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Detectability of Faults nflary,

Exercise: Detecting a t-way Fault

Develop a t-way covering array, for suitable ¢, capable of detecting the
following fault:

if ((A <10 || B > 0) & C > 90) faulty code

else correct code

Dimitris E. Simos, SBA Research & Institute for Software Technology
May 31, 2017 [S)T]

Detectability of Faults

Ty

H Solution

A 2-way array is needed, because either A && CorB && C will
cause a branch into the faulty code

TESTER,

|
II:UIINIIAIIEFH_;' :
TODAY: -~

_memefengfator.net

Dimitris E. Simos, SBA Research & Institute for Software Technology 0@3

May 31, 2017

Conclusion Ty
E Summary

Highlights

1. Applications of combinatorial methods to problems of software
testing:

= interaction rule and t-way interaction faults
= can be used as configuration testing and/or input testing

2. Combinatorial testing guarantees 100% t-way coverage

= provided by mathematical objects, called covering arrays
= many available CA generation tools

3. Many practical exercises for configuration testing and input
testing using the CITLAB tool

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

Conclusion Ty

Questions - Comments

Thank you for your Attention!

dsimos@ist.tugraz.at

Dimitris E. Simos, SBA Research & Institute for Software Technology NN
May 31, 2017 i)S/T

	Combinatorial Methods in Testing
	Motivation
	Software Failures and the Interaction Rule
	Two Forms of Combinatorial Testing
	Covering Arrays

	Configuration Testing
	Preliminaries
	Runtime Environment Configurations
	Invalid Combinations and Constraints
	Highly Configurable Software Systems

	Input Testing
	Preliminaries
	Partitioning the Input Space
	Input Variables versus Test Parameters
	Detectability of Faults

