
Testing Java code con EFSM
Corso di testing e verifica del software

Materiale

• Capitolo 5 del libro «practical model-based testing»
• Pdf del capitolo su restricted

• Tool ModelJunit.jar

EFSM

• Per modellare programmi (java) useremo le Extended Finite State
Machines

• An EFSM looks similar to an FSM (states and transitions), but it is
more expressive because it has internal variables that can store more
detailed state information.

• Avremo un insieme di variabili

• Il numero degli stati visibili è comunque finite
• Alcune volte raggruppiamo tanti valori di variabili in uno stato

EFSM in ModelJUnit

• The basic philosophy of ModelJUnit is to take advantage of
the expressive power of Java (procedures, parameters,
inheritance, annotations, etc.) to make it easier to write
EFSM models, and then provide a collection of common
traversal algorithms for generating tests from those models.
It is typically used for online testing, which means that the
tests are executed while they are being generated.

• The EFSM usually plays a dual role: it defines the possible
states and transitions that can be tested, and it acts as the
adaptor that connects the model to the SUT (which is usually
another Java class).

Write an EFSM with ModelJUnit

• Each EFSM model is written as a Java class, which must
implement the interface FsmModel

• and have at least the following public methods:

• Object getState():
This method returns the current visible state of the EFSM. So
this method defines an abstraction function that maps the
internal state of the EFSM to the visible states of the EFSM
graph. Typically, the result is a string, but it is possible to return
any type of object.

@Override

public Object getState() {

String result = car1.toString() + "-" + car2.toString();

if ((car1.row == 1) && (car1.col == 2)) {

result += "EXIT";

}…

reset

• public void reset(boolean):
This method resets the EFSM to its initial state.

EFSM actions

• @Action void namei():
The EFSM must define several of these action methods, each marked
with an @Action annotation. These action methods define the
transitions of the EFSM. They can change the current state of the
EFSM.

• boolean nameiGuard():
Each action method can optionally have a guard, which is a boolean
method with the same name as the action method but with “Guard”
added to the end of the name. When the guard returns true, then
the action is enabled (so may be called), and when the guard returns
false, the action is disabled (so will not be called). Any action method
that does not have a corresponding guard method is considered to
have an implicit guard that is always true.

Esempio

@Action

public void up1() {

car1.row--;

}

public boolean up1Guard() {

return (car1.row > 0)

&& (!(car2.col == car1.col && car2.row == car1.row - 1));

}

Drawing the EFSM

• Dal modello è possibile ottenere il disegno:

1. Esportare in jar

2. Caricarlo in ModelJUnit

Demo + (esercitazione) + video

ATTENZIONE: prima di farlo disegnare assicurarsi che sia corretto (vedi
slide successive) almeno sintatticamente.

Connecting with the sut for online testing

• Se voglio usare ModelJunit per online testing della mia SUT devo connetterla:

• Creo uno istanza della sut nel costruttore

• Invio al sut gli input chiamando I metodi e poi controllo che il comportamento sia corretto.

• Ad esempio:

public class RushHourFSM implements FsmModel {

private int c1_row, c1_col, c2_row, c2_col;

// system under test

RushHour sut;

public RushHourFSM() {

c1_row = 1;c1_col = 1;c2_row = 1; c2_col = 2;

// creo sut

sut = new RushHour();

}

• ..}

Connecting with the sut for online testing

• @Action void namei():
The EFSM must define several of these action methods, each
marked with an @Action annotation. These action methods
define the transitions of the EFSM. They can change the
current state of the EFSM. and when online testing is being
used, they also send test inputs to the SUT and check the
correctness of its responses.

• reset: When online testing is being used, it should also reset
the SUT or create a new instance of the SUT class. The
boolean parameter can be ignored for most unit testing
applications.

Connecting with the sut for online testing

• Each action method typically defines a short, straight-line sequence of Junit
code that tests one aspect of the SUT by calling one or more SUT methods
and checking the correctness of their results.

• The effect of applying model based testing to the EFSM is to make a traversal
through the EFSM graph, and this weaves those short sequences of test code
into longer sequences of more sophisticated tests that dynamically explore
many aspects of the SUT

• Esempio

@Action

public void down2() {

sut.moveCar(car2.row, car2.col, 3);

car2.row++;

assertTrue(sut.griglia[car2.row][car2.col] == 2);

}

Online testing

• Oltre che con l’interfaccia grafica, uno può eseguire questo:

public class RushHourModelTester1 {

public static void main(String args[])

{

// create your model and a test generation algorithm

Tester tester = new RandomTester(new RushHourModel());

// ask to print the generated tests

tester.addListener("verbose");

// generate a small test suite of 20 steps

tester.generate(200);

}

}

