
 5

This chapter describes the simplest kind of model-based testing, which is
based on finite state machines (FSMs). Each node of an FSM corresponds to
a particular state of the SUT and each arc corresponds to an SUT action, so
to generate test sequences we can just traverse the FSM.

We start with simple FSM models that are suitable for testing passive sys-
tems, such as unit testing of an object or class, and for testing deterministic
reactive systems, where events occur in a known order. We use a simple FSM
model to test the Qui-Donc service of France Telecom. Then we extend that
to extended finite state machines (EFSM), which increase the expressiveness of
FSMs by adding variables, state updating commands, and transition guards.
We use a parameterized EFSM model to do unit testing of a hierarchy of
Java classes.

Chapter 7 extends the ideas discussed in this chapter by using Unified
Modeling Language (UML) state machines, which support nested machines
and parallel machines.

139

140 Testing from Finite State Machines

5.1 -

Qui-Donc (literal translation, “Who then?”) is a service provided by France
Telecom that does the opposite of the white pages—it allows you to enter
a telephone number and find out the name and address associated with the
number. It can be very useful in conjunction with caller ID! It is a vocal
service, which you use by dialing the telephone number 08 92 68 01 11 and
then listening to the vocal messages and pressing buttons on the keypad of
your phone. Of course, the Qui-Donc service is actually all in French, but
we’ve translated it into English for those readers who ne parlent pas le français.

Let’s assume that we have been contracted to do some independent test-
ing of the Qui-Donc system, to check that its behavior matches its require-
ments. The next section shows the informal requirements that we have been
given. In Section 5.1.2 we develop a simple FSM model of the expected be-
havior of the Qui-Donc system, and in Section 5.1.3 we generate tests from
that FSM. Since the outputs of the Qui-Donc system are all spoken phrases
and we want to use a real telephone as our input device, we decided not to
try to automate the execution of the tests. Instead, we will aim to choose
test generation techniques that produce a smallish set of tests so that manual
execution of the tests is practical.

5.1.1 Informal Requirements

After the caller dials 08 92 68 01 11, the Qui-Donc system responds by
giving the WELCOME message, “Welcome to Qui-Donc. Please press the
star key.” This message is repeated up to three times, separated by a timeout
of 6 seconds. If no star key is detected during this whole process, then the
NOTALLOW message is given: “Your telephone does not allow access to the
Qui-Donc service,” and the call is disconnected.

If a star key is detected during the above process, then the ENTER mes-
sage is given: “Please enter the 10-digit telephone number of the subscriber
you are looking for, followed by the pound key.” This message is repeated up
to three times, but with a longer timeout of 20 seconds; if no numbers and
hash, or pound (#), key are entered, then the call is terminated with the BYE
message: “Thank you for using the Qui-Donc service.”

If some digits followed by a pound key were detected, and the number
was one of the emergency numbers, 15, 17, or 18 (for ambulance, police, and
fire brigade, respectively), then an explanation of that emergency number is
given, followed by the message: “If you want to do another search, press
star.” If the entered number did not contain 10 digits and was not one of the
emergency numbers, then the ERROR message is given: “Invalid number

5.1 Testing Qui-Donc with a Simple FSM 141

entered. Please enter another number, followed by the pound key.” However,
if the entered number was 10 digits, then it is looked up in the white pages
database. If the number is not in the database, then the SORRY message is
given: “Sorry. The number NN NN NN NN NN does not appear in the
white pages,” and the caller goes back to the ENTER process.

If the entered number is in the database, the NAME message is given:
“The number NN NN NN NN NN corresponds to SURNAME, INI-
TIALS,” then the Qui-Donc system enters the information menu.

The information menu gives the INFO message, “Press 1 to spell the
name, press 2 to hear the address, or press star for a new search.” If 1 is
entered, then the name is spelled out and it returns to the information menu.
If 2 is entered, then the address is given and it returns to the information
menu. If star is entered, then it goes to the number-entry process, starting
with the ENTER message. If no keys are pressed, then the INFO message is
repeated after a timeout of 6 seconds; and after this message has been given
three times without response, the call is terminated with the BYE message.

In addition to these processes, note that the caller can hang up at any
moment.

5.1.2 Modeling Qui-Donc with an FSM

The first step in writing any model is always to decide what to ignore. That
is, we need to take a very abstract view of the system to keep our FSM small
enough. After all, there are 10

10 possible 10-digit phone numbers—we can-
not test all of those, and we certainly do not want to create an FSM that big!
The kinds of fault that we want to find in the Qui-Donc system are logical
faults, such as an incorrect message being given or the wrong menu being
presented. We are not intending to test the contents of its database, which is
all the numbers, names, and addresses in the white pages.

So, for testing purposes we decide that we will test just the four keys on
the phone that Qui-Donc treats as special inputs (1, 2, * and #), plus four
representative telephone numbers for when Qui-Donc asks for a telephone
number:

18 This is the emergency number for the fire brigade. We make a uniformity
hypothesis that if one of the emergency numbers behaves correctly, then
all of them will, so testing one of them will be enough.1

1If Qui-Donc were a safety-critical application, we would not make this kind of assumption about
the emergency numbers; rather we would want to test the set of emergency numbers exhaustively.

142 Testing from Finite State Machines

num1 (03 81 11 11 11). When we ring this number, it seems to be dis-
connected, so we assume that this number is not in the white pages
database.

num2 (03 81 22 22 22). We found this number in the white pages by choos-
ing K. J. Renard at random. His address is 45 rue de Vesoul, Besançon, and
we assume that this information is in the white pages database.

bad (12 34 56 78 9). The bad number is a number with just fewer than 10
digits. Here, we make another uniformity hypothesis, assuming that this
number is a representative sample for all possible numbers that contain
fewer than 10 digits or more than 10 digits. Thinking about boundary
testing, it would be good to have an 11-digit input as well, but we leave
this as an exercise for the reader.

So the input alphabet of our model (the set of all the different inputs that we
will send to the Qui-Donc system) is:

{dial,num1,num2,bad,18,1,2,*,#,wait}

Let’s just explain how these will relate to the real-world test inputs. The
dial input means to pick up the phone (after resetting it by hanging up,
if necessary), dial the Qui-Donc service (08 92 68 01 11), and wait for a
response. The single digits, 1 and 2, and the * and # inputs mean that the
person executing the tests should just press that key and wait for the Qui-
Donc system to respond. The 18 means press 1, then 8, then the # key, taking
a total of less than 6 seconds to do this. The num1 input means press all 10
digits of that number (0, 3, 8, 1, 1, 1, 1, 1, 1, 1) followed by the # key and
do all this in just less than 20 seconds.

Similarly for num2 (but to be different, we will enter num2 as quickly as
we can), and for the bad input, which has only 9 digits (1, 2, 3, 4, 5, 6, 7, 8,
9, #). The wait input means wait, without pressing any keys, until the Qui-
Donc system does something—it should time out after 20 seconds for the
ENTER states and after 6 seconds for the other states. (For simplicity, we have
not bothered to distinguish between these two timeouts in our model, but
this could easily be done by annotating some of the output messages with the
length of the pause that is expected before the output message is produced—
for example, by having several different ENTER outputs, like ENTER0, ENTER6,
and ENTER20, so that the person executing the test knows exactly how long
to wait before expecting the ENTER message.)

5.1 Testing Qui-Donc with a Simple FSM 143

So, given a sequence of abstract input values like this,

dial, wait, *, Num1, 2, wait, wait, wait

our manual tester will know exactly what to press, and when. For this partic-
ular sequence of input stimuli, the resulting sequence of messages from the
Qui-Donc system should be:

WELCOME, WELCOME, ENTER, NAME+INFO, ADDR, INFO,

INFO, BYE (it hangs up).

Rather than write each test case with its input sequence and expected output
sequence separated like this, we usually write it as a sequence of input/output
pairs:

dial/WELCOME, wait/WELCOME, */ENTER, num1/NAME+INFO,

2/ADDR, wait/INFO, wait/INFO, wait/BYE (it hangs up).

Each transition of our finite state machine will be labeled with a single in-
put/output pair like this. This means that our FSM is a Mealy machine
[LY96], which is the most common kind of FSM used to specify software
and hardware systems. In a Mealy machine, each transition is labeled with
an input i and an output o. When used for testing purposes, each transition
defines one step in a test case—the input i is the stimulus that is sent to the
SUT, and the output o is the expected response of the SUT. We sometimes

write a transition from state s to state s′ as s
i/o

−→ s′.
When designing your FSM model, you may find that some transitions

seem to need to be labeled with multiple outputs, or zero outputs, because
your SUT does not always produce exactly one response for each input. For
example, the Qui-Donc requirements show that the num1 input can result
in our hearing two messages, the NAME message immediately followed by
the INFO prompt message. In this case, we must package up those two out-
puts and model them as one single output message. You may also come
across situations where your SUT does not produce any output for a given
input/– this can be modeled as a transition labeled with something like
“input/−,” where the output symbol “−” just means “expect no response
from the SUT.”

The important thing about Mealy machine models is that every tran-
sition must be labeled with exactly one input. It is not acceptable to have
transitions with no inputs because it would mean that the SUT could pro-
duce outputs spontaneously rather than being under the control of the test
case. Later in the book (e.g., Sections 6.5 and 7.3), we discuss more power-
ful modeling notations that can be used for those kinds of nondeterministic
reactive systems.

144 Testing from Finite State Machines

Key Point A Mealy machine model has a finite set of states, plus

many transitions that go from one state to another. Each transition

must be labeled with exactly one input and one output (which may

be “−”). The machine must have one initial state and may optionally

have one or more final states.

Each test generated from a Mealy machine FSM model is a sequence of
transitions, which starts from the initial state and ends in one of the final
states. If there are no final states, then the test case is allowed to end in any
state. If your SUT requires a complete sequence of events (e.g., login, do
some transactions, then logout), then adding a final state (after the logout
transition) allows you to force all the generated test sequences to be complete.

Figure 5.1 shows the finite state machine that we can design from these
requirements and assumptions. It is written graphically as a state transition
diagram, and its output messages are listed in Table 5.1. Note that several
of them are the concatenation of an informational message followed by the
ENTER or INFO prompt, so the prompt strings are repeated in several messages.
In this model, we have one final state, which is the same as our initial state.
This means that we want all of the generated tests to end up in the Start

state, ready to commence a new call.
Does this finite state machine seem to you to be quite complex for such

a simple system? We agree. This is because the three levels of timeout create
a lot of duplication and make the diagram rather cluttered. We will see later
in this chapter that the use of extended finite state machines (EFSMs) can
eliminate this kind of duplication and dramatically simplify the FSM by
adding a variable to count the number of timeouts.

However, things may get worse before they get better because the FSM in
Figure 5.1 is not even complete yet. That is, it has some states that do not have
a transition for every possible input. Our input alphabet contains 10 symbols,
so every state of our FSM should have 10 transitions leaving it, except the
Start state, where we decide that dial is the only meaningful input because
we are not yet connected to the Qui-Donc system. For example, the Star1

state does not specify what should happen if a number is pressed rather than
*, and the Info1 state does not specify what happens if a phone number
is entered. It is so tedious to specify all these transitions that it is usual to
follow the convention that unexpected inputs are simply ignored, leaving the
state unchanged. This effectively completes the FSM by adding implicit loop
transitions from each state back to itself for each unspecified input. If we
showed all those extra transitions on the diagram, it would be too cluttered
to read.

5.1 Testing Qui-Donc with a Simple FSM 145

F . Qui-Donc FSM model.

Table 5.2 shows the same FSM written as a state table, with one column
for each input symbol. This is a good representation for seeing missing tran-
sitions. The entries in italics show the transitions that we would need to add
to make the FSM complete. The dial column models the effect of hang-
ing up in the middle of a transaction and redialing the Qui-Donc system (it
would be possible to divide this into separate hangup and dial inputs, but
we have merged them for simplicity). The remaining italic entries show the
effect of the ignore unexpected inputs convention—every missing transition
is assumed to leave the state unchanged. If we add all these italicized tran-
sitions, the FSM is complete (except for the Start state) because each state
has a transition for every input.

146 Testing from Finite State Machines

T . The Output Alphabet of the Qui-Donc Model

Output Symbol Concrete Message

WELCOME “Welcome to Qui-Donc. Please press the star key.”

NOTALLOW “Your telephone does not allow access to the Qui-Donc service.”

ENTER “Please enter the 10-digit telephone number of the subscriber you are
looking for, followed by the pound key.”

ERROR “Invalid number entered. Please enter another number, followed by
the pound key.”

FIRE “18 is the emergency number for the fire brigade. If you want to do
another search, press star.”

SORRY “Sorry. The number 03 81 11 11 11 does not appear in the white
pages. Please enter the 10-digit telephone number of the subscriber
you are looking for, followed by the pound key.”

NAME “The number 03 81 22 22 22 corresponds to Renard, K. J. Press 1
to spell the name, press 2 to hear the address, or press star for a new
search.”

INFO “Press 1 to spell the name, press 2 to hear the address, or press star for
a new search.”

SPELL “Renard is spelled R, E, N, A, R, D. Press 1 to spell the name, press 2
to hear the address, or press star for a new search.”

ADDR “The address of Renard, K. J. is 45 rue de Vesoul, Besançon. Press 1
to spell the name, press 2 to hear the address, or press star for a new
search.”

BYE “Thank you for using the Qui-Donc service.”

Another common way to represent an FSM is as a set of transitions,
written as (CurrentState, Input, Output, NextState) quadruples.

(Start, dial, WELCOME, Star1)

(Star1, wait, WELCOME, Star2)

(Star1, *, ENTER, Enter1)

(Star2, wait, WELCOME, Star3)

(Star2, *, ENTER, Enter1)

. . .

Whichever representation we use, after we have finished designing our
model we should spend a little time validating it. The list on page 148 shows
some of the properties that we could check.

T . Qui-Donc FSM Model as a State Table

Input dial num1 num2 bad 18 1 2 * # wait

Start WELCOME
Star1

Star1 WELCOME – – – – – – ENTER – WELCOME
Star1 Star1 Star1 Star1 Star1 Star1 Star1 Enter1 Star1 Star2

Star2 WELCOME – – – – – – ENTER – WELCOME
Star1 Star2 Star2 Star2 Star2 Star2 Star2 Enter1 Star2 Star3

Star3 WELCOME – – – – – – ENTER – NOTALLOW
Star1 Star3 Star3 Star3 Star3 Star3 Star3 Enter1 Star3 Start

Enter1 WELCOME SORRY NAME ERROR FIRE – – – – ENTER
Star1 Enter1 Info1 Enter1 Emerg Enter1 Enter1 Enter1 Enter1 Enter2

Enter2 WELCOME SORRY NAME ERROR FIRE – – – – ENTER
Star1 Enter1 Info1 Enter1 Emerg Enter2 Enter2 Enter2 Enter2 Enter3

Enter3 WELCOME SORRY NAME ERROR FIRE – – – – BYE
Star1 Enter1 Info1 Enter1 Emerg Enter3 Enter3 Enter3 Enter3 Start

Emerg WELCOME – – – – – – ENTER – BYE
Star1 Emerg Emerg Emerg Emerg Emerg Emerg Enter1 Emerg Start

Info1 WELCOME – – – – SPELL ADDR ENTER – INFO
Star1 Info1 Info1 Info1 Info1 Info1 Info1 Enter1 Info1 Info2

Info2 WELCOME – – – – SPELL ADDR ENTER – INFO
Star1 Info2 Info2 Info2 Info2 Info1 Info1 Enter1 Info2 Info3

Info3 WELCOME – – – – SPELL ADDR ENTER – BYE
Star1 Info3 Info3 Info3 Info3 Info1 Info1 Enter1 Info3 Start

1
4
7

148 Testing from Finite State Machines

Deterministic: An FSM is deterministic if for every state, every transition
out of that state is labeled with a different input. This is a crucial prop-
erty for many FSM algorithms because otherwise, it is ambiguous which
transition we should take out of that state.

Initially connected: An FSM is initially connected if every state is reachable
from the initial state. If your FSM is not initially connected, then you
have almost certainly made an error because it means that part of your
FSM is unusable and cannot be tested. It is usually easy to see if an FSM
is initially connected by a quick visual inspection of the FSM diagram.

Complete: An FSM is complete if for each state, the outgoing transitions
cover all inputs. As mentioned, it is easy to make an FSM complete by

adding all the self-transitions s
i/−
−→ s for every state s that does not have

an outgoing transition with an input i.

Minimal: An FSM is minimal if it has no redundant states. That is, it does
not have two distinct states that generate the same set of input/output
sequences. A nonminimal FSM is not a major problem; it just means that
you could have designed a simpler FSM that was equivalent. There are
efficient algorithms for transforming a nonminimal FSM into a minimal
equivalent FSM [Hop71].

Strongly connected: An FSM is strongly connected if every state is reachable
from every other state. This means that there are no states or loops that
you can get stuck in—there is always a path out to the rest of the FSM.
This is a strong restriction and not always desirable. However, if the SUT
has a reset method that sets it back to the initial state (like hanging up
the phone in the Qui-Donc example), then the FSM is automatically
strongly connected whenever it is initially connected.

Our Qui-Donc FSM in Figure 5.1 is deterministic, initially connected,
strongly connected, and minimal. This is good. Now that we have a model of
the expected behavior of the Qui-Donc system, we consider how to generate
tests from this model.

5.1.3 Generating Tests

We now show a series of simple techniques for generating tests from our
Qui-Donc model, starting with some that generate small and rather inade-
quate test suites and progressing to techniques that generate such large and
comprehensive test suites that they are rarely practical. We focus initially on
generating tests from just the explicit Qui-Donc model that contains only

5.1 Testing Qui-Donc with a Simple FSM 149

the transitions shown in Figure 5.1, rather than from the complete model
that also includes all the implicit transitions (italicized) shown in Table 5.2.

, ,
State coverage is a simple and popular coverage criterion. It measures the per-
centage of FSM states that are visited during the test execution. For example,
here is a minimal length test suite (1 test, with just 12 transitions) that gives
us 100 percent state coverage:

dial/WELCOME, wait/WELCOME, wait/WELCOME,

*/ENTER, wait/ENTER, wait/ENTER, 18/FIRE, */ENTER,

num2/NAME, wait/INFO, wait/INFO, wait/BYE.

As you can see, this is a very weak test suite. It does not test any bad num-
bers or unknown numbers and does not even ask for the spelling or address
information.

Input coverage is another simple coverage metric. It measures how many
distinct input symbols have been sent to the SUT. For example, here is a test
sequence that gives us 90 percent coverage of our 10 possible inputs.

dial/WELCOME, */ENTER, bad/ERROR, num1/SORRY, num2/NAME,

1/SPELL, 2/ADDR, */ENTER, 18/FIRE, wait/BYE.

This is an even shorter test than the previous one, and it does not test the
timeout behavior at all, so it is a very weak test suite.

Why didn’t we get 100 percent input coverage? Because, surprisingly,
the remaining input # does not appear on any transitions of our explicit
FSM model (Figure 5.1). Failing to reach 100 percent coverage of a simple
coverage metric like input coverage can be a useful warning sign that we
have forgotten something in our model. However, in this case, our reason
for including # in the set of inputs was just so that we could perform some
robustness testing using the complete FSM model. So it is acceptable that we
cannot reach 100 percent coverage in the explicit model. It is easy to reach
100 percent input coverage in the complete model—just add the transition
#/− after the dial/WELCOME transition.

It is possible to define output coverage in a similar way to input coverage,
so that it measures how many distinct output responses have been received
from the SUT. For example, the short test that covers 9/10 of the inputs also
covers 9/11 of the possible outputs. We have seen little discussion of output
coverage in the testing literature, but it is similar to the cause-effect heuristic
[Mye79], which says to try to test the inputs that cause the SUT to produce
different responses/effects/outputs.

All these coverage metrics are too easily satisfied, so even 100 percent
state coverage, input coverage, or output coverage gives us no confidence

150 Testing from Finite State Machines

that we have generated a reasonably comprehensive test suite. In fact, the
goal of this section is to persuade you to never be satisfied with just these
weak metrics! Let us now investigate a stronger coverage, which covers every
transition.

Transition coverage measures how many of the transitions of the FSM have
been tested. So 100 percent transition coverage means that every transition
has been tested at least once. There are many ways to generate a test suite that
has 100 percent transition coverage. For example, a random path through the
FSM will eventually cover all the transitions.2 However, the best way to gen-
erate the smallest possible test suite that has 100 percent transition coverage
is to do a transition tour of the FSM. A transition tour is a minimum-length
circular path through the FSM that visits every transition at least once.

The best way to generate a transition tour of an FSM is to use the Chinese
postman algorithm, which was invented by the Chinese mathematican Guan
Mei Gu [Gua62]. It finds the shortest path through a graph that visits every
edge.3 Thimbleby [Thi03] gives an excellent description of the algorithm

and its applications and includes a full Java implementation.4

When we apply that algorithm to our Qui-Donc FSM, we get the tour
shown in Listing 5.1, which dials up the Qui-Donc service just four times
and contains a total of 61 steps. This is a very nice test suite, which exercises
all the states, all the inputs, all the outputs, and all the transitions of our
model, yet would take only about 15 minutes to execute (assuming that
each transition takes an average of 15 seconds and to tap one or two keys
and then listen to the response).

Transition coverage is stronger than state coverage because if we have
tested all the transitions, we must also have visited every state at each end
of those transitions (we assume that the FSM is initially connected). So if
you use a transition-tour test generation algorithm, you not only have 100
percent transition coverage, but you also get 100 percent state coverage. State
coverage is analogous to statement coverage in programming languages, and

2We assume here that the FSM is initially connected so that all states are reachable from the initial
state. If the FSM graph is not also strongly connected, then the random path generator should
occasionally perform a reset operation to return to the initial state and ensure that all transitions
are reachable.
3Compare this with the well-known traveling salesman problem, which visits every node of the
graph, but not necessarily every edge. A traveling salesman algorithm gives 100 percent state
coverage of an FSM, but not necessarily 100 percent transition coverage.
4His Java implementation can be downloaded from http://www.uclic.ucl.ac.uk/harold/cpp.

5.1 Testing Qui-Donc with a Simple FSM 151

L . Transition tour of the Qui-Donc partial FSM (4 tests with a total
of 61 transitions).

1. dial/WELCOME, */ENTER, wait/ENTER, num1/SORRY, wait/ENTER,

bad/ERROR, wait/ENTER, 18/FIRE, */ENTER, num2/NAME,

wait/INFO, */ENTER, wait/ENTER, num2/NAME, wait/INFO, 2/ADDR,

wait/INFO, 1/SPELL, wait/INFO, wait/INFO, */ENTER, wait/ENTER,

wait/ENTER, num1/SORRY, wait/ENTER, wait/ENTER, bad/ERROR,

wait/ENTER, wait/ENTER, 18/FIRE, */ENTER, wait/ENTER,

wait/ENTER, num2/NAME, wait/INFO, wait/INFO, 2/ADDR,

wait/INFO, wait/INFO, 1/SPELL, 2/ADDR, 1/SPELL, wait/INFO,

wait/INFO, wait/BYE

2. dial/WELCOME, wait/WELCOME, */ENTER, num1/SORRY, bad/ERROR,

wait/ENTER, wait/ENTER, wait/BYE

3. dial/WELCOME, wait/WELCOME, wait/WELCOME, */ENTER, num2/NAME,

*/ENTER, 18/FIRE, wait/BYE

4. dial/WELCOME, wait/WELCOME, wait/WELCOME, wait/NOTALLOW,

transition coverage is analogous to branch coverage. In the case where every
input appears somewhere in your explicit FSM model, then a transition tour
also gives 100 percent input coverage. It works similarly for output coverage.

If we had included all the dial transitions in our FSM model to model
the fact that from any state we can hang up the phone and then redial the
Qui-Donc number to start a new session (these transitions are shown in the
leftmost column of Table 5.2), then the transition tour would contain 14
tests, with a total of 89 transitions. This test suite extends the previous test
suite by also testing that the Qui-Donc system resets itself correctly when a
caller hangs up unexpectedly.

More interesting is Listing 5.2, which shows the test suite generated by
a transition tour of the (almost) complete version of our FSM model, which
includes all the default transitions shown in italics in Table 5.2, except for the
italicized dial transitions. This test suite tries all the illegal and unexpected
input values in each state, so it tries to test that the Qui-Donc system does
indeed ignore all inputs that are not mentioned in its requirements.

However, if we execute this test suite, we find a few surprises (see the
transitions in boxes in Listing 5.2):

• The 16th transition in test 1 has an input of # (from state Enter2), and
we find that this is not ignored by Qui-Donc; because it is interpreted
as a telephone number with zero digits, it produces the ERROR output.
In fact, this is the correct behavior, so we realize that we have an error in

152 Testing from Finite State Machines

L . Transition tour of the Qui-Donc complete FSM (4 tests with
a total of 126 transitions).

1. dial/WELCOME, #/-, 2/-, 1/-, 18/-, bad/-, num2/-, num1/-,

dial/-, */ENTER, wait/ENTER, num1/SORRY, wait/ENTER,

bad/ERROR, wait/ENTER, #/- , */-, 2/-, 1/-, dial/-, 18/FIRE,

*/ENTER, num2/NAME, wait/INFO, */ENTER, wait/ENTER, num2/NAME,

wait/INFO, 2/ADDR, wait/INFO, 1/SPELL, wait/INFO, wait/INFO,

*/ENTER, wait/ENTER, wait/ENTER, num1/SORRY, wait/ENTER,

wait/ENTER, bad/ERROR, wait/ENTER, wait/ENTER, #/-, */-,

2/-, 1/-, dial/-, 18/FIRE, */ENTER, wait/ENTER, wait/ENTER,

num2/NAME, wait/INFO, wait/INFO, 2/ADDR, wait/INFO,

wait/INFO, 1/SPELL, #/-, 18/- , bad/- , num2/-, num1/-,

dial/-, 2/ADDR, 1/SPELL, wait/INFO, #/-, 18/-, bad/-, num2/-,

num1/-, dial/-, wait/INFO, #/-, 18/-, bad/-, num2/-, num1/-,

dial/-, wait/BYE

2. dial/WELCOME, wait/WELCOME, #/-, 2/-, 1/-, 18/-, bad/-,

num2/-, num1/-, dial/-, */ENTER, #/-, */-, 2/-, 1/-, dial/-,

num1/SORRY, bad/ERROR, wait/ENTER, wait/ENTER, wait/BYE

3. dial/WELCOME, wait/WELCOME, wait/WELCOME, #/-, 2/-, 1/-, 18/-,

bad/-, num2/-, num1/-, dial/-, */ENTER, num2/NAME, */ENTER,

18/FIRE, #/-, 2/-, 1/-, 18/-, bad/-, num2/-, num1/-,

dial/-, wait/BYE

4. dial/WELCOME, wait/WELCOME, wait/WELCOME, wait/NOTALLOW

our model—the three Enteri states should each have a transition
#/ERROR that goes back to the Enter1 state.

• The input 18, when in state Infoi, is not ignored because it contains a
1, which triggers the 1/SPELL transition. This is a consequence of our
concrete test values—one input happens to be a prefix of another.

• The input bad, when in state Infoi, also triggers the 1/SPELL transition
because the bad number is 81123456, which contains a 1. Similarly for
the num1 and num2 inputs in these states.

We mention these “surprises” to illustrate that it is often very danger-
ous and error-prone to make a general assumption about the behavior of all
omitted transitions in an FSM model, such as assuming that all unspecified
inputs are ignored. Binder discusses this in more detail [Bin99, 223–228]
and recommends that an explicit response matrix, similar to Table 5.2, be
used to record the precise response to every input event.

5.1 Testing Qui-Donc with a Simple FSM 153

In conclusion, a transition tour of the explicit FSM generates a useful test
suite that gives 100 percent transition and state coverage (and usually input
and output coverage too). A transition tour of the complete FSM generates
a larger test suite that also does robustness testing by trying every possible
input in each state. This is useful for detecting sneak paths (extra transitions)
in the SUT.

We recommend that you treat transition coverage as your basic coverage
metric when doing model-based testing from FSMs; you should expect to
achieve 100 percent transition coverage of your explicit FSM model and
preferably 100 percent transition coverage of the complete FSM model.

Of course, even 100 percent transition coverage is no guarantee that you
have found all the errors in the SUT! It is quite possible that a particular
sequence of three transitions would have exposed an SUT fault, but that
particular sequence did not happen to be exercised during the transition tour.
Also, the FSM model usually just describes part of the SUT functionality, so
even a huge test suite generated from the FSM is unlikely to help in finding
errors that are outside the scope of the model.

Key Point Full transition coverage is a good minimum to aim for

when generating tests from FSM models.

It may seem a bit cold and mechanical, or perhaps just naive, to assume that
a simple algorithm like transition tour is capable of generating a good test
suite. Is there no longer any need for the skill, the knowledge, the passion,
and the domain expertise of an experienced test engineer?

Well, of course, the test engineer remains central to the whole process of
model-based testing. He or she designed the model, must decide which test
generation algorithms and heuristics to apply, and should inspect the results
of testing (faults found, code coverage levels, model coverage levels, etc.) to
decide how much more testing is necessary.

But it can also be useful for test engineers to directly use their domain
knowledge and testing intuition to help the model-based testing tools to
choose certain interesting tests. One way to do this is for the test engineer to
supply explicit test case specifications, which ask for a particular kind of test to
be generated. This means that the high-level design and the rationale for the
test come from the engineer, while the low-level details of the test and the
expected SUT outputs come from the model.

For example, we may have the goal of testing whether the Qui-Donc
system can be used by disabled or elderly people, who are slow at entering

154 Testing from Finite State Machines

numbers and frequently fail to complete the input before the timeout ex-
pires. We could specify these kinds of tests by asking a tool to generate a test
that traverses the Star3, Enter3, and Info3 states. We could specify this as
a regular expression [Fri97] over the sequence of states that will be visited
(here, * is a wildcard that means “any sequence of transitions”):

,Star3,,Enter3,*,Info3,*

The shortest test case that this would generate is

dial/WELCOME, wait/WELCOME, wait/WELCOME, */ENTER,

wait/ENTER, wait/ENTER, num2/NAME,

wait/INFO, wait/INFO, wait/BYE.

Or we might decide that we want to test the emergency numbers more
thoroughly than other numbers, so we ask for tests that go through the Emerg
state many times and exercise all the transitions in and out of that state. For
example, we could specify this with the regular expression (over the states
visited)

,Enter1,Emerg,,Enter2,Emerg,*,Enter3,Emerg,*

The shortest test that satisfies this explicit test case specification is

dial/WELCOME, */ENTER, 18/FIRE, */ENTER,

wait/ENTER, 18/FIRE, */ENTER,

wait/ENTER, wait/ENTER, 18/FIRE, wait/BYE.

The same specification would give a larger, more varied test suite if we added
the other emergency numbers to our model because it would explore the
alternative paths between the Enteri and Emerg states. As models become
larger, explicit test case specifications become more useful for focusing at-
tention on particular parts of the model. Regular expressions are not a very
expressive notation for explicit test case specifications, so it is common to
use more sophisticated notations to give more control over the generated
test sets.

This illustrates that model-based testing does not have to be fully auto-
matic. It is sometimes useful for the test engineer to direct the tools explicitly
to generate a certain style of test, to follow a specific path through the model,
or to test one part of the model more intensively than others. Model-based
testing is not intended to be a tool that replaces human skill and ingenuity;
rather it should be a tool that amplifies human skills.

Key Point Explicit test case specifications give an engineer precise,

low-level control over which tests are generated from a model.

5.1 Testing Qui-Donc with a Simple FSM 155

5.1.4 Complete Testing Methods

In this section we look at more powerful FSM test generation techniques
that can guarantee to find all SUT errors.

Researchers have been working on FSM test generation algorithms for
50 years, since Moore started the field with his Gedanken experiments on
sequential machines [Moo56]. During the 1960s through the 1980s, several
complete test generation methods for FSMs were invented, such as the D-
method [Hen64], W-method [Vas73, Cho78], the Wp-method [FvBK+91],
the U-method [SD88, YU90], as well as the transition-tour or T-method
[NT81], which we used earlier (which can be a complete method for some
SUTs, as we shall see).

These algorithms are quite impressive in that they generate a set of tests
that guarantees that the SUT implements the identical FSM as the model.
However, to make this possible they must make some strong assumptions:
they assume that the specification FSM model is deterministic, minimal, com-
plete, strongly connected (or initially connected with a reset operation), and has
the same complexity as the SUT. This last assumption means that if we view
the actual behavior of the SUT as also being a finite state machine, then that
finite state machine must have the same number of states as the FSM model.
This is a very strong assumption, which is usually impossible to verify in
real-world situations, especially when the SUT is a black box. However, in
the Further Reading section of this chapter we discuss how some of these
assumptions can be weakened.

The basic idea behind these methods is that, for every transition s
i/o

−→ s′

in the FSM model, we want to:

1. force the SUT into state s (by resetting and starting from the initial
state, if necessary),

2. send the input i to the SUT and check that it produces the expected
output o, and

3. check that the SUT is now in the expected state s′.

Step 3 is the difficult one—how can we check what state the SUT is in if the
SUT is a black box?

The transition-tour method takes a simplistic approach to this: it as-
sumes that the SUT provides a reliable5 status() operation that tells us its

5If the status() operation is not known to be reliable, then it may be useful to call it twice after
each transition to check that the status() operation itself does not change the state of the SUT.

156 Testing from Finite State Machines

current state. This means that it is sufficient to test all the transitions, call-
ing the status() operation after each transition. If you are lucky enough
to be testing an SUT that does have a trustworthy status() operation,
then a transition tour of your complete FSM model is guaranteed to find
all SUT errors (though we still must assume that the SUT and our model
FSM have the same number of states). Of course, many SUTs do not pro-
vide a status() operation, like our Qui-Donc example. In this case, the
transition-tour method is not guaranteed to find all transfer faults (where the
SUT moves into the wrong state), but if there are no transfer faults, then it
will find all output faults in the SUT.

If we do not have a status() operation, could we perhaps use one of the
other methods to test the SUT, such as the D-/W-/Wp-/U-methods? They
check that the destination state is correct by applying various cleverly chosen
sequences of transitions and observing the outputs of the SUT.

Yes, in principle we could use one of those algorithms, but in practice
they are not always useful because they produce very long test cases that
contain up to O(pn3) transitions in the worst case, where n is the number of
states and p is the size of the input alphabet. Our small Qui-Donc example
has 11 states and 10 input symbols, so these methods could generate test
suites containing up to 10 × 11

3 = 13,310 transitions, which is not really
practical. Assuming that each transition takes an average of 15 seconds, a test
suite of this magnitude would take more than 55 hours of nonstop testing,
or about 1.5 person-weeks. This would be an excessive test length for such a
simple system. In practice, most FSMs are better than the worst case and the
D-method and U-method can generate a reasonable size test suite for many
FSM models (usually the size of the test suites is T-method < U-method
< D-method < Wp-method < W-method [Yu90]). The D-method and
U-method test suites are usually much smaller than the Wp-method and
W-method test suites.

Unfortunately, the D-method is not applicable to our Qui-Donc FSM
because it does not have a distinguishing sequence (a sequence of inputs that
gives different output behavior when applied to each state of the FSM). The
U-method is also not applicable because the Info3 state does not have a
UIO sequence (a sequence of inputs that gives different results when we
are in the Info3 state than when we are in any other state). If it did have
a UIO sequence, then the U-method would generate a test suite of about
110 tests (one for each transition in the complete FSM), with an average

length of around 6 transitions.6 So this test suite would contain 600 to 700

6This estimate is based on an average of 3 transitions to get to a given state, followed by a test of
one transition and then applying the UIO sequence (average length 2) for the resulting state.

5.1 Testing Qui-Donc with a Simple FSM 157

transitions, which is five times larger than our transition tour but still small
enough to be practical. Optimized versions of the U-method could reduce
the test suite size further by overlapping test sequences [ADLU91].

A comparative study by Sidhu [SkL89] shows that when the SUT does
not provide a reliable status() method, the transition-tour method (over
the complete FSM) has weaker fault-detection power than the U-method,
D-method, and W/Wp-methods, which all have similar fault-finding power.
The transition-tour method over just the explicit FSM is weaker still and
may fail to detect sneak paths (extra transitions) in the SUT. However, tran-
sition tours are still very useful, because they exercise every state and every
transition of the FSM model and produce a test suite whose total length is
proportional to the number of transitions.

In the second case study of this chapter, we will explore further test gen-
eration techniques and metrics (e.g., random walks, greedy random walks,
and transition-pair coverage) that can produce practical test suites that are
stronger than just transition coverage.

5.2

In this section, we introduce extended finite state machines (EFSMs), which
make it possible to model more complex SUTs than are possible with FSMs.
Then, we describe the ModelJUnit library, which can be used to write EF-
SMs in Java and for simple kinds of test generation.

5.2.1 Extended Finite State Machines

An EFSM looks similar to an FSM (states and transitions), but it is more
expressive because it has internal variables that can store more detailed state
information. For example, in the Qui-Donc model, rather than have three
separate Enteri states as in Figure 5.1, an EFSM model might have just one
Enter state, plus a timeouts variable that counts how many times a timeout
has occurred.

So an EFSM can appear to have a small number of visible states, while it
actually has a much larger number of internal states. Mapping the large set of
internal states down into the smaller set of visible states is a kind of abstrac-
tion. Deciding how to do this abstraction (i.e., how to partition the internal
state space) is an important design decision because it strongly influences the
kinds of test that can be generated from the EFSM.

Figure 5.2 illustrates this abstraction process. Imagine that we have an
SUT with an infinite state space (lots of integer variables), and we have de-
cided to model it by an EFSM whose internal state space contains just two

158 Testing from Finite State Machines

F . Abstraction of the large internal state space of an EFSM into three
visible states.

integer variables, x, y ∈ 0. .9. This means that the EFSM has 10 × 10 = 100

internal states, which we decide is still more than we need for testing the
SUT. Based on our test objectives and on what we know about the SUT
behavior, we decide to partition this state space into three areas: area A is all
the states where y ≥ x, area B is all the states where y < x and x < 5, and
area C is all the states where y < x and x ≥ 5. The three visible states of the
EFSM represent these three areas, respectively.

The transitions of an EFSM sometimes need to update the EFSM state
variables (e.g., x and y in Figure 5.2, or the timeouts variable in a Qui-
Donc EFSM), so we often attach some code to each transition to perform
these state updates. For example, the

Enter1
wait/ENTER

−−−−−−−→ Enter2

5.1 Testing Qui-Donc with a Simple FSM 159

and

Enter2
wait/ENTER

−−−−−−−→ Enter3

transitions in Figure 5.1 would both be modeled by a single EFSM tran-
sition, from state Enter to itself, that contained code to increment the
timeouts variable.

A transition in an EFSM can also have a guard, which is a boolean ex-
pression that can enable or disable the transition. It must evaluate to true for
the transition to be taken. For example, the transition just discussed that in-
crements timeouts would also need the guard [timeouts<2] to ensure that
the timeouts variable is not incremented too many times. A separate transi-
tion, with the guard [timeouts==2] would handle the wait/BYE transition
from state Enter to state Start.

Returning to the example in Figure 5.2, the transition labeled AA models
an operation that, when called in a state within region A (where y ≥ x), will
stay in region A. For example, it might be an operation that increments y.
The transitions labeled AB1, AB2, and AB3 model three operations that
change the (x, y) variables from region A to region B. For example, they
might be defined as follows:

AB1: x, y := 1,0 (with no guard)

AB2: y := 0 with the guard [x < 5]

AB3: y := y − 1 with the guard [x = y and 0 < x < 5]

The advantage of using an EFSM model rather than a simple FSM
model is that it allows us to take a complex SUT (with billions of states
or infinite states) and build a more detailed model of it (perhaps with hun-
dreds or thousands of states) than would be possible with an FSM. Then by
defining the visible states of the EFSM carefully (typically just a few dozen
of them), we can reduce the test generation task to something practical and
focus on the interesting transitions between different areas of the model. The
two levels of abstraction give us better control than one level would because
they are used for different purposes.

• The medium-size state space of the EFSM and the code in its
transitions are used to model the SUT behavior more accurately than is
possible with just an FSM, and thus generate more accurate inputs and
oracles for the SUT.

• The smaller number of visible states of the EFSM defines an FSM that
can be used to drive the test generation. For example, we can use graph

160 Testing from Finite State Machines

algorithms such as transition tours to generate tests. These would not
be practical on a larger EFSM state space that has thousands of states
and more transitions.

Key Point An EFSM can model an SUT more accurately than an FSM,

and its visible states define a second layer of abstraction (an FSM)

that drives the test generation.

5.2.2 The ModelJUnit Library

The ModelJUnit library is a set of Java classes that is designed to be used as
an extension of JUnit for model-based unit testing of Java classes. JUnit7 is a
widely used Java library for writing unit tests for Java classes. ModelJUnit was
developed by one of the authors (Utting) as a simple, open-source framework
for exploring FSM-based testing. It allows the FSM models to be written
in Java, which is familiar to programmers, and because it is an extension of
JUnit, the tests are run in the same way as other JUnit tests.

Most commercial and research model-based testing tools use sophisti-
cated notations and theories that take some time to learn, whereas with the
ModelJUnit library, one can start with an extremely simple FSM model and
begin testing immediately, and then progress to slightly more sophisticated
EFSM models as desired. The ModelJUnit library is based on ideas from
Harry Robinson8 and from Spec Explorer [VCST05], but it has only a small
subset of the functionality of Spec Explorer. ModelJUnit is available from
the website associated with this book.

The basic philosophy of ModelJUnit is to take advantage of the expres-
sive power of Java (procedures, parameters, inheritance, annotations, etc.) to
make it easier to write EFSM models, and then provide a collection of com-
mon traversal algorithms for generating tests from those models. It is typi-
cally used for online testing, which means that the tests are executed while
they are being generated. The EFSM usually plays a dual role: it defines the
possible states and transitions that can be tested, and it acts as the adaptor
that connects the model to the SUT (which is usually another Java class).

Each EFSM model is written as a Java class, which must have at least the
following methods:

7See http://www.junit.org.
8The C# login model from his STAR East 2005 presentation [Rob05] shows one way to express
an FSM as a C# class. See http://www.geocities.com/harry_robinson_testing/stareast2005.htm.

5.1 Testing Qui-Donc with a Simple FSM 161

Object getState(): This method returns the current visible state of the
EFSM. So this method defines an abstraction function that maps the in-
ternal state of the EFSM to the visible states of the EFSM graph. Typi-
cally, the result is a string, but it is possible to return any type of object.9

void reset(boolean): This method resets the EFSM to its initial state.
When online testing is being used, it should also reset the SUT or create
a new instance of the SUT class. The boolean parameter can be ignored
for most unit testing applications.10

@Action void name i(): The EFSM must define several of these action
methods, each marked with an @Action annotation. These action meth-
ods define the transitions of the EFSM. They can change the current
state of the EFSM, and when online testing is being used, they also send
test inputs to the SUT and check the correctness of its responses.

boolean name i Guard(): Each action method can optionally have a guard,
which is a boolean method with the same name as the action method
but with “Guard” added to the end of the name. When the guard returns
true, then the action is enabled (so may be called), and when the guard
returns false, the action is disabled (so will not be called). Any action
method that does not have a corresponding guard method is considered
to have an implicit guard that is always true.

Each action method typically defines a short, straight-line sequence of JUnit
code that tests one aspect of the SUT by calling one or more SUT methods
and checking the correctness of their results. The effect of applying model-
based testing to the EFSM is to make a traversal through the EFSM graph,
and this weaves those short sequences of test code into longer sequences of
more sophisticated tests that dynamically explore many aspects of the SUT.

Using Java as the notation for writing EFSMs has benefits and limita-
tions. The benefits include the familiarity of Java, having the expressiveness
of a full programming language available, and the ability to quickly change
the structure of the EFSM graph simply by redefining the getState() ab-
straction function or by modifying the guards and actions.

Some of the limitations are that the guards and transitions are defined as
executable methods rather than as symbolic formulae. So graph exploration

9The objects that are returned must correctly implement the Java equals and hashCode methods,
since these are used to compare states.
10The boolean parameter can be set to false in order to explore the FSM model without testing
the underlying SUT. This can be useful if the SUT operations are very slow and we want an
algorithm to quickly explore the FSM before testing starts.

162 Testing from Finite State Machines

and test generation algorithms can execute guards and transitions and inspect
their results (true/false from a guard or a new EFSM state after a transition),
but they cannot inspect the internal structure of the guards or transitions. To
create the EFSM graph, ModelJUnit is limited to exploring it dynamically
by executing enabled transitions. This means that it can be difficult to obtain
the whole graph if some guards are rarely true. On the other hand, even if the
EFSM graph is too large to explore completely, some forms of test generation
are still possible, so the EFSM approach is still useful.

Another limitation is that the SUT interactions are handled internally
within each transition, so the SUT input and output values are not explic-
itly represented in the EFSM graph as they are in a Mealy machine FSM
model.11 This places some small limitations on the test generation algo-
rithms and coverage metrics that we can use in ModelJUnit. For example,
we can measure action coverage and state coverage but not input coverage
or output coverage. We can use transition-tour test generation algorithms
but not some other test generation methods, such as the W-method, that
analyze the output part of transitions. However, in practice this limitation is
outweighed by the benefit of being able to generate rich SUT inputs dynam-
ically and perform more sophisticated checking of the SUT outputs than the
simple equality check of a Mealy machine FSM.

5.2.3 An EFSM Model of Qui-Donc

As an example of writing an EFSM in the ModelJUnit style, let’s convert our
Qui-Donc model into an EFSM. Since we cannot automate the execution
of the Qui-Donc tests (JUnit is not yet smart enough to understand the spo-
ken responses from Qui-Donc), the tests that we generate with ModelJUnit
will simply print out test sequences (input-output pairs) that a human can
execute later. That is, here we are using ModelJUnit to generate offline tests,
whereas in the next section we use it for online testing.

Listing 5.3 shows the state-related parts of the model and Listing 5.4
shows the actions. We use the same set of input symbols as in Figure 5.1,
but we have put the full output messages into our model rather than just
their names, to show how we can use Java string concatenation to reduce
the duplication of strings. The ''wait/. . .'' output message means that the
previous message is repeated.

The interesting thing about this EFSM model is that it has only 5
states (Start, Star, Enter, Emerg, Info) rather than the 11 states of our

11Technically, this means that ModelJUnit models are labeled transition systems (LTS) rather than
traditional FSMs.

5.1 Testing Qui-Donc with a Simple FSM 163

L . Qui-Donc EFSM model in Java: the internal state variables
and the getState() and reset() methods.

/** A simple EFSM model of the Qui-Donc service.

* Qui-Donc is a service of France Telecom that allows you

* to ring up, enter a telephone number, and find who

* owns that telephone number and what is their address.

*/

public class QuiDonc implements FsmModel

{

public enum State

{ Start, // not yet connected to the Qui-Donc service.

Star, // waiting for the initial ’*’.

Enter, // waiting for a telephone number to be entered.

Emerg, // after explaining the emergency number, waiting for ’*’.

Info // ready to give information about the subscriber.

};

private State currState; // the current state of the system.

private int timeouts; // on the third timeout, we hang up.

public String WELCOME = "Welcome to Qui-Donc. Please ...";

public String NOTALLOW = "Your telephone does not allow...";

public String ENTER = "Please enter the 10-digit tel...";

public String ERROR = "Invalid number entered. Plea...";

public String FIRE = "18 is the emergency number fo...";

public String SORRY = "Sorry.The number 03 81 12 3..."+ENTER;

public String INFO = "Press 1 to spell the name, pr...";

public String NAME = "The number 03 81 12 34 56 cor..."+INFO;

public String SPELL = "Renard is spelled R, E, N, A, R..."+INFO;

public String ADDR = "The address of Renard, K. J. ..."+INFO;

public String BYE = "Thank you for using the Qui-D....";

public QuiDonc()

{

timeouts = 0;

currState = State.Start;

}

public String getState()

{

return currState.toString(); // + (timeouts+1);

}

public void reset(boolean testing)

{

timeouts = 0;

currState = State.Start;

}

164 Testing from Finite State Machines

L . Qui-Donc EFSM model: actions and guards.

public boolean dialGuard()

{return currState==State.Start;}

public @Action void dial()

{

out.println("dial/"+WELCOME);

currState = State.Star;

timeouts = 0;

}

// No guard -- always enabled.

// We call this wait_, to avoid

// a clash with Object.wait().

public @Action void wait_()

{

timeouts++;

if (timeouts >= 3

|| currState==State.Emerg

|| currState==State.Start)

{

if (currState==State.Star)

out.println("wait/"+NOTALLOW);

else

out.println("wait/"+BYE);

currState = State.Start;

timeouts = 0;

}

else

out.println("wait/...");

}

public boolean starGuard()

{return currState==State.Star

|| currState==State.Emerg

|| currState==State.Info;

}

public @Action void star()

{

out.println("*/"+ENTER);

currState = State.Enter;

timeouts = 0;

}

public boolean badGuard()

{return currState==State.Enter;}

public @Action void bad()

{

out.println("bad/"+ERROR);

// state is unchanged.

timeouts = 0;

}

public boolean num18Guard()

{return currState==State.Enter;}

public @Action void num18()

{

out.println("18/"+FIRE);

currState = State.Emerg;

timeouts = 0;

}

public boolean num1Guard()

{return currState==State.Enter;}

public @Action void num1()

{

out.println("num1/"+SORRY);

// state is unchanged.

timeouts = 0;

}

public boolean num2Guard()

{return currState==State.Enter;}

public @Action void num2()

{

out.println("num2/"+NAME);

currState = State.Info;

timeouts = 0;

}

public boolean key1Guard()

{return currState==State.Info;}

public @Action void key1()

{

out.println("1/"+SPELL);

// state is unchanged.

timeouts = 0;

}

public boolean key2Guard()

{return currState==State.Info;}

public @Action void key2()

{

out.println("2/"+ADDR);

// state is unchanged.

timeouts = 0;

}

5.1 Testing Qui-Donc with a Simple FSM 165

original Qui-Donc model because our getState() method returns only the
currState variable and ignores the timeouts counter. For example, this col-
lapses the original three states (Star1, Star2, and Star3) into a single state,
Star. This smaller set of states means that some of the transitions in the
original model (e.g., the three */ENTER transitions from the Stari states to
the Enter1 state) also collapse into a single transition. So our EFSM model
is significantly smaller, even though it models exactly the same functionality.
Figure 5.3 shows the EFSM graph that is generated by ModelJUnit with the
getState() method shown in Listing 5.3.

If we redefine the getState() method so that it also puts the value of
timeouts into the state string (as shown in the comment), then we get a
larger EFSM graph that is almost identical to the original Qui-Donc graph in
Figure 5.1. The only significant difference is that we have an extra wait_ loop
on the Start state because our wait_ action has no guard, so it is enabled in
every state. This extra transition could easily be removed by adding a guard

F . Qui-Donc EFSM, generated from the Qui-Donc Java model.

166 Testing from Finite State Machines

(currState!=State.Start) to the wait_ action, but we wanted to leave it
without a guard to illustrate that a missing guard is interpreted as always
true.

An interesting aspect of the FSM in Figure 5.3 is that it does not include
all the wait transitions back to the Start node. This is because the wait

transitions are actually nondeterministic and the random graph exploration
did not follow the wait loops enough times to find the alternative path. In
this case, the missing transitions could be discovered automatically if we tra-
versed the EFSM graph using an all-loops heuristic, going around each loop
at least three times. But in general, the EFSM notation is expressive enough
to define large or infinite graphs, so when we try to take a finite projection of
such a graph (to create an FSM) by traversing it randomly or using heuristics,
it is quite common that we miss some transitions. This can slightly weaken
the test suites generated from that FSM. It illustrates the fact that testing is
often incomplete.

One last point about this EFSM model is that although we wrote only
9 action methods, these generate the 15 transitions in Figure 5.3, or the
36 transitions in the larger EFSM of Figure 5.1 if we use the alternative
getState() method. This illustrates the power of using Java and the EFSM
approach—a single EFSM method can define many transitions, and the full
power of Java coding can be used within that action to update the state ap-
propriately. This can dramatically reduce the time required to write a com-
plex model. But it also means that writing the model becomes a program-
ming task, which requires programming skills, whereas the simpler FSM
models can sometimes be designed by nonprogrammers using a graphical
drawing tool or by writing a transition table in a spreadsheet.

To validate this model, we wrote a simple main method that allowed methods
to be called interactively; then we did a manual traversal through the model,
using the transition tour from Figure 5.1 as a guide. This exposed three
errors in the model: one typo (the dial action ended in the Start state
rather than the Star state, and two cut-and-paste errors (the key1 and key2

guards were true in the Enter state rather than in the Info state). Using the
transition tour was a bit excessive for the validation of this simple model; a
shorter informal tour that just covered all 9 actions would have exposed the
same errors (which is just as well, because we don’t usually have an existing
transition tour before the model is built, and it would not be useful to use a
tour generated from the model to validate the same model!). In fact, it would
not have been a disaster if we had done no validation of the model—the
errors might have remained in the model and we would have generated some

5.1 Testing Qui-Donc with a Simple FSM 167

incorrect tests, but those errors would almost certainly be exposed when the
tests were executed; the chance of having an identical error in the model and
in the SUT is quite low.

If we take this Qui-Donc model and generate a random walk, which ran-
domly calls any enabled action method, we get a test sequence that starts
like this:

dial/Welcome to Qui-Donc. Please press the star key.

wait/...

*/Please enter the 10-digit telephone number of the

subscriber you are looking for, followed by the hash key.

wait/...

bad/Invalid number entered. Please enter another number,

followed by the hash key.

18/18 is the emergency number for the Fire Brigade.

If you want to do another search, press star.

wait/Thank you for using the Qui-Donc service.

etc.

This output could be used as a manual test script. We could generate a
random walk test sequence of a fixed length to match our testing budget (say
240 transitions, which would be about 1 hour of manual test execution), and
then measure the model coverage to see what percentage of states, actions,
or transitions we have tested. Alternatively, we might choose to use a more
sophisticated generation algorithm, such as a transition tour, that achieves a
certain kind of coverage (e.g., transition coverage) with a minimal test suite.

5.3

In this section, we go through another case study using a parameterized
EFSM model to do model-based unit testing of a hierarchy of Java classes.
The concepts that we illustrate include:

• EFSM models in Java, with state variables, and guards and state updates
within the transitions.

• online testing, where the SUT is tested while the tests are being
generated, rather than later.

• a simple kind of adaptor, which links the model to the SUT.

• several structural model coverage criteria for FSMs/EFSMs.

168 Testing from Finite State Machines

5.3.1 The System under Test: ZLive FlatPred

ZLive is an animator for the Z specification language, developed by one
of the authors (Utting). It is part of the open-source Community Z Tools
project,12 which has developed support tools for ISO Standard Z [ISO02]
and several extensions of Z. ZLive can evaluate simple Z expressions and
predicates and can execute some Z specifications that have small state spaces
(in general, the Z specification language is not executable [HJ89, Spi92]).
It is typically used to test parts of specifications, to generate instances of
schemas, or to search for counterexamples. The implementation of ZLive
contains about 8000 lines of commented Java.

Inside ZLive, the Z specification is translated into a sequence of
FlatPred objects, reordered for more efficient evaluation, then evaluated
using backtracking search. There are over 20 kinds (subclasses) of FlatPred
objects, and each FlatPred object represents a constraint among several vari-
ables. The FlatPred class hierarchy is the most significant part of ZLive and
accounts for about two-thirds of its source code. Here are a few examples of
FlatPred objects and the constraints that they represent:

FlatMult(x,y,z) : x ∗ y = z

FlatPlus(x,y,z) : x + y = z

FlatConst(x,k) : x = k (k is a constant)
FlatMember(s,x) : x ∈ s

FlatRangeSet(a,b,s) : s = (a. .b)

FlatSetComp(decls,pred,expr,s) : s = {decls|pred@expr}

For example, the following sequence of FlatPred objects will return all the
factors of 24, one by one, in the variable answer.

FlatRangeSet(1,24,range), // range = (1. .24)

FlatMember(range, factor1), // factor1 ∈ range
FlatMult(answer, factor1, 24) // answer ∗ factor1 = 24

How does it do this? The FlatMember constraint iterates through the set
range, setting the factor1 variable first to 1, then to 2, then to the successive
integers up to 24. For each value of factor1, the FlatMult constraint tries
to find a value of answer that satisfies answer ∗ factor1 = 24; if it fails then
we backtrack to the previous constraint and try the next value of factor1;
but if it succeeds, then the correct value is assigned to the answer variable
and a solution is returned to the caller.

12See http://czt.sourceforge.net.

5.1 Testing Qui-Donc with a Simple FSM 169

This illustrates that each FlatPred object can be used in several different
modes, with inputs or outputs. The example used FlatMult in the mode OII,
meaning that its first parameter was an output, while the second and third
parameters were inputs. But FlatMult can also be used in the mode IIO

(which multiplies x × y and sets z to the result, so it never fails), in mode
IOI (which sets y to a number that satisfies x × y = z or fails if there is no
such number), or in mode III (which takes all three parameters as inputs
and fails if their values do not satisfy x × y = z).

The behavior of a typical FlatPred object is reasonably sophisticated,
so it needs to be tested thoroughly. We decided to apply model-based unit
testing to the FlatPred subclasses, to try to improve the quality of the unit
tests and to see how convenient it was to use an FSM approach to test a
hierarchy of Java classes.

ZLive has a system test suite of over 600 tests, which tests the FlatPred

subclasses in many ways but does not generally exercise all modes. In addi-
tion, 17 out of 23 of the FlatPred subclasses already had a reasonable set of
manually designed JUnit tests (2500 lines of commented Java), which tested
every mode of those subclasses. The remaining six FlatPred implementa-
tions had no unit tests (prior to adopting model-based testing), mostly be-
cause they implemented only one mode (III), so they were tested reasonably
well by the system tests.

5.3.2 A Family of Models

In this section, we gradually develop a parameterized EFSM model for
FlatPred, using FlatMult as an example but taking care to keep the model
general enough that we can use it for all the subclasses of FlatPred. This
means that the overhead of creating the model can be amortized over the
testing of more than 20 classes.

Before we can design a model, we must describe the FlatPred API a little
more to see which methods change the state of the FlatPred object under
test, when each method can be called, and so on. So here is a brief summary
of the main FlatPred methods (we ignore the constructors because they are
different for each subclass).

Mode chooseMode(Envir): This is the key method that allows us to find out
which evaluation modes a FlatPred object supports. For example, if we
have a FlatMult(x,y,z) object and call its chooseMode(env) method
with env containing just x, the result will be null because it is not possi-
ble to solve the x × y = z constraint knowing only x. But if env contains
x and y, then a Mode object will be returned, indicating that mode IIO

170 Testing from Finite State Machines

is allowed. The returned Mode object contains an updated environment
which includes the output variable z, plus some other statistical infor-
mation about the expected number of solutions of this constraint.

void setMode(Mode): After we have called chooseMode(..) one or more
times to find out what modes are possible, we can use this method to
select one of those modes. This fixes it as the mode that will be used
during evaluation.

void startEvaluation(): After an evaluation mode has been set with
setMode, this method can be called to start a new evaluation. This is
similar to requesting an iterator from a collection object in order to iter-
ate through all the solutions. Note that we typically perform a sequence
of several evaluations using the same mode—each evaluation usually has
different values for the input variables.

boolean nextEvaluation(): This calculates the next solution and returns
true if there is a valid solution, false otherwise. When it returns true, it
updates the values of the output variables in the current environment
so that following FlatPred constraints can access those new values. This
method can be called only after startEvaluation().

boolean inferBounds(Bounds): This is an optional static analysis method
for inferring information about integer bounds and allowing more effi-
cient evaluation. It is usually called before chooseMode(). The Bounds

parameter is a repository for the currently known lower and upper
bounds of all the integer variables in scope. This method returns true if
it has tightened those bounds. Some of the bounds information may be
saved within the FlatPred object, so calling this method may change
the state of the FlatPred object, as well as change the Bounds repository.

So this is the typical life cycle of a FlatPred object:

1. [optional] Call inferBounds to do some static analysis.

2. Call chooseMode one or more times to see which modes are possible,
and then call setMode to select one of those modes.

3. Call startEvaluation, followed by a series of calls to nextEvaluation

to get each solution until it returns false.

The last step is usually repeated several times for each evaluation that we
want to perform. This life cycle shows that the FlatPred object changes state
quite a few times and that some methods can be called only in certain states.

5.1 Testing Qui-Donc with a Simple FSM 171

F . FSM model for FlatMult, version 1. The labels on the transitions
are the names of the FlatMethods to call, with the expected result of the method
shown after the slash (– means void or “don’t care”).

It is this state-based behavior of FlatPred that makes it suitable to model
with an FSM/EFSM.

Key Point If you have a class that changes state and has different

behavior in each state, then an FSM/EFSM model is a good choice for

testing that class.

This typical life cycle suggests that we could use an FSM model of
FlatPred like the one shown in Figure 5.4.

But in fact, this is not a good model, for the following reasons:

Not enough loops and choices: The model is too simplistic! The power of
model-based testing comes from having lots of paths to explore. But this

172 Testing from Finite State Machines

model has only two loops and very few alternative paths. We need to
add more paths, to explore all the different modes that are possible, to
try restarting a new evaluation before the last one is complete, to try
choosing a new mode after or during an evaluation, and so on. Without
these alternatives, the generated tests will repeat the same sequences of
methods over and over again, with little variation.

Not deterministic: Once we reach the Started state, there are two transi-
tions that leave that state, but both of them are labeled with the same
input value, nextEval. This means that both transitions involve calling
the nextEvaluation() method, but we expect a response of true from
the SUT in one case and a response of false in the other case. This makes
it impossible for the FSM traversal algorithms to control which transi-
tion will be followed. In this chapter, we require our FSM models to be
deterministic so that the test generation algorithms can control the SUT.

Not a strong enough oracle: This model describes the behavior of al-
most every FlatPred and does not have strong enough checks to en-
sure that each subclass has the correct behavior. For example, if a
FlatMult(x,y,z) object returned two solutions for z (say, 12 and
13) when x = 3 and y = 4, the model would happily follow the
nextEval/true transition two times, then the nextEval/true transi-
tion once, and would agree that this is the correct behavior! We need
some way of having stronger checking on the behavior of each FlatPred

object. Since the behavior varies between FlatPred subclasses, and even
between different input values, this means we need to parameterize our
generic FlatPred model to tell it the specific behavior to expect for each
particular SUT.

Key Point Whenever possible, make your FSM model deterministic.

This simplifies test generation and means that the generated tests

can control the SUT.

To fix the first of these problems, we add more transitions to our model.
For example, we add some separate transitions to try each mode, plus some
newMode transitions that go back from the evaluation states and start using
a new mode. This allows us to test the effect of jumping out of an evalua-
tion and switching to a different mode. Figure 5.5 shows some of these new
transitions (it shows only the OOO and III modes).

To fix the second and third problems, we switch from a simple FSM
model to a more sophisticated extended finite state machine (EFSM) model.
We write our EFSM as a Java class, following the ModelJUnit style. So the

5.1 Testing Qui-Donc with a Simple FSM 173

F . EFSM model for FlatMult, showing only the OOO and III modes.
The labels on the transitions are the names of the @Action methods in the
ModelJUnit class.

names on the transitions of Figure 5.5 are actually the names of the Java
@Action methods in our ModelJUnit class, which we develop over the next
few pages. Each of these methods is responsible for updating the current state
of the EFSM as well as interacting with the SUT.

We will use the internal variables of the EFSM to record more precise in-
formation about the expected behavior of the current FlatPred that is being
tested, such as the mode that we are testing and the values of each input vari-
able. Also, to permit more accurate testing of each subtype of FlatPred, we
will parameterize our general FlatPred model with some values that are spe-
cific to the particular FlatPred object under test so that our EFSM can use
those parameters to check the correctness of the SUT behavior. For example,
here is the Java code that constructs an EFSM model for FlatMult(x,y,z)
(the full graph of this model is shown in Figure 5.6):

FlatPredModel model = new FlatPredModel(sut,

new ZRefName[] {x,y,z},

"OII,IOI,IIO,III",

new Eval(1, "???", i3, i4, i12),

new Eval(0, "I?I", i2, i5, i11) // 11 is prime

);

174 Testing from Finite State Machines

F . FSM model for FlatMult, final version.

Let us explain these parameters to give some examples of how it is possi-
ble to parameterize an EFSM. We will always create the same type of model,
a FlatPredModel, but the parameters to its constructor can change the struc-
ture and the meaning of the EFSM model dramatically.

The first parameter, sut, will be discussed in Section 5.3.3—it has to
do with test execution, not with the EFSM model. The second parameter
informs the EFSM model about all the variables used by the SUT. In this
case, our SUT implements the constraint x × y = z, so the free variables are
x, y, and z.

The third parameter lists all the modes that are supported by the SUT.
Modes that are in this list are expected to give a non-null result when
chooseMode is called, while any modes that are not in the list are expected
to give a null result. The FlatPredModel class uses this parameter to de-
termine the gross structure of the EFSM: each mode in the list generates a
transition that leads to a separate subgraph of the EFSM that tests evalua-
tions using that mode (e.g., the chooseModeIII transition); each mode not
in the list generates a transition that loops back to the NoMode state (e.g., the
chooseModeOOO transition).

The fourth and fifth parameters are two evaluation examples to use when
testing the SUT. The first of these examples is used by the startEval1 transi-
tion to start an evaluation, and the second example is used by the startEval2
transition. We use two examples rather than one because we want to swap be-
tween different evaluations during the test runs to check that one evaluation
does not corrupt the other. It would be possible to parameterize the model
with more than two examples, but we usually do this by creating multiple
models instead.

5.1 Testing Qui-Donc with a Simple FSM 175

Each of these evaluation examples is encapsulated into an object that
contains a value for each of the free variables (e.g., the first example sets
x = 3, y = 4, and z = 12), plus the number of solutions expected. This
enables us to strengthen the oracle checking within the startEval1 and
startEval2 transitions so that they check that nextEvaluation() returns
true the correct number of times, as well as telling us what values to use for
the inputs and what values to expect in the outputs. It turns out that the
number of solutions sometimes depends on the mode used, which is why
each evaluation example has a string like I?I to say which parameters must
be inputs (I), which must be outputs (O), and which can be either inputs
or outputs (?). Since the second example restricts the evaluation modes to
I?I, the startEval2 transition is disabled in the OII and IIO modes, where
x and z are not inputs, respectively. This is another example of how these
parameters change the shape of the EFSM graph.

Having designed our EFSM model, the next section describes how this
model is written as a Java class, and then we look at how we can use the
ModelJUnit library to explore the model, generate tests from it, and measure
the coverage of the generated tests.

5.3.3 Encoding FlatPredModel in Java

The ZLive FlatPred example is a more complex EFSM model than the
Qui-Donc model. The FlatPredModel class contains around 350 lines of
commented Java, which is 230 noncomment source lines of Java, or 120 ex-
ecutable statements. In this section we briefly make a few comments about
some interesting features of this model before we show the results of using it
for test generation.

Like the Qui-Donc model, the FlatPred model defines an enumeration of
its five main states.

/** The possible main states of the FlatPred. */

enum State {Init, NoMode, GotMode, Started, Finished};

private State state_;

However, we want to distinguish the states of the different modes (to en-
courage the test generation algorithms to explore all the modes), so we de-
fine our getState() method to add the mode string (III, IIO, etc.) to the
end of the state, but only when we are in one of the GotMode, Started, or
Finished states. Note that the following getState() method makes use of
several other private variables of the EFSM: names_ is the array of free vari-
ables of the SUT, and env_ is the current evaluation environment, which

176 Testing from Finite State Machines

is null in the Init and NoMode states and contains the values of the input
variables in the other states.

public String getState()

{

StringBuffer result = new StringBuffer();

result.append(state_.toString());

if (env_ != null) {

// add the mode to the end of the state.

for (int i=0; i<names_.length; i++)

if (! env_.isDefined(names_[i]))

result.append(‘O’);

else

result.append(‘I’); // an input

}

return result.toString();

}

Note that if we have an SUT with five free variables, we will have EFSM
states like GotModeIIIIO and GotModeIIIII, whereas if we have an SUT with
just one free variable, we will have EFSM states like GotModeI and GotModeO.
The getState() method gives us tremendous power to control the set of
states in our EFSM, and this in turn helps to determine how many states
of the SUT will be tested and which states will be tested. Effectively, the
getState() method is performing the crucial abstraction function, mapping
the huge or infinite number of possible SUT states down into a small set of
interesting EFSM states that will be tested.

Key Point The abstraction function (the getState() method in

ModelJUnit) is the key to controlling the number of states and

transitions in your EFSM.

Figure 5.6 shows that we have several transitions going out of the NoMode

state, each trying a different mode. The Java code for these transitions is very
similar, so we define a parameterized helper method that contains all the
common code. Then each transition can be defined in just a few lines:

/** Tries chooseMode with all names except the last being inputs. */

public boolean chooseModeIIOGuard() {return state_==State.NoMode;}

@Action public void chooseModeIIO() {chooseMode("IIO");}

5.1 Testing Qui-Donc with a Simple FSM 177

The helper method (chooseMode(String)) is written to handle SUTs with
any number of free variables—its parameter is always a three-character string,
but the first and last characters control the first and last inputs, respectively,
while the middle character controls all the remaining inputs (when freevars ≥

3). This is another example of abstraction or simplification—we decided that
it would be sufficient to test all the middle inputs in the same way. These
kinds of decision are easy to code up into the EFSM because the full power
of Java (loops, conditionals, parameterized methods, etc.) is available for use
in each action method.

The chooseMode(String) helper method also uses a validModes_ list, which
is the second parameter to the FlatPredModel constructor, to determine the
destination state of each chooseMode transition. This is an example of how a
construction-time parameter can change the static structure of the EFSM.

It is always safe to use parameters and conditionals to define the static
structure of the EFSM, but one must be careful when using conditionals
that change the structure of the EFSM dynamically (that is, on-the-fly, dur-
ing a traversal of the EFSM). It is okay to use guards to disable or enable
transitions (though this can make it more difficult to discover the shape of
the EFSM graph). But it is undesirable to define a transition that sometimes
leads from state A to state B and at other times leads from state A to state
C. This is a nondeterministic transition, and it can make the model coverage
metrics misleading and confuse some of the graph traversal algorithms.

A better approach is to split that nondeterministic transition into two
or more deterministic transitions with different names. If necessary, this can
be done by introducing a new state A2, then writing a transition from A to
A2 that stores a flag in an internal EFSM variable, followed by two separate

transitions, A2
AB

−→ B and A2
AC

−→ C, that have guards to enable them when
the flag is true or false, respectively. This is the technique that we used to
handle the nondeterministic nextEval transition in Figure 5.4—it has been
split into separate nextEval and nextEvalFalse transitions in Figure 5.5.

We now briefly review the responsibilities of the various parts of the EFSM
model when it is being used for online testing with ModelJUnit. Recall that
with online testing, the EFSM model has two roles: it defines the model and
it acts as the adaptor that connects the model to the SUT.

The EFSM model must maintain a pointer to the SUT object as part
of its internal state so that it can communicate with the SUT as testing

178 Testing from Finite State Machines

progresses. In fact, the SUT is the first parameter to our FlatPredModel

constructor, so the sut parameter shown on page 173 would actually be an
instance of FlatMult class, such as:

new FlatMult(x,y,z)

The guards of the action methods are responsible for saying when each
action method is enabled; this may require querying the SUT to determine
whether it is ready to perform some operation.

Each action method is responsible for:

1. changing the state of the EFSM (or leaving it unchanged, in the case
of a loop transition);

2. sending test inputs to the SUT;

3. checking any SUT outputs to make sure they are correct (this is
typically done via JUnit assert methods, which check some given
condition and generate a test failure if it is false); and

4. (if possible) checking that the SUT is now in the correct state that
agrees with the new EFSM state.

Responsibility 1 defines the shape of the EFSM graph. Responsibilities 2 and
3 are the adaptor part of the EFSM, which links the model to the SUT and
implements the oracle checking. Responsibility 4 gives a stronger form of
oracle checking that is not always possible to achieve if the SUT is a black box
with not enough query methods to determine its state. However, when the
classes that are being tested are well designed, they will often provide query
methods that allow the SUT state to be determined. In this case, note that
the transition-tour method is as powerful as the D-/W-/Wp-/U-methods of
test generation. That is, in theory a simple transition tour is sufficient to find
all differences between the model and the SUT (assuming that the SUT does
not have more states than the model).

To illustrate how action methods can fulfill these responsibilities, here are
some simple action methods from the FlatPredModel. The nextEvalFalse

action calls the SUT nextEvaluation() method and checks its result, but it
does not need to change the state of the EFSM (it loops back to the same
state). The println message is just for debugging the model—it is sometimes
useful to see the internal state of the EFSM as it is traversed.

public boolean nextEvalFalseGuard()

{ return state_ == State.Finished; }

5.1 Testing Qui-Donc with a Simple FSM 179

/** Checks that nextEvaluation() returns false. */

public @Action void nextEvalFalse()

{

boolean result = pred_.nextEvaluation();

System.out.println("nextEvalFalse gives "

+result+" with env="+env_);

Assert.assertFalse(result);

}

The newMode action is the opposite. It does no testing of the SUT; it
just changes the state of the EFSM and resets some of the EFSM internal
variables. Note that this action is enabled in all the GotModeXXX, StartedXXX,
and FinishedXXX states, so this one action method generates the 12 newMode

transitions in Figure 5.6.

public boolean newModeGuard()

{ return state_ == State.Started

|| state_ == State.Finished

|| state_ == State.GotMode;

}

/** Go back and try a new mode. */

@Action public void newMode()

{

System.out.println("newMode with env="+env_);

mode_ = null;

env_ = null;

data_ = null;

state_ = State.NoMode;

}

Other actions in FlatPredModel are more complex in that they test the
SUT as well as change the EFSM state. Some of them use conditionals and
loops to perform more comprehensive testing of the SUT. Now let’s use this
model to do some testing.

5.3.4 Test Results

We will take the simplest possible approach to test generation—a random
walk through the model. This will allow us to see how the various model
coverage metrics change as we generate longer and longer tests. We have also
recorded the SUT code coverage metrics so that we can see how they are
correlated with the model coverage.

Since we are using online testing, each transition that we take in the
model is immediately testing the SUT. Note that a random walk of the

180 Testing from Finite State Machines

model is more powerful than just generating random SUT inputs because
each transition of the model not only generates SUT inputs but also runs
the oracle code that checks the correctness of the outputs. So with random
input generation, the only oracle you get is crash/no-crash, whereas with a
random walk of the model, you get the powerful oracle checking that you
have (we hope!) included in the action methods of your model adapter.

What happens when an error is detected by this oracle code? Usually,
JUnit just gives you a one-line message that says how the expected and actual
values differed and which assert statement detected the error. ModelJUnit
gives that same information, but it can also display the current state of the
EFSM model and the complete path through the model that led to the error,
if desired.

One interesting possibility of online testing, which ModelJUnit does not
yet support, is the BeeLine approach to minimizing the test sequence that
leads to a given error.13 Let’s say that we find an error when we are deep
into a random walk through the model. The BeeLine algorithm repeatedly
cuts out random segments of that sequence (replacing them with shorter
paths through the EFSM) until it finds the shortest sequence that leads to
the error. This can make it easier to analyze the cause of the failure.

For our FlatMult application, we just set the random walk going and let
it do a few thousand transitions. One of the nice features of random walks is
that you can ask for any length test suite. We use a fixed seed for the random
number generator so that the random walk takes the same path each time we
run our unit tests and we get repeatable results from successive runs.

Figure 5.7 shows how several common model coverage metrics increase
as we let the random testing continue for longer and longer. Notice that the
simple state coverage metric increases very quickly and reaches 90 percent
after just 30 transitions and 100 percent after 86 transitions. The action cov-
erage metric is similar and reaches 100 percent after 104 transitions. Transi-
tion coverage takes a little longer—it reaches 90 percent after 121 transitions
and 100 percent after 299 transitions. The transition-pair coverage rises even
more slowly—it reaches 50 percent after 132 transitions, 90 percent after
628 transitions, and 100 percent after 1211 transitions.

Recall that before we did this model-based testing of the FlatMult imple-
mentation, we already had a set of manually written JUnit tests for FlatMult.
These were a typical set of 8 JUnit tests that tested all the modes of FlatMult
and contained 72 executable statements, of which 43 were JUnit assert state-
ments. These JUnit tests had achieved 68 percent branch coverage and 89

13This is another idea taken from Harry Robinson’s STAREast 2005 Model-Based Testing Tuto-
rial.

5.1 Testing Qui-Donc with a Simple FSM 181

F . Coverage metrics for one random walk over the FlatPredModel,
testing the FlatMult implementation.

percent statement coverage of the FlatMult code (which contained 62 exe-
cutable statements). The random walk of the model-based testing improved
the SUT branch coverage slightly. It reached the same level of coverage as the
JUnit tests after 190 transitions and then increased the branch coverage to 73
percent after 370 transitions. Figure 5.7 shows that the statement coverage
remained the same at 89 percent.

Figure 5.8 shows a logarithmic view of how these coverage metrics in-
crease with the length of the test sequence. Rather than show percentages,
this graph shows the raw numbers of items (States, Actions, Transitions, and
Transition-Pairs) that have been covered as the length of the test increases.

Overall, the use of model-based testing on the FlatPred classes was
very successful. It took about 8 hours to design (and redesign twice!)
FlatPredModel and apply it to the FlatMult implementation. This is prob-
ably four to eight times longer than the time required to develop the original
JUnit tests, but they were just for FlatMult, whereas the model was general
enough to test most FlatPred subclasses. When we reused the model to test
another FlatPred subclass, it took less than 15 minutes to parameterize the
model and invoke a random walk, which is much less than the time required
to write six to ten JUnit tests, so the overhead of the model development is
cost-effective when spread across more than 20 subclasses.

182 Testing from Finite State Machines

F . Raw coverage numbers for one random walk over the
FlatPredModel, testing the FlatMult implementation (logarithmic view).

During the development of FlatPredModel, the random walk testing of
FlatMult found 4 adaptor errors (errors in the parts of the FlatPredModel

actions that communicate with the SUT), 1 model error (which was obvious
when we looked at the graph of the EFSM), and 1 SUT error (to our sur-
prise!). The error was in the IOI mode of FlatMult(x,y,z), with the data
x = 2 and z = 11. The implementation of that mode correctly did a divi-
sion to calculate y = z/x = 11/2 = 5, but then it immediately assigned 5
to y and returned true rather than rechecking the multiplication first, and
finding that 2 × 5 = 11, so returning false. This error was detected by the
random walk test generation, but it had not been detected by the JUnit tests
or by the 600 ZLive system tests, 36 of which used multiplication.

5.4

Finite state machines and extended finite state machines can be viewed as
special cases of labeled transition systems (LTS). The main difference between
LTS and FSM is that an LTS is allowed to have an infinite set of states and/or
an infinite set of labels, whereas an FSM must have a finite set of states and
a finite input alphabet.

5.1 Testing Qui-Donc with a Simple FSM 183

LTSs were defined by Keller [Kel76] and have become widely used for
modeling data-intensive systems, such as sequential and concurrent pro-
grams and hardware circuits [BJK+05, 113]. There are many kinds of LTS,
including the Input/Output Automata of Lynch and Tuttle [LT87] and the
Input/Output Transition Systems of Tretmans [Tre96].

Most of the research on test generation from LTS models has been the-
oretical, but some of the research has resulted in model-based testing tools
being implemented. One of the most well-known theories is Tretman’s In-
put/Output Conformance relation (ioco), which has been the basis for several

model-based testing tools, such as TGV [JJ05] and TorX14 [TB03].
LTS models are good at modeling nondeterministic reactive systems,

where the generated tests must cope with events coming from the SUT spon-
taneously rather than as a direct response to the test inputs. We will see ex-
amples of this approach in the next two chapters (Sections 6.5 and 7.3).

5.5

An FSM model has a finite set of states, plus a collection of transitions that
lead from one state to another. Each transition is labeled with an input value

i and an expected output value o and is sometimes written s
i/o

−→ s′, where
the transition goes from state s to state s′.

An EFSM is similar to an FSM but is more expressive because it has
internal variables that can store more detailed state information. Its actions
can update those variables and can also have guards that enable or disable
the action.

FSM and EFSM models can be used for system testing or for unit test-
ing. The generated tests can be executed manually or automatically either
online or offline.

If you have a system that changes state and has different behavior in each
state, then a finite state model (FSM or EFSM) is a good choice for modeling
that system.

The key step in designing a finite state model is abstraction—deciding
which aspects of the SUT to ignore and which aspects to view as separate
states or separate transitions. These design decisions determine the size and
shape of the finite state model, which in turn determines the tests that are
generated.

14The TorX tool is available for noncommercial use from the University of Twente. See http://
fmt.cs.utwente.nl/tools/torx or http://www.purl.org/net/torx.

184 Testing from Finite State Machines

In the ModelJUnit library, the getState() method defines this abstrac-
tion function. It is the key to controlling the number of states and transitions
in your EFSM. Small changes to this method can produce EFSMs of radi-
cally different shapes and sizes.

When generating tests from a finite state model, full transition coverage
is a recommended minimum goal. The Chinese postman algorithm [Thi03]
generates a minimum-length test sequence that satisfies 100 percent transi-
tion coverage. Transition-pair coverage is much more demanding, but the
percentage of transition-pair coverage is a useful measure of how many in-
teractions between adjacent transitions you have tested.

Random walks are the easiest way to generate test suites from an FSM
model, and those test suites are surprisingly effective. Random walks have
the nice properties that (1) you can easily generate a test suite of any desired
length, and (2) the test suite gives more and more sophisticated coverage of
the model as it grows longer and longer. With online testing, random walks
can generate an infinite sequence of constantly changing tests that can be
useful for overnight testing, perhaps even on multiple machines, each with a
different seed for the random walk.

Explicit test specifications can be useful when you want to force a par-
ticular kind of test to be generated from a model.

5.6

Chapter 7 of Binder [Bin99] contains lots of practical advice on how to
design various kinds of finite state systems. His Section 7.4.5 discusses how
to choose among the test generation strategies for finite state systems. For
each strategy he gives examples of the size of the generated test suite (his
Table 7.12) and the fault-revealing power (his Figure 7.40) of the strategy.

Harry Robinson’s entertaining introduction to the use of graph theory in
model-based testing [Rob99] gives an overview of Euler tours, the Chinese
postman problem, the New York street sweeper problem, the de Bruijn se-
quence for combinations of length 2 (also called safecracker sequences), the
parallel street sweeper problem, random walks, and Markov chains.

The first four chapters of [BJK+05] give a more thorough and theoretical
coverage of test generation from FSMs and describe a variety of test genera-
tion algorithms and their complexity. Chapters 5 through 9 of the same book
give a comprehensive survey of model-based testing techniques for various
kinds of labeled transition system. Also, see [Pet01, BT01] for brief anno-
tated bibliographies of some of the main research papers and books in the
LTS field.

5.1 Testing Qui-Donc with a Simple FSM 185

Bochmann and Petrenko [BP94] and Lee and Yannakakis [LY96] give
surveys of FSM and EFSM testing methods. The 1989 paper by Sidhu and
Leung [SL89] describes four test generation algorithms for FSMs and gives
some experimental results on their fault-detection capability and the size of
the test suites that they generate. The 1991 paper by Fujiwara and colleagues
[FvBK+91] adds some more algorithms and discusses assumptions and lim-
itations of the various methods.

In Section 5.1.4 we note that many of the complete FSM test gen-
eration methods such as the D-method [Hen64], the W-method [Vas73,
Cho78], the Wp-method [FvBK+91], and the U-method [SD88] place
strong requirements on the FSM (it must be deterministic, minimal, com-
plete, strongly connected, and have the same number of states as the SUT).
More recent research allows many of these requirements to be relaxed. The
minimal, complete, and strongly connected requirements can be satisfied
reasonably easily by transforming the FSM into an equivalent minimal FSM,
by adding transitions, and by adding a reset operation, respectively. There
has been some research on generating tests from nondeterministic FSMs
[LvBP94, Hie03, Hie04, MCLH05], and there are some FSM test gener-
ation algorithms that can weaken the assumption on the number of states,
but the length of the tests grows exponentially with each additional SUT
state [LY96, Section 4.7.2].

At MBT 2004 [GKP05], Kervinen and Virolainen [KV05] described
an experimental evaluation (on 45 variants of a distributed conference chat
system) of the fault-detection speed of seven test generation algorithms for
EFSMs, ranging from purely random to sophisticated adaptive algorithms.
They found that a greedy random algorithm (which gives higher priority to
unused transitions) worked surprisingly well, but the highest fault-detection
was with adaptive or pessimistic algorithms that give high priority to sending
new inputs or receiving new outputs from the SUT.

The ModelJUnit library is available for download from this book’s web-
site, and the Qui-Donc model is included as one of the examples.

