
Partition and combinatorial 
testing

Angelo Gargantini –

Corso Testing e verifica del software



Outline
 What is combinatorial testing

 Efficiency: It can detect faults
 Partition testing

 A method to apply partition testing
 How to choose variable values

 Combinatorial interaction of parameters
 Generation techniques

 IPO,  AETG, IPOS
 Adding constraints

 Logic approach, using SAT/SMT solving
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What is Combinatorial testing
 It can be classified “input space” testing or 

testing based on the interfaces
 No internal information about the system 

under test is considered, but only the 
information about the inputs

 It can be model based testing
 Model of the inputs

 Program based testing
 The program is analyzed to extract the 

parameters 
 E.g. the parameters of a method. …
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Advantages of Input based testing
 Can be equally applied at several levels of testing

 Unit
 Integration
 System

 Relatively easy to apply
 Test generation is simple, simpler than structure based 

testing or fault based
 Easy to adjust the procedure to get more or fewer 

tests
 No implementation knowledge is needed

 just the input space
 Usable even if the complete code/model is not 

accessible
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Combinatorial testing is effective 
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CIT effectiveness
 Experiments show that CIT is 
 effective

 finds faults that traditional testing may be not able 
to find

 efficient
 A low degree of interaction between inputs can 

already discover most faults
 Pairwise is the most used

 Never with interaction > 6
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Effectiveness ­1
 Compared to a traditional company that would 

use the quasi-exhaustive strategy,  the 
Combinatorial design method (CDM) strategy 
would reduce its system level test schedule by 
sixty-eight percent (68%) and save sixty-
seven percent (67%) in labor costs associated 
with the testing. 

 Reference: Raytheon (2000). Jerry Huller. 
Reducing Time to Market with Combinatorial 
Design Method Testing.
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Effectiveness ­2 ­ Kuhn @ NIST
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 Maximum interactions for fault triggering was 
6

 Reasonable evidence that maximum 
interaction strength for fault triggering is 
relatively small
 % errors (seeded or found) vs interaction strength 

for several application:



Effectiveness ­ 3
 More experiments are needed
 New experiments are welcome!

Angelo Gargantini - Testing e verifica 
del SW UNIBG AA 13-14

Combinatorial testing is better 

than structural testing ?

Combinatorial testing is better 
than random testing ?



Partition testing
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Problems …
 The input domain to a program contains all 

the possible inputs to that program
 For even small programs, the input domain is so 

large that it might as well be infinite
 Testing is fundamentally about choosing finite 

sets of values from the input domain
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Solution: Input partitioning
 Domain for each input parameter is 

partitioned into regions
 The domain is substituted by an enumeration 
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Partitioning Domains
 Domain D
 Partition scheme q of D

 The partition q defines a set of blocks, Bq = b1 , b2 

, … bQ


The partition must satisfy two properties :

1. blocks must be pairwise disjoint (no overlap)

2. together the blocks cover the domain D (complete)
bi  bj = ,  i  j, bi, bj  Bq

b1 b2

b3
     b = D
b  Bq
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Using Partitions – Assumptions
 Choose a value from each partition
 Each value is assumed to be equally useful for testing
 Application to testing

 Find characteristics in the inputs : parameters, semantic 
descriptions, …

 Partition each characteristics
 Choose tests by combining values from characteristics

 Example Characteristics
 Input X is null -> true or false
 Order of the input file F -> sorted, inverse sorted, arbitrary
 Min separation of two aircraft -> integer 0 … 1000
 Input device -> DVD, CD, VCR, computer



Choosing Partitions
 Choosing (or defining) partitions seems easy, but 

is easy to get wrong
 Consider a file the contains word in some “order”
b1 = sorted in ascending order

b2 = sorted in descending order

b3 = arbitrary order

but … something’s fishy …

What if the file is of length 1?

The file will be in all three blocks …

That is, disjointness is not satisfied

Solution:
Each characteristic 
should address just 
one property
b1 and b2
File F sorted ascending
   - b1 = true
   - b2 = false
File F sorted 
descending
   - b1 = true
   - b2 = false
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Properties of Partitions
 If the partitions are not complete or disjoint, 

that means the partitions have not been 
considered carefully enough

 They should be reviewed carefully,  like any 
design attempt

 Different alternatives should be considered



Example for program based testing
 Java
enum Color { RED, GREEN,BLU}

Void foo(long x,  Color c, boolean value)

Color and boolean domain already partitioned. What 
about long domain?
Example of partition, from Boundary Value Analysis
 MAX_VALUE 

A constant holding the maximum value a long can 
have, 263-1.

 MIN_VALUE 

A constant holding the minimum value a long can have, -263.

 BETWEEN MAX E MIN? 
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Partition for long

MIN_VALUE MAX_VALUE

MIN_VALUE < x < 0

Partitions in 5 subsets

0

0 < x < MAX_VALUE
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Partition of cartesian product
 Given two domains D1 and D2
 Let P1 a partition for D1 and P2 a partition for 

D2
 Partitions can be multiplied to obtain again 

partitions
 D1 x D2 can be partitioned by P1 X P2

 P1 x P2 will contain all the combinations of P1 
and P2
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Product of partitions, application
 For more than one input:

/** given three sides return the type 

    of the triangle*/
TriType Triang(int Side1,int Side2,int Side3)

 If one splits every input in 5 subsets, the input 
is partitioned in 5 x 5 x 5 = 125 subsets ….
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Partition testing
 Several methods are based on partition 

testing [see books by Myers, and Beizer]:
1. Equivalent Partition 
2. Domain Testing
3. Boundary Value Analysis
4. Category Partition [Ostrand Balcer 1988]:

 Identify the parameters and variables and their 
choices

 Generate all combinations (test frames)
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Partition does not solve the problem!

Angelo Gargantini - 
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 Category partition testing gave us 
 Systematic approach:  Identify characteristics and 

values (the creative step), 
 generate combinations (the mechanical step)

 While equivalence partitioning offers a set of 
guidelines to design test cases, it suffers from two 
shortcomings: 

1. It raises the possibility of a  large number of sub-
domains in the partition.

 Test suite size grows very rapidly with number of 
categories. Can we use a non-exhaustive approach?

2. It lacks  guidelines on how to select inputs from 
various sub-domains in the partition. 



From Partition testing to combinatorial testing

Angelo Gargantini - Testing e verifica 
del SW UNIBG AA 13-14



A. Input Domain Modeling 
 Step 1 : Identify testable functions

 Individual methods have one testable function
 In a class, each method has the same characteristics
 Programs have more complicated characteristics—modeling 

documents such as UML use cases can be used to design 
characteristics

 Systems of integrated hardware and software components can use 
devices, operating systems, hardware platforms, browsers, etc

• Step 2 : Find all the parameters
• Often fairly straightforward, even mechanical
• Important to be complete
• Methods : Parameters and state (non-local) variables used
• Components : Parameters to methods and state variables
• System : All inputs, including files and databases
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Modeling the Input Domain (cont)
 Step 3 : Model the input domain

 The domain is scoped by the parameters
 The structure is defined in terms of 

characteristics
 Each characteristic is partitioned into sets of 

blocks
 Each block represents  a set of values
 This is the most creative design step in applying 

ISP
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STEP 3: Modeling the Input Domain
 Partitioning characteristics into blocks and values is a very 

creative engineering step
 More blocks means more tests
 The partitioning often flows directly from the definition of 

characteristics and both steps are sometimes done together
 Should evaluate them separately – sometimes fewer 

characteristics can be used with more blocks and vice versa
 Strategies for identifying values :

 Include valid, invalid and special values
 Sub-partition some blocks
 Explore boundaries of domains
 Include values that represent “normal use”
 Try to balance the number of blocks in each characteristic
 Check for completeness and disjointness



Two Approaches to Input Domain Modeling 
(IDM)

1. Interface-based approach
 Develops characteristics directly from individual 

input parameters
 Simplest application
 Can be partially automated in some situations

2. Functionality-based approach
 Develops characteristics fro a behavioral view of 

the program under test
 Harder to develop—requires more design effort
 May result in better tests, or fewer tests that are 

as effective
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1. Interface­Based Approach
 Mechanically consider each parameter in isolation
 This is an easy modeling technique and relies 

mostly on syntax
 Some domain and semantic information won’t be 

used
 Could lead to an incomplete IDM

 Ignores relationships among parameters

Consider TriTyp 

Three int parameters

IDM for each parameter is identical

Reasonable characteristic : Relation of side with zero
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2. Functionality­Based Approach
 Identify characteristics that correspond to the intended 

functionality
 Requires more design effort from tester
 Can incorporate domain and semantic knowledge
 Can use relationships among parameters
 Modeling can be based on requirements, not implementation
 The same parameter may appear in multiple characteristics, 

so it’s harder to translate values to test cases

Consider TriTyp again

The three parameters 
represent a triangleIDM can combine all parameters

Reasonable characteristic : Type 
of triangle
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Interface­Based IDM – TriTyp 

 A maximum of 3*3*3 = 27 tests
 Some triangles are valid, some are invalid
 Refining the characterization can lead to more tests …

Characteristic b1 b2 b3

q1 = “Relation of Side 1 to 0” greater than 0 equal to 0 less than 0

q2 = “Relation of Side 2 to 0” greater than 0 equal to 0 less than 0

q3 = “Relation of Side 3 to 0” greater than 0 equal to 0 less than 0

First Characterization of TriTyp’s Inputs

• TriTyp, had one testable function and three integer 
inputs
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 A maximum of 4*4*4 = 64 tests
 This is only complete because the inputs are 

integers (0 . . 1)

Second Characterization of TriTyp’s Inputs
Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 less than 0

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 less than 0

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 less than 0

Possible values for partition q1

Characteristic b1 b2 b3 b4

Side1 5 1 0 -52 -1

Test boundary 
conditions
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Functionality­Based IDM – TriTyp
 First two characterizations are based on syntax–parameters and 

their type
 A semantic level characterization could use the fact that the 

three integers represent a triangleGeometric Characterization of TriTyp’s Inputs

Characteristic b1 b2 b3 b4

q1 = “Geometric  Classification” scalene isosceles equilateral invalid

Characteristic b1 b2 b3 b4

q1 = “Geometric  Classification” scalene isosceles, not 

equilateral

equilateral invalid

• Oops … something’s fishy … equilateral is also isosceles !
• We need to refine the example to make characteristics valid

Correct Geometric Characterization of TriTyp’s Inputs



Combination Strategies criteria
 Step 4 : Apply a test criterion to choose 

combinations of values
 A test input has a value for each parameter
 One block for each characteristic
 Choosing all combinations is usually infeasible
 Coverage criteria allow subsets to be chosen

 Step 5 : Refine combinations of blocks into test 
inputs
 Choose appropriate values from each block
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Choosing Combinations of Values
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Step 4 – Choosing Combinations of Values
 Once characteristics and partitions are defined, the next step 

is to choose test values
 We use criteria – to choose effective subsets
 The most obvious criterion is to choose all combinations …

All Combinations (ACoC) : All combinations of blocks 
from all characteristics must be used.

• Number of  tests is the product of the number of 
blocks in each characteristic :

• The second characterization of TriTyp results in 4*4*4 
= 64 tests – too many ?

 



 Example of “Too many” !

 Example of “Too many” !

 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests 

????



● What if we knew that one single switch 
always causes the fault?
2 tests would be enough to find if the system is 
correct:
-  all off, all on
What if we knew no failure involves more 
than 3 switch settings interacting?

If only 3-way interactions, need only 33 tests
For 4-way interactions, need only 85 tests

 Too much – some assumptions
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ISP Criteria – Each Choice
 64 tests for TriTyp is almost certainly way too 

many
 One criterion comes from the idea that we should 

try at least one value from each block

Each Choice (EC) : One value from each block 
for each characteristic must be used in at least 
one test case.

• Number of  tests is the number of blocks in the largest 
characteristic

Max Q
i=1(Bi)



For TriTyp
 Three inputs side1,side2, side3
 Four values each 2,1,0,-1

 A test with 4 test is enough:
2, 2, 2
1, 1, 1
0, 0, 0
-1, -1, -1
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ISP Criteria – Pair­Wise
 Each choice yields few tests – cheap but perhaps ineffective
 Another approach asks values to be combined with other values

Pair-Wise (PW) : A value from each block for each 
characteristic must be combined with a value from 
every block for each other characteristic.

• Number of  tests is at least the product of two largest 
characteristics

For TriTyp: 
2, 2, 2        2, 1, 1     2, 0, 0       2, -1, -1
1, 2, 1        1, 1, 0     1, 0, -1      1, -1, 2
0, 2, 0        0, 1, -1    0, 0, 2       0, -1, 1
-1, 2, -1     -1, 1, 2    -1, 0,  1     -1, -1, 0

(Max Q
i=1

(Bi) ) * (Max Q
j=1, j!=i

  (Bj) )



Combinatorial approach
● Pairwise combination instead of exhaustive 

– Generate combinations that efficiently cover all pairs of 
values

– Rationale: most failures are triggered by single values or 
combinations of a few values. Covering pairs (triples,…) 
reduces the number of test cases, but reveals most 
faults

– Extended by t-wise: test all the combinations of t values
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Example

 3 variables with 3 values each: 33 = 27 possible combinations

 Combinatorial testing with much fewer tests

Display Mode Color Screen size

full-graphics Monochrome Hand-held

Low resolution 16-bit Laptop

text-only True-color Full-size



Test Suite ­ example

Test Color Display Mode Screen Size

1 Monochrome Full-graphics Hand-held

2 16-bit Text-only Laptop

3 True-color Full-graphics Hand-held

4 … … …
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One test covers many 
combinations:

e.g.  Test 1 covers 3 pairs:
(Monochrome, Full-
graphics)
(Monochrome, Hand-
held)
(Full-graphics, Hand-
held)

 

 pairwise testing can be achieved by only 9 tests

Other figures: 
2100 combinations with 10 tests; 1020 200 

tests; …
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ISP Criteria –T­Wise
 A natural extension is to require combinations of t values instead of 2

t-Wise (TW) : A value from each block for each group 
of t characteristics must be combined.

• Number of  tests is at least the product of  t  largest 
characteristics

• If all characteristics are the same size, the formula is

(Max Q
i=1

(Bi) )t

• If t is the number of characteristics Q, then all 
combinations

• That is … Q-wise = AC
• t-wise is expensive and benefits are not clear
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ISP Coverage Criteria Subsumption 

Each Choice 
Coverage

EC

All Combinations 
Coverage

AC

T-Wise Coverage
TW

Pair-Wise 
Coverage

PW



Exercise
 example system: component based  application

CLIENT WEB SERVER PAYMENT DATABASE

FIREFOX WEB SPHERE MASTER CARD DB/2

IE APACHE VISA ORACLE

OPERA .NET AMEX ACCESS



One test is missing …
  exhaustive test cases
 9 test cases

  

CLIENT WEB SERVER PAYMENT DATABASE

FIREFOX WEB SPHERE MASTER CARD DB/2

FIREFOX .NET AMEX ORACLE

FIREFOX APACHE VISA ACCESS

IE WEB SPHERE AMEX ACCESS

IE APACHE MASTER CARD ORACLE

IE .NET VISA DB/2

OPERA WEB SPHERE VISA ORACLE

OPERA .NET MASTER CARD ACCESS

OPERA APACHE AMEX DB/2
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Generation techniques
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Generation techniques families
 Algebraic 

 Based on some mathematical/algebraic properties 
 Search based, greedy, based on heuristics

 Because the problem of generating a minimum test suit for 
combinatorial testing is NP-complete, most methods and tools use 
a greedy approach

 Logic based
 Based on SAT/SMT solving and model checking
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Classification
  Algebraic methods that are mainly developed by mathematicians

 Latin squares,  Orthogonal arrays, Covering arrays
 Recursive Construction

 Search-Based methods that are mainly developed by computer 
scientists

 AETG (from Telcordia), TCG (from JPL/NASA), DDA (from 
ASU), PairTest/Fireeye (from NIST)

 Incremental construction
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Search­Based vs Algebraic Methods
 Algebraic methods:

 Advantages: very fast, and often produces optimal results
 Disadvantages: limited applicability, difficult to support parameter 

relations and constraints
 E.g. most work only if all the parameters have the same domain 

size
  Search-based methods:

 Advantages: no restrictions on the input model, and very flexible, 
e.g., relatively easier to support parameter relations and 
constraints

 Disadvantages: explicit search takes time, the resulting test sets are 
not optimal
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Greedy methods
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Greedy methods
 Parameter based

 One colum at the time
 IPO
 IPOS – still room to improve

 Test case based
 Add one test at the time

 AETG
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IPO: In­Parameter­Order
 Originally presented in:
 Yu Lei, K. C. Tai, "In-Parameter-Order: A Test Generation Strategy for 

Pairwise Testing," High-Assurance Systems Engineering, IEEE 
International Symposium on, p. 254, Third IEEE International High-
Assurance Systems Engineering Symposium, 1998 

 Several extensions
 NIST 

http://csrc.nist.gov/groups/SNS/acts/ 
 TOOL:  FireEye, now ACTS
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IPO: In­Parameter­Order
  Builds a t-way test set in an incremental manner

1. A t-way test set is first constructed for the first t parameters, 
simply considering their combinations

2. Then, the test set is extended to generate a t-way test set for the 
first t + 1 parameters

3. The test set is repeatedly extended for each additional parameter. 
  Two steps involved in each extension for a new parameter: 

 Horizontal growth: extends each existing test by adding one value 
of the new parameter 

 Vertical growth: adds new tests, if necessary
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Adding parameters

Angelo Gargantini - Testing e 
verifica del SW UNIBG AA 
13-14

Test 
suite for 

t-1 
paramte

rs

New 
column for 

new 
parameter
Horizontal 

growth

If needed, new tests 
can ba added : Vartical 

growth



Strategy In­Parameter­Order
/* step 1: for the first t parameters p1, p2 , …,  pt*/

T := {(v1, v2, …, vt) | v1, v2, …, vt are values of p1, p2, …, pt }

if n = t then stop;

/* step 2:  for the remaining parameters */

for parameter pi, i = t + 1, …, n do

    begin /* add parameter pi */

        /* 2a: horizontal growth */

        for each test (v1, v2, …, vi-1) in T do

             replace it with (v1, v2, …, vi-1, vi), where vi is a value of pi

         /* 2b: vertical growth */

         while T does not cover all the interactions between pi and 

               each of p1, p2, …, pi-1 do

             add a new test for p1, p2, …, pi to T;

     end
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Example
Consider a system with the following parameters and values:

parameter A has values WIN and LIN
parameter B has values 1NT and AMD, and
parameter C has values IPV4, IPV6

 Pairwise testing t = 2
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Step 1: the first t parameters
 if a test suite wants to cover all the t-combinations of t parameters, it 

must contain all the possible combinations
 t = 2
 parameter A has values WIN and LIN
 parameter B has values 1NT and AMD
 Initial test suite (CA):

A       B       
WIN INT
WIN AMD
LIN INT
LIN AMD
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Step 2: adding a new parameter
 Add the tests to cover the t+1 th parameter. 
 Add a column to the CA for the new parameter
 For the values of the new 

A       B       
WIN INT
WIN AMD
LIN INT
LIN AMD

A B      C
WIN INTIPV4
WIN AMD IPV6
LIN INT IPV4
LIN AMD IPV6

Horizontal Growth
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Step 2 b
 Check if all the tuples are covered, in case add new rows (vertical 

growth)

A B      C
WIN INTIPV4
WIN AMD IPV6
LIN INT IPV4
LIN AMD IPV6

A B      C
WIN INTIPV4
WIN AMD IPV6
LIN INT IPV4
LIN AMD IPV6
LIN AMD IPV4
LIN INT IPV6

Vertical Growth

missing :
AMD, IPV4
INT, IPV6
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Exercise
 parameter A has values A1 and A2
 parameter B has values B1 and B2, and
 parameter C has values C1, C2, and C3
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Example (2)

A   B
A1   B1
A1   B2
A2   B1
A2   B2

A   B     C
A1   B1     C1
A1   B2    C2
A2   B1     C3
A2   B2    C1

A B C
A1 B1 C1
A1 B2 C2
A2 B1 C3
A2 B2  C1
A2 B1 C2
A1 B2 C3

Vertical Growth
Horizontal Growth
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Open problems
 When adding a new column, how to chose the values?
 When adding a new row, how to choose the new row?
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