
1 Models and modeling

From wind-tunnels to Navier-Stokes equations to circuit diagrams to �nite-element mo-
dels of buildings, engineers in all �elds of engineering construct and analyze models.
Fundamentally, modeling addresses two problems in engineering. First, analysis and test
cannot wait until the actual artifact is constructed, whether that artifact is a building or
a software system. Second, it is impractical to test the actual artifact as thoroughly as
we wish, whether that means subjecting it to all foreseeable hurricane and earthquake
forces, or to all possible program states and inputs. Models permit us to start analysis
earlier and repeat it as a design evolves, and allows us to apply analytic methods that
cover a much larger class of scenarios than we can explicitly test. Importantly, many of
these analyses may be automated.
This chapter presents some basic concepts in models of software and some families of

models that are used in a wide variety of testing and analysis techniques. Several of
the analysis and testing techniques described in subsequent chapters use and specialize
these basic models. The fundamental concepts and trade-o�s in the design of models
is necessary for a full understanding of those test and analysis techniques, and is a
foundation for devising new techniques and models to solve domain-speci�c problems.

1.1 Overview

A model is a representation that is simpler than the artifact it represents but preserves (or
at least approximates) some important attributes of the actual artifact. Our concern in
this chapter is with models of program execution, and not with models of other (equally
important) attributes such as the e�ort required to develop the software or its usability.
A good model of (or, more precisely, a good class of models) must typically be:

Compact A model must be representable and manipulable in a reasonably compact
form. What is "reasonably compact" depends largely on how the model will be
used. Models intended for human inspection and reasoning must be small enough
to be comprehensible. Models intended solely for automated analysis may be far
too large and complex for human comprehension, but must still be su�ciently small
or regular for computer processing.

Predictive A model used in analysis or design must represent some salient characteris-
tics of the modeled artifact well enough to distinguish between "good" and "bad"
outcomes of analysis, with respect to those characteristics.

Typically, no single model represents all characteristics well enough to be useful for all
kinds of analysis. One does not, for example, use the same model to predict air�ow

1



1 Models and modeling

over an aircraft fuselage and to design internal layout for e�cient passenger loading
and safe emergency exit.

Semantically meaningful Beyond distinguishing between predictions of success and fai-
lure, it is usually necessary to interpret analysis results in a way that permits
diagnosis of the causes of failure. If a �nite-element model of a building predicts
collapse in a category �ve hurricane, we want to know enough about that collapse
to suggest revisions to the design. Likewise, if a model of an accounting system
predicts a failure when used concurrently by several clients, we need a description
of that failure su�cient to suggest possible revisions.

Su�ciently general Models intended for analysis of some important characteristic (e.g.,
withstanding earthquakes or concurrent operation by many clients) must be general
enough for practical use in the intended domain of application.

We may sometimes tolerate limits on design imposed by limitations of our modeling
and analysis techniques. For example, we may choose a conventional bridge design over
a novel design because we have con�dence in analysis techniques for the former but
not the latter, and we may choose conventional concurrency control protocols over novel
approaches for the same reason. However, if a program analysis technique for C programs
is applicable only to programs without pointer variables, we are unlikely to �nd much
use for it.
Since design models are intended partly to aid in making and evaluating design de-

cisions, they should share these characteristics with models constructed primarily for
analysis. However, some kinds of models - notably the widely used UML design notati-
ons - are designed primarily for human communication, with less attention to semantic
meaning and prediction.
Models are often used indirectly in evaluating an artifact. For example, some models

are not themselves analyzed, but are used to guide test case selection. In such cases, the
qualities of being predictive and semantically meaningful apply to the model together
with the analysis or testing technique applied to another artifact, typically the actual
program or system.

Graph Representations We often use directed graphs to represent models of programs.
Usually we draw them as "box and arrow" diagrams, but to reason about them it is
important to understand that they have a well-de�ned mathematical meaning, which we
review here.
A directed graph is composed of a set of nodes N and a relation E on the set (that is,

a set of ordered pairs), called the edges. It is conventional to draw the nodes as points
or shapes and to draw the edges as arrows. For example: Image from book
Typically, the nodes represent entities of some kind, such as procedures or classes

or regions of source code. The edges represent some relation among the entities. For
example, if we represent program control �ow using a directed graph model, an edge
(a,b) would be interpreted as the statement "program region a can be directly followed
by program region b in program execution."

2



1 Models and modeling

We can label nodes with the names or descriptions of the entities they represent. If
nodes a and b represent program regions containing assignment statements, we might
draw the two nodes and an edge (a,b) connecting them in this way: Image from book
Sometimes we draw a single diagram to represent more than one directed graph, dra-

wing the shared nodes only once. For example, we might draw a single diagram in which
we express both that class B extends (is a subclass of) class A and that class B has a �eld
that is an object of type C. We can do this by drawing edges in the "extends" relation
di�erently than edges in the "includes" relation. Image from book
Drawings of graphs can be re�ned in many ways, for example, depicting some relations

as attributes rather than directed edges. Important as these presentation choices may
be for clear communication, only the underlying sets and relations matter for reasoning
about models.

1.1.1 Modeling maturity level

It is also useful to consider the modeling maturity level of a company that is adopting
model-based testing. The UML/OCL and MDA (model-driven architecture) community
has identi�ed six levels of modeling maturity for UML development models and MDA
[WK03]:

• Level 0, No Speci�cation: The software speci�cations are only in the heads of the
developers.

• Level 1, Textual: The software speci�cations are written down in informal natural-
language documents.

• Level 2, Text with Diagrams: The textual speci�cations are augmented with some
high-level diagrams.

• Level 3, Models with Text: A set of models (diagrams or text with well- de�-
ned meanings) form the backbone of the speci�cation. Natural lan- 6 See http://
www.sogeti.nl/ tpi . 2.5 Hypothetical Case: Total Testing Hours 35 guage is used
to motivate and explain the models and to �ll in many details within the models.
The transition from models to code is still manual, and it can be di�cult to keep
models up to date after changes to the code.

• Level 4, Precise Models: This is the level where MDA becomes possible, with code
being generated from the model and then modi�ed to ful�ll special requirements.
The model has a precise meaning, which does not rely on natural language even
though natural language is still used to explain the background of the model.

• Level 5, Models Only: At this level, the model is used like a high-level programming
language, the model-to-code generation is automatic and used just like a compiler,
and the generated code is used directly with- out changes. In 2003, the authors
commented that this level has not yet been reached anywhere in the world, but it
is a good ultimate go

3



1 Models and modeling

1.2 How to model your system

The �rst and most important step in modeling a system for testing is deciding on a
good level of abstraction, that is, deciding which aspects of the system to include in your
model and which aspects to omit. Since the model is just for veri�cation or for test
generation purposes, it does not have to specify all the behavior of the system. In the
followinfg we assume that the model is used for testing. The same applies for veri�cation.
Several smaller partial models are often more useful than one huge and complex model.
For example, it may be useful to write a model for each subsystem or component and
to test them independently, before writing a top-level model for the whole system. So
your decisions about which operations to include in the model should be driven by your
top-level test objectives. Once you have decided which aspects of the SUT you wish to
model, the next step in modeling a system is to think about the data that it manages,
the operations that it performs, and the subsystems that it communicates with. A good
notation for this is a UML class diagram, perhaps enhanced with a few textual UML
use cases for the most important operations. If you already have a UML class diagram
that describes the design of the SUT, you may be able to use that as a starting point
for the testing model. However, a class diagram for testing purposes should be much
simpler than the full class diagram that is used for design purposes. The following are
some typical simpli�cations:

• Focus primarily on the SUT

• Show only those classes (or subsystems) associated with the SUT and whose values
will be needed in the test data

• Include only those operations that you wish to test

• Include only the data �elds that are useful for modeling the behavior of the opera-
tions that will be tested

• Replace a complex data �eld, or a class, by a simple enumeration. This allows you
to limit the test data to several carefully chosen example values (one for each value
of the enumeration).

For each operation that you decide to model, you should also apply the abstraction
principle to its input and output parameters. If the value of an input parameter changes
the behavior of an operation, and you want to test those di�erent behaviors, then put
that input parameter into your model. Otherwise, it is generally better to leave the input
parameter out of the model to keep it simple�an appropriate input value can be chosen
after test generation when the abstract tests are being translated into executable tests.
The di�culty of test generation is usually highly dependent on the number and range
of the input parameters (in addition to the state variables), so reducing this helps to
control the test generation e�ort. Output parameters should be modeled only if their
value is useful as an oracle for the test. Key Point Design your model to meet your
test objectives. When in doubt, leave it out! Note that the operations in your model

4



1 Models and modeling

do not have to be exactly the same as the operations of the SUT. If your system has a
complex operation Op, you may want to split its behavior into several cases and de�ne
one model operation Op_i for each case. On the other hand, you may want to de�ne
one model operation that corresponds to a sequence of operations in the actual system,
perhaps to summarize a complex initialization sequence into a single model operation,
or to reach a particular state that you want to test thoroughly. Key Point You can have
a many-to-many relationship among the operations of your model and the operations of
the SUT. The next step is to decide which notation to use for your model. This decision
is often in�uenced by the model-based testing tools you have available and the notations
they support. But in addition to this factor, it is important to consider which style of
notation is most suitable for your system. In the next section, we give an overview of
the di�erent modeling notations that are available and some guidelines for choosing an
appropriate notation. After you have chosen a notation and written a model of your
system in that notation, the next step is to ensure that your model is accurate. You will
want to validate your model (check that it does indeed specify the behavior that you
want to test) and verify it (check that it is correctly typed and consistent). This is where
good tool support can help. Most tool suites o�er an animation tool for simulating the
behavior of your model, which helps you to validate your model. They also provide tools
for checking the syntax and types in your model and may o�er more sophisticated tools
for checking deeper properties of your model, such as an automatic prover that tries to
prove that each operation of a B machine preserves the invariant or a model checker that
searches for states where no operations are enabled (deadlocked states). The �nal step
is to use your model to generate tests. This is the subject of the next few chapters. Note
that your model will continue to be validated throughout the test generation process.
After you generate tests from your model and execute those tests on your system, each
test that fails will point either to an error in the implementation of your system or to a
mistake or inadequacy in your model. The value of model-based testing comes from the
automated cross-checking between these two independent works of art: the model and
the system implementation.

1.2.1 Notations for Modeling

Dozens, perhaps even hundreds, of di�erent modeling notations have been used for mo-
deling the functional behavior of systems.
We group them into the following paradigms, adapted from van Lamsweerde [vL00].

Pre/post (or state-based) notations: These model a system as a collection of varia-
bles, which represent a snapshot of the internal state of the sys- tem, plus some operations
that modify those variables. This is similar to an object in Java or C++. Rather than
the operations being de�ned with programming language code, each operation is usually
de�ned by a precondition and a postcondition. Examples of these notations include B
[Abr96], the UML Object Constraint Language (OCL) [WK03], the Java Modeling Lan-
guage (JML) [L + 06], Spec# [Res06a], VDM [Jon90, FLM + 05] and Z [ISO02, Bow06].
Note: The traditional name for these notations is �model-based.� However, this is rather

5



1 Models and modeling

confusing in our con- text, where all kinds of notations are being used to de�ne models
of the SUT. So, in this book, we call them pre/post notations.

Transition-based notations: These focus on describing the transitions be- tween dif-
ferent states of the system. Typically, they are graphical node- and-arc notations, such
as FSMs, where the nodes of the FSM represent the major states of the system and the
arcs represent the actions or oper- ations of the system. Textual or tabular notations
are also used to specify the transitions. In practice, transition-based notations are often
made more expressive by adding data variables, hierarchies of machines, and parallelism
between machines. Examples of transition-based notations include FSMs, statecharts
(e.g., UML State Machines, STATEMATE statecharts, and Simulink State�ow charts),
labeled transition systems, and I/O (input/output) automata.

History-based notations: These notations model a system by describing the allowa-
ble traces of its behavior over time. Various notions of time can be used (discrete or
continuous, linear or branching, points or intervals, etc.), leading to many kinds of tem-
poral logics. We also include message-sequence charts (MSC) and related for- malisms
in this group. These are graphical and textual notations for specifying sequences of
interactions among components. They are often used for modeling telecommunication
protocols, particularly in combination with the System Description Language (SDL). 1
MSCs were adopted into UML, where they are called sequence diagrams, which are one
kind of interaction diagram. MSCs are good for visually showing in- teractions among
components, but not so good at specifying the detailed behavior of each component. So,
although they are sometimes used as a basis for model-based testing, our preference is to
use them to describe the generated tests. That is, they are better used for visualizing the
tests that result from model-based testing than for de�ning the model that is the input
to model-based testing. Functional notations: These describe a system as a collection
of mathe- matical functions. The functions may be �rst-order only, as in the case of
algebraic speci�cations, or higher-order, as in notations like HOL (an environment for
interactive theorem proving). For example, the property push;pop = skip speci�es that
the pop operation undoes the e�ect of a push operation. Algebraic speci�cations tend
to be more abstract and more di�cult to write than other notations, so they are not
widely used for model-based testing (but see [Mar95] for one test generation tool based
on algebraic models). Operational notations: These describe a system as a collection of
exe- cutable processes, executing in parallel. They are particularly suited to describing
distributed systems and communications protocols. Examples include process algebras
such as CSP and CCS on the one hand and Petri net notations on the other hand. Statis-
tical notations: These describe a system by a probabilistic model of the events and input
values. They tend to be used to model environ- ments rather than SUTs. For example,
Markov chains are often used to model expected usage pro�les, so the generated tests
exercise that usage pro�le. Statistical notations are good for specifying distributions of
events and test inputs for the SUT but are generally weak at predicting the expected
1 See the SDL Forum Society, http://www.sdl-forum.org, for more details of SDL and

6



1 Models and modeling

MSC.64 chapter 3 A Model of Your System outputs of the SUT; therefore, with only
a statistical model it is not usu- ally possible to generate automated oracles as part of
the tests. However, it is possible to combine a statistical model with one that models
the SUT behavior. This allows the statistical model to drive the choice of test sequences
and inputs, while the other model predicts the expected outputs of the SUT. Data-�ow
notations: These notations concentrate on the �ow of data through the SUT, rather than
its control �ow. Some examples of this style are Lustre [MA00] and the block diagram
notations that are used in Matlab Simulink 2 for the modeling of continuous systems.
3.1.2 Choosing a Notation For model-based testing, the transition-based notations

and the pre/post no- tations are the most used for developing behavioral models of the
SUT. Which notation will be the best for modeling your SUT? In addition to practical
factors, such as the availability of model-based testing tools for each notation and the
degree of familiarity that you have with some notations, the answer will depend on the
characteristics of your SUT. The basic guideline is to look at whether your system is
more data- oriented or control-oriented. A data-oriented system typically has several
state variables, with rich types such as sets, relations, maps, and sequences of values.
The operations of a data-oriented system operate on that data to ac- cess and manipulate
it. Data-oriented systems are most easily speci�ed using pre/post notations, like B, which
o�er powerful libraries of data structures. In a control-oriented system, the set of available
operations varies ac- cording to which state the system is in. For example, in the drink
vending machine that we will study later in this chapter, some operations are enabled
only when the machine is out of service, and others are enabled only when the machine
is in service. Control-oriented systems are most easily speci�ed using transition-based
notations, such as UML state machines, because the set of transitions can be di�erent
for each state machine node. Key Point Pre/post notations are best for data-oriented
systems. Transition-based notations are best for control-oriented systems. Of course,
your system may not be so easy to classify. It may show signs of being both data-
oriented and control-oriented. These classi�cations are 2 See the MathWorks website,
http://www.mathworks.com, for information on the Simulink prod- uct family.3.1 How
to Model Your System 65 not opposites, but rather two independent dimensions, so you
must make a judgment call about which dimension is dominant in your system. We
close by noting that it is always possible to specify control-oriented aspects of a system
in a pre/post notation, and it is usually possible to specify data-oriented systems in a
transition-based notation. If several �states� of your system have di�erent behavior and
could eas- ily be modeled by nodes in a transition-system, you can still model this using
a pre/post notation. You simply introduce one or more state vari- ables to tell you which
of those �nodes� your system is currently in (like state : {InService,OutOfService}), and
then you add appropriate precondi- tions (like state = InService) or if-then-else conditions
into the operations to enable the desired operations. Operations that correspond to a
transition from one state to another must also update the state variables to re�ect this
change (like state := InService). On the other hand, a transition-based notation may
have good enough support for complex data structures that it can be used for data-
oriented systems. With UML state machines, OCL o�ers Set, OrderedSet, Bag, and
Sequence data types, and associations among classes can be used to model many-to-

7



1 Models and modeling

many relations, many-to-one functions, one-to-one functions, and so on. OCL has fewer
built-in operators than the B toolkit, but has a good set of quanti�ers that can be used to
express sophisticated queries. So choosing the �wrong� notation may make it a little more
di�cult to model your system. The goal is to choose the notation that suits your system
best and one for which you have good tool support. Whatever notation you choose, the
important thing for model-based testing is that the notation be formal. Formal means
that the notation has a precise and unambiguous meaning, so that the behavior of your
model can be understood and manipulated by various tools. This precise meaning makes
it possible to simulate the execution of the model and to use the model as an oracle by
predicting the expected output of the SUT or checking the actual output of the SUT
against the model. Moreover, the precise semantics of modeling notations allow tools to
perform deep consistency checks on your model, such as proving that every operation
preserves the desired properties of your data structures (the invari- ant) or that all states
are reachable. Key Point Model-based testing requires an accurate model, written in a
formal modeling notation that has precise semantics. For example, a UML class diagram
by itself does not give enough detail for test generation. One must add behavioral detail
in some way, perhaps by66 chapter 3 A Model of Your System writing OCL preconditions
and postconditions for the methods of the class or perhaps by writing a state machine
diagram with detailed transitions.

1.3 Declarative vs operational notations

1.4 Finite State Machines

1.5 Logic

1.6 Temporal logic

LTL /CTL - altri lucidi

1.7 NuSMV

lucidi

8



2 Model analysis and veri�cation

*Model simulation (scenario based)
*Model review

2.1 formal veri�cation

2.2 model checking

9


