
2 Testing and veri�cation processes

This chapter describes the impact of model-based testing on the testing life cycle and the
bene�ts and challenges associated with adopting model-based testing. We start with an
overview of some traditional testing processes and show how these di�er from the model-
based testing process. Then we discuss maturity levels, look at several case studies that
demonstrate the pain and the gain of putting model-based testing into practice, and
�nish by discussing the bene�ts and limitations of model-based testing.

2.1 What is testing

Testing is an activity performed for evaluating product quality, and for
improving it, by identifying defects and problems.

This de�nition of testing, from the IEEE Software Engineering Body of Knowledge (SWE-
BOK 2004),1 describes the top-level goals of testing. It goes on to give more detail:

Software testing consists of the dynamic veri�cation of the behavior of a
program on a �nite set of test cases, suitably selected from the usually in�nite
executions domain, against the expected behavior.

We've emphasized in italics the words that capture the key features of software testing;
these are their de�nitions as they relate to this book.

Dynamic: This means that we execute the program with speci�c input values to �nd fail-
ures in its behavior. In contrast, static techniques (e.g., inspections, walkthroughs,
and static analysis tools) do not require execution of the program. One of the big
advantages of (dynamic) testing is that we are executing the actual program either
in its real environment or in an environment with simulated interfaces as close as
possible to the real environment. So we are not only testing that the design and
code are correct, but we are also testing the compiler, the libraries, the operating
system and network support, and so on.

Finite: Exhaustive testing is not possible or practical for most real programs. They
usually have a large number of allowable inputs to each operation, plus even more
invalid or unexpected inputs, and the possible sequences of operations is usually
in�nite as well. So we must choose a smallish number of tests so that we can run the
tests in the available time. For example, if we want to perform nightly regression
testing, our tests should take less than 12 hours!

1The SWEBOK can be downloaded from http://www.swebok.org or purchased from the IEEE

1



2 Testing and veri�cation processes

Selected: Since we have a huge or in�nite set of possible tests but can a�ord to run
only a small fraction of them, the key challenge of testing is how to select the tests
that are most likely to expose failures in the system. This is where the expertise
of a skilled tester is important�he or she must use knowledge about the system to
guess which sets of inputs are likely to produce the same behavior (this is called the
uniformity assumption) and which are likely to produce di�erent behavior. There
are many informal strategies, such as equivalence class and boundary value testing,2

that can help in deciding which tests are likely to be more e�ective. Some of these
strategies are the basis of the test selection algorithms in the model-based testing
tools that we use in later chapters.

Expected: After each test execution, we must decide whether the observed behavior of
the system was a failure or not. This is called the oracle problem. The oracle
problem is often solved via manual inspection of the test output; but for e�cient
and repeatable testing, it must be automated. Model-based testing automates the
generation of oracles, as well as the choice of test inputs.

Before describing the various kinds of testing, we brie�y review some basic terms
according to standard IEEE software engineering terminology. A failure is an undesired
behavior. Failures are typically observed during the execution of the system being tested.
A fault is the cause of the failure. It is an error in the software, usually caused by human
error in the speci�cation, design, or coding process. It is the execution of the faults in
the software that causes failures. Once we have observed a failure, we can investigate to
�nd the fault that caused it and correct that fault.
So testing is the activity of executing a system in order to detect failures. It is dif-

ferent from, and complementary to, other quality improvement techniques such as static
veri�cation, inspections, and reviews. It is also distinct from the debugging and error-
correction process that happens after testing has detected a failure.
In fact, there are many kinds of testing. Figure 1.2 shows one way to classify various

kinds of testing along three dimensions (adapted from [Tre04]). One axis shows the scale
of the system under test (SUT), ranging from small units up to the whole system. Unit
testing involves testing a single unit at a time, such as a single procedure or a single
class. Component testing tests each component/subsystem separately, and integration
testing aims at testing to ensure that several components work together correctly. System
testing involves testing the system as a whole. Model-based testing can be applied to
any of these levels.
Another axis shows the di�erent characteristics that we may want to test. The most

common kind of testing is functional testing (also known as behavioral testing), where
we aim to �nd errors in the functionality of the system�for example, testing that the
correct outputs are produced for given inputs. Robustness testing aims at �nding errors
in the system under invalid conditions, such as unexpected inputs, unavailability of de-
pendent applications, and hardware or network failures. Performance testing tests the

2See Lee Copeland's book [Cop04] for a comprehensive overview of the most popular informal test
design techniques.

2



2 Testing and veri�cation processes

Figure 2.1: Di�erent kinds of testing. Source: From Tretmans [Tre04]. Used with
permission.

3



2 Testing and veri�cation processes

throughput of the system under heavy load. Usability testing focuses on �nding user
interface problems, which may make the soft- ware di�cult to use or may cause users to
misinterpret the output. The main use of model-based testing is to generate functional
tests, but it can also be used for some kinds of robustness testing such as testing the
system with invalid inputs. It is not yet widely used for performance testing, but this
is an area under development. The third axis shows the kind of information we use to
design the tests. Black-box testing means that we treat the SUT as a �black box,� so we
do not use information about its internal structure. Instead, the tests are designed from
the system requirements, which describe the expected behavior of that black box. On the
other hand, white-box testing uses the implementation code as the basis for designing
tests. For example, we might design a set of tests to ensure statement coverage of a
procedure, meaning that each statement will be executed by at least one of the tests.
Much has been written about the pros and cons of black-box and white- box testing.
Hoframewever, the most common practice is to use black-box testing techniques to de-
sign functional and robustness tests. Some testers then use white-box coverage metrics to
check which parts of the implementation have not been tested well so that extra tests can
be designed for those cases. Model- based testing is a form of black-box testing because
tests are generated from a model, which is derived from the requirements documentation.
The next section describes model-based testing in more detail.

2.2 Classic testing processes (program-based)

When doing functional testing, there are three key issues:
This section describes several classic testing processes that are widely used in industry.

We start by describing a simple manual testing process, and then we progress through
several testing processes that use automated test execution. We �nish with a table that
shows how each of these testing processes addresses the three stated testing issues, and
what issues remain unsolved. Figure 2.1 shows the notations that we use in the process
diagrams in this chapter. Informal Document means a document in natural language,
such as English, while Formal Documents are written in some precise notation (such as
models and test scripts) that can be parsed or executed by tools.

2.2.1 A Manual Testing Process

The left side of Figure 2.2 shows a completely manual testing process. This was the
earliest style of testing, but it is still widely used.
The test plan gives a high-level overview of the testing objectives, such as which

aspects of the SUT should be tested, what kinds of test strategies should be used, how
often testing should be performed, and how much testing will be done. The test design
is done manually, based on the informal requirements documents. The output of the
design stage is a human-readable document that describes the desired test cases. The
description of test cases can be quite concise and high-level; many of the low-level details
about interacting with the system under test can be left to the common sense of the test
execution person, who is called a manual tester. However, the manual designing of the

4



2 Testing and veri�cation processes

Figure 2.2: A manual testing process Figure 2.3: A Capture and replay
process

5



2 Testing and veri�cation processes

tests is time-consuming and does not ensure systematic coverage of the SUT functionality.
The test execution is also done manually. For each test case, the manual tester follows
the steps of that test case, interacts directly with the SUT, compares the SUT output
with the expected output, and records the test verdict. In embedded applications, where
it is often not possible to interact directly with the SUT (it may be just a black box
with some wires coming out), a test execution environment may be used to allow the
tester to enter inputs and observe outputs. However, the execution of each test case is
still performed manually. Note that the required skills of the test designer and manual
tester are rather di�erent. The test designer needs to have expert knowledge about
the SUT, plus some skill with test design strategies. The manual tester has a much
more menial task, which requires some knowledge of how to interact with the SUT but
mostly involves simply following the steps of the test case and recording results. This
manual test execution process is repeated each time a new release of the SUT needs to
be tested. This quickly becomes a very boring and time- consuming task. Since there is
no automation of the test execution, the cost of testing each SUT release is constant and
large. In fact, the cost of repeating the manual test execution is so high that, to keep
testing costs within budget, it is often necessary to cut corners by reducing the number of
tests that are executed after each evolution of the code. This can result in software being
delivered with incomplete testing, which introduces a signi�cant risk regarding product
maturity, stability, and robustness. The next few testing processes propose various ways
of automating the test execution, to reduce this cost and permit more comprehensive
testing.

2.2.2 A Capture/Replay Testing Process

Capture/replay testing attempts to reduce the cost of test re-execution by capturing
the interactions with the SUT during one test execution session and then replaying those
interactions during later test execution sessions. In this process, test cases are still
manually designed. The right side of Figure 2.2 shows how this is di�erent from man-
ual test execution. The interaction with the SUT is managed by a testing tool that we
call the capture/replay tool. This records all the inputs sent to the system under test and
the outputs that result (e.g., procedure return results, screen snapshots, data �les, etc.).
Then when a new release of the SUT must be tested, the capture/replay tool can attempt
to rerun all the recorded tests and report which ones fail. To rerun each recorded test, the
tool sends the recorded inputs to the SUT and then compares the new outputs with the
recorded outputs from the original test execution. The main problem with capture/replay
testing is that it is very fragile. For example, a change to the layout of a window in the
SUT (such as changing from a combo box to a radio button) or a small change to the
interface of one procedure in an API can cause a large number of the recorded tests
to fail. These have to be tested manually again and recorded for future sessions. This
inability to adapt to small changes in the SUT creates a huge maintenance problem with
the recorded tests and often leads to the capture/replay method being abandoned after
several SUT releases. This problem comes from a lack of abstraction in the recorded
tests. That is, it is the low-level details of the actual SUT input and output values that

6



2 Testing and veri�cation processes

Figure 2.4: A script-based testing
process-Testing processes
with automated test execu-
tion: manually developed
test scripts (left)

Executable Tests

System 
under 

test

execution
Test results

Figure 2.5: Tests as programs

are recorded rather than a higher-level, more abstract, view. The veri�cation of the
correctness of the outputs is also usually too low-level and based on comparing screen
snapshots or strings rather than checking just the relevant higher-level features of the
output. The key issue of automating the test execution is only partially solved by the
capture/replay approach. This is due to the extreme sensitivity of this approach to any
changes in the SUT. Notice also that this approach is usually used only to automate the
testing of the graphical user interface (GUI) of the SUT, which is only one part of the
desired functional test suite.

2.2.3 A Script-Based Testing Process

The left side of Figure 2.3 shows a testing process that uses test scripts to automate the
execution of tests. A test script is an executable script that runs one or more test cases.
This usually involves initializing the SUT, putting the SUT in the required context,
creating the test input values, passing those inputs to the SUT, recording the SUT
response, comparing that response with the expected outputs, and assigning a pass/fail
verdict to each test. The test scripts may be written in some standard programming or

7



2 Testing and veri�cation processes

scripting language or in a special testing lan- guage such as TTCN-3 (Testing and Test
Control Notation) [WDT + 05]. So writing test scripts is now a programming task, which
requires di�erent skills from test design or test execution. Test scripts must control and
observe the SUT using some API. This is a strong design constraint on the application�it
must o�er the required points of control and observation for testing purposes. These
are important testabil- ity criteria, which are standard quality criteria in most software
engineering processes. These points of control and observation are then invoked in the
test scripts both to stimulate the SUT and to observe if the actual states or responses are
the expected ones. The script-based testing approach solves the test execution problem
by automating it. Each time that we want to rerun the tests for regression testing,
this can be done for free by just running the test scripts again. However, this increases
the test maintenance problem because the test scripts must evolve not only when some
requirements change, but also whenever some implementation details change (e.g., when
some parameters change in the API used to stimulate the SUT). Since the total size
of test scripts can be nearly as big as the application under test and the details of one
interface to the SUT are usually spread out over many tests, maintenance of the test
scripts becomes very costly. Abstraction is the key to reducing the maintenance costs of
test scripts, but the level of abstraction depends on the individual skill of the test script
designer.

2.2.4 A Program-Based Testing Process

Write programs that test programs:

• the test are designed as before,

• the tester writes the tests as programs possibily in the same language as the program
itself

• the execution and the verdict are done automaticlly by running the tests

• very easy to rerun test cases

• require more time to write the tests (and maintain)

2.2.5 Solved and Remaining Problems

In Table 2.1 we summarize the testing problems that are solved by each of the men-
tioned approaches, as well as the problems that remain unsolved. As we go down the
table, the testing processes become more sophisticated and provide better solutions for
minimizing the cost of executing and reexecuting tests. However, all these processes still
rely on manual design of the test cases and manual tracking of the relationship between
the requirements and the tests. In addition, because they all rely on manual design of
the tests, none of them guarantees very systematic and repeatable coverage of the SUT
behavior. The model-based testing process aims to solve the following three remaining
problems that the other testing processes do not fully address:

8



2 Testing and veri�cation processes

Solved and Remaining Problems
Testing
Process

Solved Problems Remaining Problems

Manual
Testing

Functional testing Imprecise coverage of SUT
functionality No capabilities for

regression testing Very costly process
(every test execution is done

manually) No e�ective measurement of
test coverage

Capture/
Replay

Makes it possible to
automatically reexecute
captured test cases

Imprecise coverage of SUT
functionality

Weak capabilities for regression testing
(very sensitive to GUI changes) Costly

process (each change implies
recapturing test cases manually)

Script- Based
Testing

Makes it possible to
automatically execute and

reexecute test scripts

Imprecise coverage of SUT
functionality Complex scripts are
di�cult to write and maintain

Requirements traceability is developed
manually (costly process)

Program-
based
Testing

No extra language is required It may require additional e�ort during
maintenance

Table 2.1: Comparison of Testing Approaches

• Automation of the design of functional test cases (including generation of the ex-
pected results) to reduce the design cost and to produce test suites with systematic
coverage of the model

• Reduction of the maintenance costs of the test suite

• Automatic generation of the traceability matrix from requirements to test cases

The next section presents the model-based testing process and describes each step of the
process in more detail.

2.3 The model-based testing process

Model-based testing automates the detailed design of the test cases and the generation
of the traceability matrix. More precisely, instead of manually writing hundreds of test
cases (sequences of operations), the test designer writes an abstract model of the system
under test, and then the model-based testing tool generates a set of test cases from that
model. The overall test design time is reduced, and an added advantage is that one
can generate a variety of test suites from the same model simply by using di�erent test
selection criteria. The model-based testing process can be divided into the following �ve
main steps, as shown in Figure 2.4.

1. Model the SUT and/or its environment.

2. Generate abstract tests from the model.

9



2 Testing and veri�cation processes

Figure 2.6: The model-based testing process (testing tools are in the boxes with very
bold lines).

3. Concretize the abstract tests to make them executable.

4. Execute the tests on the SUT and assign verdicts.

5. Analyze the test results.

Of course, steps 4 and 5 are a normal part of any testing process, even manual testing.
Step 3 is similar to the �adaptor� phase of keyword-based testing, where the meaning
of each keyword is de�ned. The �rst two steps distinguish model-based testing from
other kinds of testing. In online model-based testing tools, steps 2 through 4 are usually
merged into one step, whereas in o�ine model-based testing, they are usually separate.
But it is still useful to explain the steps separately to ensure a clear understanding of the
model- based testing process. We will now give a more detailed description of each step
of the process and mention some of the practical issues about using model-based testing
in large projects.
The �rst step of model-based testing is to write an abstract model of the system that

we want to test. We call it an abstract model because it should be much smaller and
simpler than the SUT itself. It should focus on just the key aspects that we want to test
and should omit many of the details of the SUT. Later chapters give detailed guidelines
for how to perform this modeling step using various modeling notations. While writing
the model, we may also annotate it with requirements identi�ers to clearly document the
relationship between the informal requirements and the formal model.
After writing the model, it is advisable to use tools to check that the model is con-

sistent and has the desired behavior. Most modeling notations provide some automated
veri�cation tools (such as typecheckers and static analysis tools), as well as some inter-

10



2 Testing and veri�cation processes

active tools (such as animators) that allow us to explore the behavior of the model and
check that it is what we expect. The use of an animator is highly recommended for novice
modelers, but experienced modelers may prefer to save time by omitting animation�any
errors that remain in the model will be noticed during later steps, and the animator can
be used then to pinpoint the problem in the model.
The second step of model-based testing is to generate abstract tests from the model.

We must choose some test selection criteria, to say which tests we want to generate from
the model, because there are usually an in�nite number of possible tests. For example,
we might interact with the test generation tool to focus on a particular part of the model
or to choose a particular model coverage criterion, such as all-transitions, or we might
write some test case speci�cations in some simple pattern language to specify the kinds
of test we want generated.
The main output of this step is a set of abstract tests, which are sequences of operations

from the model. Since the model uses a simpli�ed view of the SUT, these abstract
tests lack some of the detail needed by the SUT and are not directly executable. Most
model-based testing tools also produce a requirements traceability matrix or various
other coverage reports as additional outputs of this step. The requirements traceability
matrix traces the link between functional requirements and generated test cases. This is
generally a many-to-many relation: a requirement can be covered by several test cases,
and a single test case may exercise several requirements. The coverage reports give us
some indications of how well the generated test set exercises all the behaviors of the
model. Note that these reports are talking about coverage of the model, not coverage of
the SUT�we have not even executed the tests on the SUT yet! For example, a coverage
report may give us some coverage statistics for the operations or transitions of the model,
tell us what percentage of boolean decisions in the model have been tested with true and
false values, or give the coverage results for many other kinds of coverage measure (see
Chapter 4). We can use such coverage reports simply for statistical feedback about the
quality of the generated test set, or we can use them to identify parts of the model
that may not be well tested and investigate why this has happened. For example, if a
particular path through the model has no tests generated for it, we could try changing
some of the test generation parameters and repeat the test generation step. This is where
it can be useful to use an animation tool to investigate the behavior of the path in the
model and decide whether the lack of tests is due to an error in the model, a normal
feature of the model, or inadequate test generation. In the latter case, if we want to
improve the cover- age of our test set, we could add an abstract test for this path by
hand or give the test generation tool some explicit hints about how to �nd the desired
test.
The third step of model-based testing is to transform the abstract tests into executable

concrete tests. This may be done by a transformation tool, which uses various templates
and mappings to translate each abstract test case into an executable test script. Or it
may be done by writing some adaptor code that wraps around the SUT and implements
each abstract operation in terms of the lower-level SUT facilities. Either way, the goal
of this step is to bridge the gap between the abstract tests and the concrete SUT by
adding in the low-level SUT details that were not mentioned in the abstract model. One

11



2 Testing and veri�cation processes

advantage of this two-layer approach (abstract tests and concrete test scripts) is that the
abstract tests can be quite independent of the language used to write tests and of the
test environment. By changing just the adaptor code or the translation templates, we
can reuse the same set of tests in di�erent test execution environments.
The fourth step is to execute the concrete tests on the system under test. With online

model-based testing, the tests will be executed as they are produced, so the model-based
testing tool will manage the test execution process and record the results. With o�ine
model-based testing, we have just generated a set of concrete test scripts in some existing
language, so we can continue to use our existing test execution tools and practices.
For example, we might use Mercury TestDirector3 to manage the tests, execute them
regularly, and record the results. The �fth step is to analyze the results of the test
executions and take corrective action. For each test that reports a failure, we must
determine the fault that caused that failure. Again, this is similar to the traditional test
analysis process. As usual, when a test fails, we may �nd that it is due to a fault in the
SUT or we may �nd that it is due to a fault in the test case itself. Since we are using
model-based testing, a fault in the test case must be due to a fault in the adaptor code or
in the model (and perhaps also the requirements documents)4. So this is another place
where we get feedback about the correctness of the model. In our experience, the �rst
execution of the test set usually sees a high percentage of the tests fail�typically because
of some minor errors in the adaptor code. Once these are �xed, the remaining failures
are more interesting and require deeper analysis to �nd the fault. Perhaps roughly half
of these failures will result from faults in the SUT and the other half from faults in the
model and the requirements. However, this ratio can vary widely, de- pending upon the
experience of the testers, the kind of project, the rate of change in the requirements and
the model, and the rate of change in the SUT. To �nish this section, let us step back and
take a more philosophical view of model-based testing. It is always the case that test
design is based on some kind of model of expected behavior, but with manual test design,
this model is usually just an informal mental model. By making the model explicit, in
a notation that can be used by model-based testing tools, we are able to generate tests
automat- ically (which decreases the cost of testing), generate an arbitrary number of
tests, as well as obtain more systematic coverage of the model. These changes can increase
both the quality and quantity of our test suite.

2.3.1 Is testing a veri�cation or validation activity?

2.4 Formal veri�cation

Throughout this book we use the term veri�cation in the broad sense of checking whether
a program or system is consistent with some form of speci�cation. The broad sense of

32 A trademark of Mercury Interactive Corporation; see http:// www.mercury.com.
43 We should also mention the possibility of an error in the model-based testing tools themselves. Of
course, this is unlikely, since they are surely well tested!

12



2 Testing and veri�cation processes

Figure 2.7: Validation and veri�cation techniques

veri�cation includes, for example, inspection techniques and program testing against
informally stated speci�cations. The term formal veri�cation is used in the scienti�c
literature in a much narrower sense to denote techniques that construct a mathematical
proof of consistency between some formal representation of a program or design and a
formal speci�cation.
In the context of hardware and software systems, formal veri�cation is the act of prov-

ing or disproving the correctness of intended algorithms underlying a system with respect
to a certain formal speci�cation or property, using formal methods of mathematics.
Formal veri�cation can be helpful in proving the correctness of systems such as: cryp-

tographic protocols, combinational circuits, digital circuits with internal memory, and
software expressed as source code.
The veri�cation of these systems is done by providing a formal proof on an abstract

mathematical model of the system, the correspondence between the mathematical model
and the nature of the system being otherwise known by construction. Examples of mathe-
matical objects often used to model systems are: �nite state machines, labelled transition
systems, Petri nets, timed automata, hybrid automata, process algebra, formal seman-
tics of programming languages such as operational semantics, denotational semantics,
axiomatic semantics and Hoare logic.
Formal speci�cation and veri�cation can help reduce or eliminate bugs, aid in code

development, maintenance and extension, and facilitate interoperability and code reuse.
While formal speci�cation is widespread in industry, formal veri�cation is most often
applied in safety-critical situations (airplanes, cars, medical equipment, nuclear power
plants). Researchers continue to try to develop systems to automate veri�cation, and to
develop programming methodologies in which proofs of correctness are produced along
with programs

2.4.1 Program veri�cation

Current practice is to gather evidence for program correctness by testing � both black-
box testing (in which tests are designed independent of the code) and white-box testing

13



2 Testing and veri�cation processes

(in which tests are designed based on the code). This is analogous to checking that a
propositional formula is a theorem by trying a few valuations, or to checking that a pred-
icate formula is a theorem by constructing a few models and interpretations. Exhaustive
testing is di�cult even for small programs, and impossible in the case where a program
can consume an unbounded amount of data.
The process of formal veri�cation starts with the formal description of a speci�cation

for a program in some symbolic logic, following that with a proof (in some proof system)
that the program meets the formal speci�cation. If the proof system is sound, then this
implies that the program meets its speci�cation for all inputs. The question of whether
the formal speci�cation conforms to the informal notion of what the program should do
is not a technical question, but a social and organizational matter.

Program veri�cation

• Current practice is to gather evidence for program correctness by testing

• However, exhaustive testing is di�cult even for small programs

• Testing cannot prove that a program is correct.

• Program veri�cation can prove that a program is correct

1. starts with the formal description of a speci�cation for a program (It may be
implicit, e.g. a null pointer is never dereferenced)

2. a proof (in some proof system) that the program meets the formal speci�ca-
tion.

2.4.2 Runtime veri�cation

Runtime veri�cation is a computing system analysis and execution approach based on
extracting information from a running system and using it to detect and possibly react
to observed behaviors satisfying or violating certain properties. Some very particular
properties, such as datarace and deadlock freedom, are typically desired to be satis�ed
by all systems and may be best implemented algorithmically. Other properties can be
more conveniently captured as formal speci�cations. Runtime veri�cation speci�cations
are typically expressed in trace predicate formalisms, such as �nite state machines, regu-
lar expressions, context-free patterns, linear temporal logics, etc., or extensions of these.
This allows for a less adhoc approach than normal testing. However, any mechanism for
monitoring an executing system is considered runtime veri�cation, including verifying
against test oracles and reference implementations. When formal requirements speci�ca-
tions are provided, monitors are synthesized from them and infused within the system by
means of instrumentation. Runtime veri�cation can be used for many purposes, such as
security or safety policy monitoring, debugging, testing, veri�cation, validation, pro�ling,
fault protection, behavior modi�cation (e.g., recovery), etc. Runtime veri�cation avoids
the complexity of traditional formal veri�cation techniques, such as model checking and

14



2 Testing and veri�cation processes

theorem proving, by analyzing only one or a few execution traces and by working directly
with the actual system, thus scaling up relatively well and giving more con�dence in the
results of the analysis (because it avoids the tedious and error-prone step of formally
modelling the system), at the expense of less coverage. Moreover, through its re�ec-
tive capabilities runtime veri�cation can be made an integral part of the target system,
monitoring and guiding its execution during deployment.

2.4.3 Formal model veri�cation

Formal veri�cation is the process of checking whether a design satis�es some require-
ments (properties). In order to formally verify a design, it must �rst be converted into a
simpler �veri�able� format. The design is speci�ed as a set of interacting systems; each
has a �nite number of con�gurations, called states. States and transition between states
constitute FSMs. The entire system is an FSM, which can be obtained by composing
the FSMs associated with each component. Hence the �rst step in veri�cation consists of
obtaining a complete FSM description of the system. Given a present state (or current
con�guration), the next state (or successive con�guration) of an FSM can be written as
a function of its present state and inputs (transition function or transition relation).
We note that this entire framework is one of discrete functions. Discrete functions can

be represented conveniently by BDDs (binary decision diagram; a data structure that
represents boolean (2-valued) functions) and its extension MDDs (multi-valued decision
diagram; a data structure that represents �nite valued discrete functions). We use BDDs
and MDDs to represent all quantities required in this discrete space (more speci�cally
the transition functions, the inputs, the outputs and the states of the FSMs). For BDDs
and MDDs to be e�cient representations of discrete functions, a good ordering of input
variables (actual inputs, outputs, state) of the functions must be computed. In general,
BDDs operate on sets of points rather than individual points; this is called symbolic
manipulation.

Example

• A light is initially o�. If the user presses a button becomes on if it is o� and
viceversa.

• Model: the FSM

• Properties

� if the user never presses the button, the light stays o�.

� whenever the light is o� and the user presses the button it becomes on

� whenever the light is on and the user presses the button it becomes o�

• di�erenze con il testing

15



2 Testing and veri�cation processes

2.4.4 Model checking

The most popular method for automatic formal veri�cation is model checking.
[WIKIPEDIA] In computer science, model checking aka property checking refers to

the following problem: Given a model of a system, exhaustively and automatically check
whether this model meets a given speci�cation. Typically, one has hardware or software
systems in mind, whereas the speci�cation contains safety requirements such as the ab-
sence of deadlocks and similar critical states that can cause the system to crash. Model
checking is a technique for automatically verifying correctness properties of �nite-state
systems.
In order to solve such a problem algorithmically, both the model of the system and the

speci�cation are formulated in some precise mathematical language: To this end, it is
formulated as a task in logic, namely to check whether a given structure satis�es a given
logical formula. The concept is general and applies to all kinds of logics and suitable
structures. A simple model-checking problem is verifying whether a given formula in the
propositional logic is satis�ed by a given structure.
Property checking is used for veri�cation instead of equivalence checking when two

descriptions are not functionally equivalent. Particularly, during re�nement, the speci-
�cation is complemented with the details that are unnecessary in the higher level spec-
i�cation. Yet, there is no need to verify the newly introduced properties against the
original speci�cation. It is not even possible. Therefore, the strict bi-directional equiv-
alence check is relaxed to one-way property checking. The implementation or design is
regarded a model of the circuit whereas the speci�cations are properties that the model
must satisfy.[1]
An important class of model checking methods have been developed for checking mod-

els of hardware and software designs where the speci�cation is given by a temporal
logic formula. Pioneering work in the model checking of temporal logic formulae was
done by E. M. Clarke and E. A. Emerson[2][3][4] and by J. P. Queille and J. Sifakis.[5]
Clarke, Emerson, and Sifakis shared the 2007 Turing Award for their work on model
checking.[6][7]
Model checking is most often applied to hardware designs. For software, because

of undecidability (see computability theory) the approach cannot be fully algorithmic;
typically it may fail to prove or disprove a given property.
The structure is usually given as a source code description in an industrial hardware

description language or a special-purpose language. Such a program corresponds to a
�nite state machine (FSM), i.e., a directed graph consisting of nodes (or vertices) and
edges. A set of atomic propositions is associated with each node, typically stating which
memory elements are one. The nodes represent states of a system, the edges represent
possible transitions which may alter the state, while the atomic propositions represent
the basic properties that hold at a point of execution.
Formally, the problem can be stated as follows: given a desired property, expressed as

a temporal logic formula p, and a structure M with initial state s, decide if M, s |= p. If
M is �nite, as it is in hardware, model checking reduces to a graph search.

16


