
Partition and combinatorial
testing

Angelo Gargantini –

Corso Testing e verifica del software

Outline
 What is combinatorial testing

 Efficiency: It can detect faults
 Partition testing

 A method to apply partition testing
 How to choose variable values

 Combinatorial interaction of parameters
 Generation techniques

 IPO, AETG, IPOS
 Adding constraints

 Logic approach, using SAT/SMT solving

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

What is Combinatorial testing
 It can be classified “input space” testing or

testing based on the interfaces
 No internal information about the system

under test is considered, but only the
information about the inputs

 It can be model based testing
 Model of the inputs

 Program based testing
 The program is analyzed to extract the

parameters
 E.g. the parameters of a method. …

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Advantages of Input based testing
 Can be equally applied at several levels of testing

 Unit
 Integration
 System

 Relatively easy to apply
 Test generation is simple, simpler than structure based

testing or fault based
 Easy to adjust the procedure to get more or fewer

tests
 No implementation knowledge is needed

 just the input space
 Usable even if the complete code/model is not

accessible

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Combinatorial testing is effective

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

CIT effectiveness
 Experiments show that CIT is
 effective

 finds faults that traditional testing may be not able
to find

 efficient
 A low degree of interaction between inputs can

already discover most faults
 Pairwise is the most used

 Never with interaction > 6

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Effectiveness ­1
 Compared to a traditional company that would

use the quasi-exhaustive strategy, the
Combinatorial design method (CDM) strategy
would reduce its system level test schedule by
sixty-eight percent (68%) and save sixty-
seven percent (67%) in labor costs associated
with the testing.

 Reference: Raytheon (2000). Jerry Huller.
Reducing Time to Market with Combinatorial
Design Method Testing.

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Effectiveness ­2 ­ Kuhn @ NIST

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

 Maximum interactions for fault triggering was
6

 Reasonable evidence that maximum
interaction strength for fault triggering is
relatively small
 % errors (seeded or found) vs interaction strength

for several application:

Effectiveness ­ 3
 More experiments are needed
 New experiments are welcome!

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Combinatorial testing is better

than structural testing ?

Combinatorial testing is better
than random testing ?

Partition testing

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Problems …
 The input domain to a program contains all

the possible inputs to that program
 For even small programs, the input domain is so

large that it might as well be infinite
 Testing is fundamentally about choosing finite

sets of values from the input domain

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Solution: Input partitioning
 Domain for each input parameter is

partitioned into regions
 The domain is substituted by an enumeration

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

Partitioning Domains
 Domain D
 Partition scheme q of D

 The partition q defines a set of blocks, Bq = b1 , b2

, … bQ


The partition must satisfy two properties :

1. blocks must be pairwise disjoint (no overlap)

2. together the blocks cover the domain D (complete)
bi  bj = ,  i  j, bi, bj  Bq

b1 b2

b3
  b = D
b  Bq

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

Using Partitions – Assumptions
 Choose a value from each partition
 Each value is assumed to be equally useful for testing
 Application to testing

 Find characteristics in the inputs : parameters, semantic
descriptions, …

 Partition each characteristics
 Choose tests by combining values from characteristics

 Example Characteristics
 Input X is null -> true or false
 Order of the input file F -> sorted, inverse sorted, arbitrary
 Min separation of two aircraft -> integer 0 … 1000
 Input device -> DVD, CD, VCR, computer

Choosing Partitions
 Choosing (or defining) partitions seems easy, but

is easy to get wrong
 Consider a file the contains word in some “order”
b1 = sorted in ascending order

b2 = sorted in descending order

b3 = arbitrary order

but … something’s fishy …

What if the file is of length 1?

The file will be in all three blocks …

That is, disjointness is not satisfied

Solution:
Each characteristic
should address just
one property
b1 and b2
File F sorted ascending
 - b1 = true
 - b2 = false
File F sorted
descending
 - b1 = true
 - b2 = false

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

Properties of Partitions
 If the partitions are not complete or disjoint,

that means the partitions have not been
considered carefully enough

 They should be reviewed carefully, like any
design attempt

 Different alternatives should be considered

Example for program based testing
 Java
enum Color { RED, GREEN,BLU}

Void foo(long x, Color c, boolean value)

Color and boolean domain already partitioned. What
about long domain?
Example of partition, from Boundary Value Analysis
 MAX_VALUE

A constant holding the maximum value a long can
have, 263-1.

 MIN_VALUE

A constant holding the minimum value a long can have, -263.

 BETWEEN MAX E MIN?

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Partition for long

MIN_VALUE MAX_VALUE

MIN_VALUE < x < 0

Partitions in 5 subsets

0

0 < x < MAX_VALUE

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Partition of cartesian product
 Given two domains D1 and D2
 Let P1 a partition for D1 and P2 a partition for

D2
 Partitions can be multiplied to obtain again

partitions
 D1 x D2 can be partitioned by P1 X P2

 P1 x P2 will contain all the combinations of P1
and P2

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Product of partitions, application
 For more than one input:

/** given three sides return the type

 of the triangle*/
TriType Triang(int Side1,int Side2,int Side3)

 If one splits every input in 5 subsets, the input
is partitioned in 5 x 5 x 5 = 125 subsets ….

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Partition testing
 Several methods are based on partition

testing [see books by Myers, and Beizer]:
1. Equivalent Partition
2. Domain Testing
3. Boundary Value Analysis
4. Category Partition [Ostrand Balcer 1988]:

 Identify the parameters and variables and their
choices

 Generate all combinations (test frames)

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Partition does not solve the problem!

Angelo Gargantini -
Testing e verifica del
SW UNIBG AA 13-14

 Category partition testing gave us
 Systematic approach: Identify characteristics and

values (the creative step),
 generate combinations (the mechanical step)

 While equivalence partitioning offers a set of
guidelines to design test cases, it suffers from two
shortcomings:

1. It raises the possibility of a large number of sub-
domains in the partition.

 Test suite size grows very rapidly with number of
categories. Can we use a non-exhaustive approach?

2. It lacks guidelines on how to select inputs from
various sub-domains in the partition.

From Partition testing to combinatorial testing

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

A. Input Domain Modeling
 Step 1 : Identify testable functions

 Individual methods have one testable function
 In a class, each method has the same characteristics
 Programs have more complicated characteristics—modeling

documents such as UML use cases can be used to design
characteristics

 Systems of integrated hardware and software components can use
devices, operating systems, hardware platforms, browsers, etc

• Step 2 : Find all the parameters
• Often fairly straightforward, even mechanical
• Important to be complete
• Methods : Parameters and state (non-local) variables used
• Components : Parameters to methods and state variables
• System : All inputs, including files and databases

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Modeling the Input Domain (cont)
 Step 3 : Model the input domain

 The domain is scoped by the parameters
 The structure is defined in terms of

characteristics
 Each characteristic is partitioned into sets of

blocks
 Each block represents a set of values
 This is the most creative design step in applying

ISP

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

STEP 3: Modeling the Input Domain
 Partitioning characteristics into blocks and values is a very

creative engineering step
 More blocks means more tests
 The partitioning often flows directly from the definition of

characteristics and both steps are sometimes done together
 Should evaluate them separately – sometimes fewer

characteristics can be used with more blocks and vice versa
 Strategies for identifying values :

 Include valid, invalid and special values
 Sub-partition some blocks
 Explore boundaries of domains
 Include values that represent “normal use”
 Try to balance the number of blocks in each characteristic
 Check for completeness and disjointness

Two Approaches to Input Domain Modeling
(IDM)

1. Interface-based approach
 Develops characteristics directly from individual

input parameters
 Simplest application
 Can be partially automated in some situations

2. Functionality-based approach
 Develops characteristics fro a behavioral view of

the program under test
 Harder to develop—requires more design effort
 May result in better tests, or fewer tests that are

as effective

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

1. Interface­Based Approach
 Mechanically consider each parameter in isolation
 This is an easy modeling technique and relies

mostly on syntax
 Some domain and semantic information won’t be

used
 Could lead to an incomplete IDM

 Ignores relationships among parameters

Consider TriTyp

Three int parameters

IDM for each parameter is identical

Reasonable characteristic : Relation of side with zero

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

2. Functionality­Based Approach
 Identify characteristics that correspond to the intended

functionality
 Requires more design effort from tester
 Can incorporate domain and semantic knowledge
 Can use relationships among parameters
 Modeling can be based on requirements, not implementation
 The same parameter may appear in multiple characteristics,

so it’s harder to translate values to test cases

Consider TriTyp again

The three parameters
represent a triangleIDM can combine all parameters

Reasonable characteristic : Type
of triangle

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

Interface­Based IDM – TriTyp

 A maximum of 3*3*3 = 27 tests
 Some triangles are valid, some are invalid
 Refining the characterization can lead to more tests …

Characteristic b1 b2 b3

q1 = “Relation of Side 1 to 0” greater than 0 equal to 0 less than 0

q2 = “Relation of Side 2 to 0” greater than 0 equal to 0 less than 0

q3 = “Relation of Side 3 to 0” greater than 0 equal to 0 less than 0

First Characterization of TriTyp’s Inputs

• TriTyp, had one testable function and three integer
inputs

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

 A maximum of 4*4*4 = 64 tests
 This is only complete because the inputs are

integers (0 . . 1)

Second Characterization of TriTyp’s Inputs
Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 less than 0

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 less than 0

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 less than 0

Possible values for partition q1

Characteristic b1 b2 b3 b4

Side1 5 1 0 -52 -1

Test boundary
conditions

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

Functionality­Based IDM – TriTyp
 First two characterizations are based on syntax–parameters and

their type
 A semantic level characterization could use the fact that the

three integers represent a triangleGeometric Characterization of TriTyp’s Inputs

Characteristic b1 b2 b3 b4

q1 = “Geometric Classification” scalene isosceles equilateral invalid

Characteristic b1 b2 b3 b4

q1 = “Geometric Classification” scalene isosceles, not

equilateral

equilateral invalid

• Oops … something’s fishy … equilateral is also isosceles !
• We need to refine the example to make characteristics valid

Correct Geometric Characterization of TriTyp’s Inputs

Combination Strategies criteria
 Step 4 : Apply a test criterion to choose

combinations of values
 A test input has a value for each parameter
 One block for each characteristic
 Choosing all combinations is usually infeasible
 Coverage criteria allow subsets to be chosen

 Step 5 : Refine combinations of blocks into test
inputs
 Choose appropriate values from each block

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Choosing Combinations of Values

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

Step 4 – Choosing Combinations of Values
 Once characteristics and partitions are defined, the next step

is to choose test values
 We use criteria – to choose effective subsets
 The most obvious criterion is to choose all combinations …

All Combinations (ACoC) : All combinations of blocks
from all characteristics must be used.

• Number of tests is the product of the number of
blocks in each characteristic :

• The second characterization of TriTyp results in 4*4*4
= 64 tests – too many ?

 Example of “Too many” !

 Example of “Too many” !

 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests

????

● What if we knew that one single switch
always causes the fault?
2 tests would be enough to find if the system is
correct:
- all off, all on
What if we knew no failure involves more
than 3 switch settings interacting?

If only 3-way interactions, need only 33 tests
For 4-way interactions, need only 85 tests

 Too much – some assumptions

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

ISP Criteria – Each Choice
 64 tests for TriTyp is almost certainly way too

many
 One criterion comes from the idea that we should

try at least one value from each block

Each Choice (EC) : One value from each block
for each characteristic must be used in at least
one test case.

• Number of tests is the number of blocks in the largest
characteristic

Max Q
i=1(Bi)

For TriTyp
 Three inputs side1,side2, side3
 Four values each 2,1,0,-1

 A test with 4 test is enough:
2, 2, 2
1, 1, 1
0, 0, 0
-1, -1, -1

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

ISP Criteria – Pair­Wise
 Each choice yields few tests – cheap but perhaps ineffective
 Another approach asks values to be combined with other values

Pair-Wise (PW) : A value from each block for each
characteristic must be combined with a value from
every block for each other characteristic.

• Number of tests is at least the product of two largest
characteristics

For TriTyp:
2, 2, 2 2, 1, 1 2, 0, 0 2, -1, -1
1, 2, 1 1, 1, 0 1, 0, -1 1, -1, 2
0, 2, 0 0, 1, -1 0, 0, 2 0, -1, 1
-1, 2, -1 -1, 1, 2 -1, 0, 1 -1, -1, 0

(Max Q
i=1

(Bi)) * (Max Q
j=1, j!=i

 (Bj))

Combinatorial approach
● Pairwise combination instead of exhaustive

– Generate combinations that efficiently cover all pairs of
values

– Rationale: most failures are triggered by single values or
combinations of a few values. Covering pairs (triples,…)
reduces the number of test cases, but reveals most
faults

– Extended by t-wise: test all the combinations of t values

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Example

 3 variables with 3 values each: 33 = 27 possible combinations

 Combinatorial testing with much fewer tests

Display Mode Color Screen size

full-graphics Monochrome Hand-held

Low resolution 16-bit Laptop

text-only True-color Full-size

Test Suite ­ example

Test Color Display Mode Screen Size

1 Monochrome Full-graphics Hand-held

2 16-bit Text-only Laptop

3 True-color Full-graphics Hand-held

4 … … …

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

One test covers many
combinations:

e.g. Test 1 covers 3 pairs:
(Monochrome, Full-
graphics)
(Monochrome, Hand-
held)
(Full-graphics, Hand-
held)

 pairwise testing can be achieved by only 9 tests

Other figures:
2100 combinations with 10 tests; 1020 200

tests; …

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

ISP Criteria –T­Wise
 A natural extension is to require combinations of t values instead of 2

t-Wise (TW) : A value from each block for each group
of t characteristics must be combined.

• Number of tests is at least the product of t largest
characteristics

• If all characteristics are the same size, the formula is

(Max Q
i=1

(Bi))t

• If t is the number of characteristics Q, then all
combinations

• That is … Q-wise = AC
• t-wise is expensive and benefits are not clear

Angelo Gargantini - Testing e verifica del SW UNIBG AA 13-14

ISP Coverage Criteria Subsumption

Each Choice
Coverage

EC

All Combinations
Coverage

AC

T-Wise Coverage
TW

Pair-Wise
Coverage

PW

Exercise
 example system: component based application

CLIENT WEB SERVER PAYMENT DATABASE

FIREFOX WEB SPHERE MASTER CARD DB/2

IE APACHE VISA ORACLE

OPERA .NET AMEX ACCESS

One test is missing …
 exhaustive test cases
 9 test cases



CLIENT WEB SERVER PAYMENT DATABASE

FIREFOX WEB SPHERE MASTER CARD DB/2

FIREFOX .NET AMEX ORACLE

FIREFOX APACHE VISA ACCESS

IE WEB SPHERE AMEX ACCESS

IE APACHE MASTER CARD ORACLE

IE .NET VISA DB/2

OPERA WEB SPHERE VISA ORACLE

OPERA .NET MASTER CARD ACCESS

OPERA APACHE AMEX DB/2

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Generation techniques

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Generation techniques families
 Algebraic

 Based on some mathematical/algebraic properties
 Search based, greedy, based on heuristics

 Because the problem of generating a minimum test suit for
combinatorial testing is NP-complete, most methods and tools use
a greedy approach

 Logic based
 Based on SAT/SMT solving and model checking

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Classification
 Algebraic methods that are mainly developed by mathematicians

 Latin squares, Orthogonal arrays, Covering arrays
 Recursive Construction

 Search-Based methods that are mainly developed by computer
scientists

 AETG (from Telcordia), TCG (from JPL/NASA), DDA (from
ASU), PairTest/Fireeye (from NIST)

 Incremental construction

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Search­Based vs Algebraic Methods
 Algebraic methods:

 Advantages: very fast, and often produces optimal results
 Disadvantages: limited applicability, difficult to support parameter

relations and constraints
 E.g. most work only if all the parameters have the same domain

size
 Search-based methods:

 Advantages: no restrictions on the input model, and very flexible,
e.g., relatively easier to support parameter relations and
constraints

 Disadvantages: explicit search takes time, the resulting test sets are
not optimal

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Greedy methods

Angelo Gargantini - Testing e verifica
del SW UNIBG AA 13-14

Greedy methods
 Parameter based

 One colum at the time
 IPO
 IPOS – still room to improve

 Test case based
 Add one test at the time

 AETG

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

IPO: In­Parameter­Order
 Originally presented in:
 Yu Lei, K. C. Tai, "In-Parameter-Order: A Test Generation Strategy for

Pairwise Testing," High-Assurance Systems Engineering, IEEE
International Symposium on, p. 254, Third IEEE International High-
Assurance Systems Engineering Symposium, 1998

 Several extensions
 NIST

http://csrc.nist.gov/groups/SNS/acts/
 TOOL: FireEye, now ACTS

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

IPO: In­Parameter­Order
 Builds a t-way test set in an incremental manner

1. A t-way test set is first constructed for the first t parameters,
simply considering their combinations

2. Then, the test set is extended to generate a t-way test set for the
first t + 1 parameters

3. The test set is repeatedly extended for each additional parameter.
 Two steps involved in each extension for a new parameter:

 Horizontal growth: extends each existing test by adding one value
of the new parameter

 Vertical growth: adds new tests, if necessary

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Adding parameters

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Test
suite for

t-1
paramte

rs

New
column for

new
parameter
Horizontal

growth

If needed, new tests
can ba added : Vartical

growth

Strategy In­Parameter­Order
/* step 1: for the first t parameters p1, p2 , …, pt*/

T := {(v1, v2, …, vt) | v1, v2, …, vt are values of p1, p2, …, pt }

if n = t then stop;

/* step 2: for the remaining parameters */

for parameter pi, i = t + 1, …, n do

 begin /* add parameter pi */

 /* 2a: horizontal growth */

 for each test (v1, v2, …, vi-1) in T do

 replace it with (v1, v2, …, vi-1, vi), where vi is a value of pi

 /* 2b: vertical growth */

 while T does not cover all the interactions between pi and

 each of p1, p2, …, pi-1 do

 add a new test for p1, p2, …, pi to T;

 end

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Example
Consider a system with the following parameters and values:

parameter A has values WIN and LIN
parameter B has values 1NT and AMD, and
parameter C has values IPV4, IPV6

 Pairwise testing t = 2

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Step 1: the first t parameters
 if a test suite wants to cover all the t-combinations of t parameters, it

must contain all the possible combinations
 t = 2
 parameter A has values WIN and LIN
 parameter B has values 1NT and AMD
 Initial test suite (CA):

A B
WIN INT
WIN AMD
LIN INT
LIN AMD

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Step 2: adding a new parameter
 Add the tests to cover the t+1 th parameter.
 Add a column to the CA for the new parameter
 For the values of the new

A B
WIN INT
WIN AMD
LIN INT
LIN AMD

A B C
WIN INTIPV4
WIN AMD IPV6
LIN INT IPV4
LIN AMD IPV6

Horizontal Growth

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Step 2 b
 Check if all the tuples are covered, in case add new rows (vertical

growth)

A B C
WIN INTIPV4
WIN AMD IPV6
LIN INT IPV4
LIN AMD IPV6

A B C
WIN INTIPV4
WIN AMD IPV6
LIN INT IPV4
LIN AMD IPV6
LIN AMD IPV4
LIN INT IPV6

Vertical Growth

missing :
AMD, IPV4
INT, IPV6

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Exercise
 parameter A has values A1 and A2
 parameter B has values B1 and B2, and
 parameter C has values C1, C2, and C3

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Example (2)

A B
A1 B1
A1 B2
A2 B1
A2 B2

A B C
A1 B1 C1
A1 B2 C2
A2 B1 C3
A2 B2 C1

A B C
A1 B1 C1
A1 B2 C2
A2 B1 C3
A2 B2 C1
A2 B1 C2
A1 B2 C3

Vertical Growth
Horizontal Growth

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

Open problems
 When adding a new column, how to chose the values?
 When adding a new row, how to choose the new row?

Angelo Gargantini - Testing e
verifica del SW UNIBG AA
13-14

	Diapositiva 1
	Outline
	What is Combinatorial testing
	Advantages of Input based testing
	Combinatorial testing is effective
	CIT effectiveness
	Effectiveness -1
	Effectiveness -2 - Kuhn @ NIST
	Effectiveness - 3
	Partition testing
	Problems …
	Solution: Input partitioning
	Partitioning Domains
	Using Partitions – Assumptions
	Choosing Partitions
	Properties of Partitions
	Example for program based testing
	Partition for long
	Partition of cartesian product
	Product of partitions, application
	Partition testing
	Partition does not solve the problem!
	From Partition testing to combinatorial testing
	A. Input Domain Modeling
	Modeling the Input Domain (cont)
	Modeling the Input Domain
	Two Approaches to Input Domain Modeling (IDM)
	1. Interface-Based Approach
	2. Functionality-Based Approach
	Interface-Based IDM – TriTyp
	Diapositiva 31
	Functionality-Based IDM – TriTyp
	Combination Strategies criteria
	Choosing Combinations of Values
	Step 4 – Choosing Combinations of Values
	Diapositiva 36
	Diapositiva 37
	ISP Criteria – Each Choice
	For TriTyp
	ISP Criteria – Pair-Wise
	Combinatorial approach
	Example
	Test Suite - example
	ISP Criteria –T-Wise
	ISP Coverage Criteria Subsumption
	Exercise
	One test is missing …
	Generation techniques
	Generation techniques families
	Classification
	Search-Based vs Algebraic Methods
	Greedy methods
	Greedy methods
	IPO: In-Parameter-Order
	IPO: In-Parameter-Order
	Adding parameters
	Strategy In-Parameter-Order
	Example
	Step 1: the first t parameters
	Step 2: adding a new parameter
	Step 2 b
	Exercise
	Example (2)
	Open problems

