
4

Input Space Partitioning

In a very fundamental way, all testing is about choosing elements from the input

space of the software being tested. The criteria presented previously can be viewed

as defining ways to divide the input space according to the test requirements. The

assumption is that any collection of values that satisfies the same test requirement

will be “just as good.” Input space partitioning takes that view in a much more di-

rect way. The input domain is defined in terms of the possible values that the input

parameters can have. The input parameters can be method parameters and global

variables, objects representing current state, or user-level inputs to a program, de-

pending on what kind of software artifact is being analyzed. The input domain is

then partitioned into regions that are assumed to contain equally useful values from

a testing perspective, and values are selected from each region.

This way of testing has several advantages. It is fairly easy to get started be-

cause it can be applied with no automation and very little training. The tester

does not need to understand the implementation; everything is based on a descrip-

tion of the inputs. It is also simple to “tune” the technique to get more or fewer

tests.

Consider an abstract partition q over some domain D. The partition q defines a

set of equivalence classes, which we simply call blocks, Bq.1 The blocks are pairwise

disjoint, that is

bi ∩ bj = ∅, i �= j ; bi , bj ∈ Bq

and together the blocks cover the domain D, that is
⋃

b∈Bq

b = D

This is illustrated in Figure 4.1. The input domain D is partitioned into three

blocks, b1, b2, and b3. The partition defines the values contained in each block and is

usually designed from knowledge of what the software is supposed to do.

The idea in partition coverage is that any test in a block is as good as any other

for testing. Several partitions are sometimes considered together, which, if not done

carefully, leads to a combinatorial explosion of test cases.

150



Input Space Partitioning 151

Input Domain D

b
1

b
3

b
2

Figure 4.1. Partitioning of input

domain D into three blocks.

A common way to apply input space partitioning is to start by considering the

domain of each parameter separately, partitioning each domain’s possible values

into blocks, and then combining the variables for each parameter. Sometimes the

parameters are considered completely independently, and sometimes they are con-

sidered in conjunction, usually by taking the semantics of the program into account.

This process is called input domain modeling and the next section gives more details.

Each partition is usually based on some characteristic C of the program, the pro-

gram’s inputs, or the program’s environment. Some possible characteristic examples

are:

� Input X is null

� Order of file F (sorted, inverse sorted, arbitrary)

� Min separation distance of two aircraft

Each characteristic C allows the tester to define a partition. Formally, a partition

must satisfy two properties:

1. The partition must cover the entire domain (completeness)

2. The blocks must not overlap (disjoint)

As an example, consider the characteristic “order of file F” mentioned above.

This could be used to create the following (defective) partitioning:

� Order of file F

– b1 = Sorted in ascending order

– b2 = Sorted in descending order

– b3 = Arbitrary order

However, this is not a valid partitioning. Specifically, if the file is of length 0 or 1,

then the file will belong in all three blocks. That is, the blocks are not disjoint. The

easiest strategy to address this problem is to make sure that each characteristic ad-

dresses only one property. The problem above is that the notions of being sorted

into ascending order and being sorted into descending order are lumped into the

same characteristic. Splitting into two characteristics, namely sorted ascending and

sorted descending, solves the problem. The result is the following (valid) partition-

ing of two characteristics.

� File F sorted ascending

– b1 = True

– b2 = False



152 Coverage Criteria

� File F sorted descending

– b1 = True

– b2 = False

With these blocks, files of length 0 or 1 are in the True block for both characteristics.

The completeness and disjointness properties are formalized for pretty prag-

matic reasons, and not just to be mathematically fashionable. Partitions that are

not complete or disjoint probably reflect a lack of clarity in the rationale for the par-

tition. In particular, if a partition actually encodes two or three rationales, the parti-

tion is likely to be quite messy, and it is also likely to violate either the completeness

or the disjointness property (or both!). Identifying and correcting completeness or

disjointness errors typically results in esthetically more pleasing partitions. Further,

formally objectionable “partitions” cause unnecessary problems when generating

tests, as discussed below. The rest of this chapter assumes that the partitions are

both complete and disjoint.

4.1 INPUT DOMAIN MODELING

The first step in input domain modeling is identification of testable functions. Con-

sider the TriTyp program from Chapter 3. TriTyp clearly has only one testable func-

tion with three parameters. The situation is more complex for Java class APIs. Each

public method is typically a testable function that should be tested individually.

However, the characteristics are often the same for several methods, so it helps to

develop a common set of characteristics for the entire class and then develop spe-

cific tests for each method. Finally, large systems are certainly amenable to the in-

put space partition approach, and such systems often supply complex functionality.

Tools like UML use cases can be used to identify testable functions. Each use case

is associated with a specific intended functionality of the system, so it is very likely

that the use case designers have useful characteristics in mind that are relevant to

developing test cases. For example, a “withdrawal” use case for an ATM identifies

“withdrawing cash” as a testable function. Further, it suggests useful categories such

as “Is Card Valid?” and “Relation of Withdrawal Policy to Withdrawal Request.”

The second step is to identify all of the parameters that can affect the behavior

of a given testable function. This step isn’t particularly creative, but it is important

to carry it out completely. In the simple case of testing a stateless method, the pa-

rameters are simply the formal parameters to the method. If the method has state,

which is common in many object-oriented classes, then the state must be included

as a parameter. For example, the insert(Comparable obj) method for a binary tree

class behaves differently depending on whether or not obj is already in the tree.

Hence, the current state of the tree needs to be explicitly identified as a parameter

to the insert() method. In a slightly more complex example, a method find(String

str) that finds the location of str in a file depends, obviously, on the particular file

being searched. Hence, the test engineer explicitly identifies the file as a parameter

to the find() method. Together, all of the parameters form the input domain of the

function under test.

The third step, and the key creative engineering step, is modeling the input do-

main articulated in the prior step. An input domain model (IDM) represents the

input space of the system under test in an abstract way. A test engineer describes



Input Space Partitioning 153

the structure of the input domain in terms of input characteristics. The test engineer

creates a partition for each characteristic. The partition is a set of blocks, each of

which contains a set of values. From the perspective of that particular characteristic,

the values in each block are considered equivalent.

A test input is a tuple of values, one for each parameter. By definition, the test

input belongs to exactly one block from each characteristic. Thus, if we have even

a modest number of characteristics, the number of possible combinations may be

infeasible. In particular, adding another characteristic with n blocks increases the

number of combinations by a factor of n. Hence, controlling the total number of

combinations is a key feature of any practical approach to input domain testing. In

our view, this is the job of the coverage criteria, which we address in Section 4.2.

Different testers will come up with different models, depending on creativity and

experience. These differences create a potential for variance in the quality of the

resulting tests. The structured method to support input domain modeling presented

in this chapter can decrease this variance and increase the overall quality of the

IDM.

Once the IDM is built and values are identified, some combinations of the values

may be invalid. The IDM must include information to help the tester identify and

avoid or remove invalid sub-combinations. The model needs a way to represent

these restrictions. Constraints are discussed further in Section 4.3.

The next section provides two different approaches to input domain modeling.

The interface-based approach develops characteristics directly from input parame-

ters to the program under test. The functionality-based approach develops charac-

teristics from a functional or behavioral view of the program under test. The tester

must choose which approach to use. Once the IDM is developed, several coverage

criteria are available to decide which combinations of values to use to test the soft-

ware. These are discussed in Section 4.2.

4.1.1 Interface-Based Input Domain Modeling

The interface-based approach considers each particular parameter in isolation. This

approach is almost mechanical to follow, but the resulting tests are surprisingly

good.

An obvious strength of using the interface-based approach is that it is easy

to identify characteristics. The fact that each characteristic limits itself to a sin-

gle parameter also makes it easy to translate the abstract tests into executable test

cases.

A weakness of this approach is that not all the information available to the test

engineer will be reflected in the interface domain model. This means that the IDM

may be incomplete and hence additional characteristics are needed.

Another weakness is that some parts of the functionality may depend on com-

binations of specific values of several interface parameters. In the interface-based

approach each parameter is analyzed in isolation with the effect that important sub-

combinations may be missed.

Consider the TriTyp program from Chapter 3. It has three integer parameters

that represent the lengths of three sides of a triangle. In an interface-based IDM,

Side1 will have a number of characteristics, as will Side2 and Side3. Since the three

variables are all of the same type, the interface-based characteristics for each will



154 Coverage Criteria

likely be identical. For example, since Side1 is an integer, and zero is often a special

value for integers, Relation of Side1 to zero is a reasonable interface-based charac-

teristic.

4.1.2 Functionality-Based Input Domain Modeling

The idea of the functionality-based approach is to identify characteristics that cor-

respond to the intended functionality of the system under test rather than using the

actual interface. This allows the tester to incorporate some semantics or domain

knowledge into the IDM.

Some members of the community believe that a functionality-based approach

yields better test cases than the interface-based approach because the input domain

models include more semantic information. Transferring more semantic informa-

tion from the specification to the IDM makes it more likely to generate expected

results for the test cases, an important goal.

Another important strength of the functionality-based approach is that the re-

quirements are available before the software is implemented. This means that input

domain modeling and test case generation can start early in development.

In the functionality-based approach, identifying characteristics and values may

be far from trivial. If the system is large and complex, or the specifications are in-

formal and incomplete, it can be very hard to design reasonable characteristics. The

next section gives practical suggestions for designing characteristics.

The functionality-based approach also makes it harder to generate tests. The

characteristics of the IDM often do not map to single parameters of the software

interface. Translating the values into executable test cases is harder because con-

straints of a single IDM characteristic may affect multiple parameters in the inter-

face.

Returning to the TriTyp program from Chapter 3, a functionality-based approach

will recognize that instead of simply three integers, the input to the method is a

triangle. This leads to the characteristic of a triangle, which can be partitioned into

different types of triangles (as discussed below).

4.1.3 Identifying Characteristics

Identifying characteristics in an interface-based approach is simple. There is

a mechanical translation from the parameters to characteristics. Developing a

functionality-based IDM is more challenging.

Preconditions are excellent sources for functionality-based characteristics. They

may be explicit or encoded in the software as exceptional behavior. Preconditions

explicitly separate defined (or normal) behavior from undefined (or exceptional)

behavior. For example, if a method choose() is supposed to select a value, it needs

a precondition that a value must be available to select. A characteristic may be

whether the value is available or not.

Postconditions are also good sources for characteristics. In the case of TriTyp, the

different kinds of triangles are based on the postcondition of the method.

The test engineer should also look for other relationships between variables.

These may be explicit or implicit. For example, a curious test engineer given a



Input Space Partitioning 155

method m() with two object parameters x and y might wonder what happens if x

and y point to the same object (aliasing), or to logically equal objects.

Another possible idea is to check for missing factors, that is, factors that may

impact the execution but do not have an associated IDM parameter.

It is usually better to have many characteristics with few blocks than the reverse.

It is also true that characteristics with small numbers of blocks are more likely to

satisfy the disjointness and completeness properties.

Generally, it is preferable for the test engineer to use specifications or other

documentation instead of program code to develop characteristics. The idea is

that the tester should apply input space partitioning by using domain knowledge

about the problem, not the implementation. However, in practice, the code may

be all that is available. Overall, the more semantic information the test engi-

neer can incorporate into characteristics, the better the resulting test set is likely

to be.

The two approaches generally result in different IDM characteristics. The fol-

lowing method illustrates this difference:

public boolean findElement (List list, Object element)

// Effects: if list or element is null throw NullPointerException

// else returns true if element is in the list, false otherwise

If the interface-based approach is used, the IDM will have characteristics for list

and characteristics for element. For example, here are two interface-based charac-

teristics for list, including blocks and values, which are discussed in detail in the next

section:

� list is null

– b1 = True

– b2 = False

� list is empty

– b1 = True

– b2 = False

The functionality-based approach results in more complex IDM characteristics.

As mentioned earlier, the functionality-based approach requires more thinking on

the part of the test engineer, but can result in better tests. Two possibilities for the

example are listed below, again including blocks and values.

� number of occurrences of element in list

– b1 = 0

– b2 = 1

– b3 = More than 1

� element occurs first in list

– b1 = True

– b2 = False



156 Coverage Criteria

4.1.4 Choosing Blocks and Values

After choosing characteristics, the test engineer partitions the domains of the char-

acteristics into sets of values called blocks. A key issue in any partition approach is

how partitions should be identified and how representative values should be selected

from each block. This is another creative design step that allows the tester to tune

the test process. More blocks will result in more tests, requiring more resources but

possibly finding more faults. Fewer blocks will result in fewer tests, saving resources

but possibly reducing test effectiveness. Several general strategies for identifying

values are as follows:

� Valid values: Include at least one group of valid values.

� Sub-partition: A range of valid values can often be partitioned into sub-

partitions, such that each sub-partition exercises a somewhat different part of

the functionality.

� Boundaries: Values at or close to boundaries often cause problems.

� Normal use: If the operational profile focuses heavily on “normal use,” the fail-

ure rate depends on values that are not boundary conditions.

� Invalid values: Include at least one group of invalid values.

� Balance: From a cost perspective, it may be cheap or even free to add more

blocks to characteristics that have fewer blocks. In Section 4.2, we will see that

the number of tests sometimes depends on the characteristic with the maximum

number of blocks.

� Missing partitions: Check that the union of all blocks of a characteristic com-

pletely covers the input space of that characteristic.

� Overlapping partitions: Check that no value belongs to more than one block.

Special values can often be used. Consider a Java reference variable; null is typ-

ically a special case that needs to be treated differently from non null values. If the

reference is to a container structure such as a Set or List, then whether the container

is empty or not is often a useful characteristic.

Consider the TriTyp program from Chapter 3. It has three integer parameters

that represent the lengths of three sides of a triangle. One common partitioning

for an integer variable considers the relation of the variable’s value to some special

value in the testable function’s domain, such as zero.

Table 4.1 shows a partitioning for the interface-based IDM for the TriTyp pro-

gram. It has three characteristics, q1, q2, and q3.

The first row in the table should be read as “Block q1.b1 is that Side 1 is greater

than zero,” “Block q1.b2 is that Side 1 is equal to zero,” and “Block q1.b3 is that Side

1 is less than zero.”

Table 4.1. First partitioning of TriTyp’s inputs (interface-based)

Partition b1 b2 b3

q1 = “Relation of Side 1 to 0” greater than 0 equal to 0 less than 0

q2 = “Relation of Side 2 to 0” greater than 0 equal to 0 less than 0

q3 = “Relation of Side 3 to 0” greater than 0 equal to 0 less than 0



Input Space Partitioning 157

Table 4.2. Second partitioning of TriTyp’s inputs (interface-based).

Partition b1 b2 b3 b4

q1 = “Length of Side 1” greater than 1 equal to 1 equal to 0 less than 0

q2 = “Length of Side 2” greater than 1 equal to 1 equal to 0 less than 0

q3 = “Length of Side 3” greater than 1 equal to 1 equal to 0 less than 0

Consider the partition q1 for Side 1. If one value is chosen from each block, the

result is three tests. For example, we might choose Side 1 to have the value 7 in test

1, 0 in test 2, and −3 in test 3. Of course, we also need values for Side 2 and Side

3 of the triangle to complete the test case values. Notice that some of the blocks

represent valid triangles and some represent invalid triangles. For example, no valid

triangle can have a side of negative length.

It is easy to refine this categorization to get more fine grained testing if the bud-

get allows. For example, more blocks can be created by separating inputs with value

1. This decision leads to a partitioning with four blocks, as shown in Table 4.2.

Notice that if the value for Side 1 were floating point rather than integer, the

second categorization would not yield valid partitions. None of the blocks would

include values between 0 and 1 (noninclusive), so the blocks would not cover the

domain (not be complete). However, the domain D contains integers so the parti-

tions are valid.

While partitioning, it is often useful for the tester to identify candidate values for

each block to be used in testing. The reason to identify values now is that choosing

specific values can help the test engineer think more concretely about the predicates

that describe each block. While these values may not prove sufficient when refining

test requirements to test cases, they do form a good starting point. Table 4.3 shows

values that can satisfy the second partitioning.

The above partitioning is interface based and only uses syntactic information

about the program (it has three integer inputs). A functionality-based approach can

use the semantic information of the traditional geometric classification of triangles,

as shown in Table 4.4.

Of course, the tester has to know what makes a triangle scalene, equilateral,

isosceles, and invalid to choose possible values (this may be simple middle school

geometry, but many of us have probably forgotten). An equilateral triangle is one in

which all sides are the same length. An isosceles triangle is one in which at least two

sides are the same length. A scalene triangle is any other valid triangle. This brings

up a subtle problem, Table 4.4 does not form a valid partitioning. An equilateral tri-

angle is also isosceles, thus we must first correct the partitions, as shown in Table 4.5.

Table 4.3. Possible values for blocks in

the second partitioning in Table 4.2

Param b1 b2 b3 b4

Side 1 2 1 0 −1

Side 2 2 1 0 −1

Side 3 2 1 0 −1



158 Coverage Criteria

Table 4.4. Geometric partitioning of TriTyp’s inputs (functionality-based)

Partition b1 b2 b3 b4

q1 = “Geometric Classification” scalene isosceles equilateral invalid

Now values for Table 4.5 can be chosen as shown in Table 4.6. The triplets rep-

resent the three sides of the triangle.

A different approach to the equilateral/isosceles problem above is to break

the characteristic Geometric Partitioning into four separate characteristics, namely

Scalene, Isosceles, Equilateral, and Valid. The partition for each of these character-

istics is boolean, and the fact that choosing Equilateral = true also means choosing

Isosceles = true is then simply a constraint. Such an approach is highly recommended,

and it invariably satisfies the disjointness and completeness properties.

4.1.5 Using More than One Input Domain Model

For a complex program it might be better to have several small IDMs than one large.

This approach allows for a divide-and-conquer strategy when modeling character-

istics and blocks. Another advantage with multiple IDMs for the same software is

that it allows varying levels of coverage.

For instance, one IDM may contain only valid values and another IDM may con-

tain invalid values to focus on error handling. The valid value IDM may be covered

using a higher level of coverage. The invalid value IDM may use a lower level of

coverage.

Multiple IDMs may be overlapping as long as the test cases generated make

sense. However, overlapping IDMs are likely to have more constraints.

4.1.6 Checking the Input Domain Model

It is important to check the input domain model. In terms of characteristics, the

test engineer should ask whether there is any information about how the function

behaves that is not incorporated in some characteristics. This is necessarily an infor-

mal process.

The tester should also explicitly check each characteristic for the completeness

and disjointness properties. The purpose of this check is to make sure that, for each

characteristic, not only do the blocks cover the complete input space, but selecting

a particular block implies excluding all other blocks in that characteristic.

If multiple IDMs are used, completeness should be relative to the portion of the

input domain that is modeled in each IDM. When the tester is satisfied with the

Table 4.5. Correct geometric partitioning of TriTyp’s inputs

(functionality-based)

Partition b1 b2 b3 b4

q1 = “Geometric Classification” scalene isosceles, not equilateral invalid

equilateral



Input Space Partitioning 159

Table 4.6. Possible values for blocks in geometric

partitioning in Table 4.5.

Param b1 b2 b3 b4

Triangle (4, 5, 6) (3, 3, 4) (3, 3, 3) (3, 4, 8)

characteristics and their blocks, it is time to choose which combinations of values to

test with and identify constraints among the blocks.

EXERCISES

Section 4.1.

1. Answer the following questions for the method search() below:

public static int search (List list, Object element)

// Effects: if list or element is null throw NullPointerException

// else if element is in the list, return an index

// of element in the list; else return -1

// for example, search ([3,3,1], 3) = either 0 or 1

// search ([1,7,5], 2) = -1

Base your answer on the following characteristic partitioning:

Characteristic: Location of element in list

Block 1: element is first entry in list

Block 2: element is last entry in list

Block 3: element is in some position other than first or last

(a) “Location of element in list” fails the disjointness property. Give an ex-

ample that illustrates this.

(b) “Location of element in list” fails the completeness property. Give an

example that illustrates this.

(c) Supply one or more new partitions that capture the intent of “Loca-

tion of e in list” but do not suffer from completeness or disjointness

problems.

2. Derive input space partitioning tests for the GenericStack class with the fol-

lowing method signatures:

� public GenericStack ();

� public void Push (Object X);

� public Object Pop ();

� public boolean IsEmt ();

Assume the usual semantics for the stack. Try to keep your partitioning sim-

ple, choose a small number of partitions and blocks.

(a) Define characteristics of inputs

(b) Partition the characteristics into blocks

(c) Define values for the blocks



160 Coverage Criteria

4.2 COMBINATION STRATEGIES CRITERIA

The above description ignores an important question: “How should we consider

multiple partitions at the same time?” This is the same as asking “What combination

of blocks should we choose values from?” For example, we might wish to require

a test case that satisfies block 1 from q2 and block 3 from q3. The most obvious

choice is to choose all combinations. However, just like Combinatorial Coverage

from previous chapters, using all combinations will be impractical when more than

2 or 3 partitions are defined.

Criterion 4.23 All Combinations Coverage (ACoC): All combinations of blocks

from all characteristics must be used.

For example, if we have three partitions with blocks [A, B], [1, 2, 3], and [x, y],

then ACoC will need the following twelve tests:

(A, 1, x) (B, 1, x)

(A, 1, y) (B, 1, y)

(A, 2, x) (B, 2, x)

(A, 2, y) (B, 2, y)

(A, 3, x) (B, 3, x)

(A, 3, y) (B, 3, y)

A test suite that satisfies ACoC will have a unique test for each combination of

blocks for each partition. The number of tests will be the product of the number of

blocks for each partition:
∏Q

i=1(Bi ).

If we use a four block partition similar to q2 for each of the three sides of the

triangle, ACoC requires 4 ∗ 4 ∗ 4 = 64 tests.

This is almost certainly more testing than is necessary, and will usually be eco-

nomically impractical as well. Thus, as with paths and truth tables before, we must

use some sort of coverage criterion to choose which combinations of blocks to pick

values from.

The first, fundamental assumption is that different choices of values from the

same block are equivalent from a testing perspective. That is, we need to take only

one value from each block. Several combination strategies exist, which result in a

collection of useful criteria. These combination strategies are illustrated with the

TriTyp example, using the second categorization given in Table 4.2 and the values

from Table 4.3.

The first combination strategy criterion is fairly straightforward and simply re-

quires that we try each choice at least once.

Criterion 4.24 Each Choice Coverage (ECC): One value from each block for

each characteristic must be used in at least one test case.

Given the above example of three partitions with blocks [A, B], [1, 2, 3], and

[x, y], ECC can be satisfied in many ways, including the three tests (A, 1, x), (B, 2, y),

and (A, 3, x).

Assume the program under test has Q parameters q1, q2, . . . , qQ, and each param-

eter qi has Bi blocks. Then a test suite that satisfies ECC will have at least Max
Q
i=1 Bi



Input Space Partitioning 161

values. The maximum number of blocks for the partitions for TriTyp is four, thus

ECC requires at least four tests.

This criterion can be satisfied by choosing the tests {(2, 2, 2), (1, 1, 1), (0, 0, 0),

(−1, −1, −1)} from Table 4.3. It does not take much thought to conclude that these

are not very effective tests for this program. ECC leaves a lot of flexibility to the

tester in terms of how to combine the test values, so it can be called a relatively

“weak” criterion.

The weakness of ECC can be expressed as not requiring values to be combined

with other values. A natural next step is to require explicit combinations of values,

called pair-wise.

Criterion 4.25 Pair-Wise Coverage (PWC): A value from each block for each

characteristic must be combined with a value from every block for each other

characteristic.

Given the above example of three partitions with blocks [A, B], [1, 2, 3], and

[x, y], then PWC will need sixteen tests to cover the following combinations:

(A, 1) (B, 1) (1, x)

(A, 2) (B, 2) (1, y)

(A, 3) (B, 3) (2, x)

(A, x) (B, x) (2, y)

(A, y) (B, y) (3, x)

(3, y)

PWC allows the same test case to cover more than one unique pair of values. So

the above combinations can be combined in several ways, including:

(A, 1, x) (B, 1, y)

(A, 2, x) (B, 2, y)

(A, 3, x) (B, 3, y)

(A, –, y) (B, –, x)

The tests with ‘–’ mean that any block can be used.

A test suite that satisfies PWC will pair each value with each other value or have

at least (Max
Q
i=1 Bi )

2 values. Each characteristic in TriTyp (Table 4.3) has four blocks;

so at least 16 tests are required.

Several algorithms to satisfy PWC have been published and appropriate refer-

ences are provided in the bibliography section of the chapter.

A natural extension to PWC is to require t values instead of pairs.

Criterion 4.26 T-Wise Coverage (TWC): A value from each block for each group

of t characteristics must be combined.

If the value for T is chosen to be the number of partitions, Q, then TWC is

equivalent to all combinations. A test suite that satisfies TWC will have at least

(Max
q

i=1 Bi )
t values. TWC is expensive in terms of the number of test cases, and

experience suggests going beyond pair-wise (that is, t = 2) does not help much.



162 Coverage Criteria

Both PWC and TWC combine values “blindly,” without regard for which values

are being combined. The next criterion strengthens ECC in a different way by bring-

ing in a small but crucial piece of domain knowledge of the program; asking what is

the most “important” block for each partition. This block is called the base choice.

Criterion 4.27 Base Choice Coverage (BCC): A base choice block is chosen for

each characteristic, and a base test is formed by using the base choice for each char-

acteristic. Subsequent tests are chosen by holding all but one base choice constant

and using each non-base choice in each other characteristic.

Given the above example of three partitions with blocks [A, B], [1, 2, 3], and

[x, y], suppose base choice blocks are ‘A’, ‘1’ and ‘x’. Then the base choice test is

(A, 1, x), and the following additional tests would need to be used:

(B, 1, x)

(A, 2, x)

(A, 3, x)

(A, 1, y)

A test suite that satisfies BCC will have one base test, plus one test for each re-

maining block for each partition. This is a total of 1 +
∑Q

i=1(Bi − 1). Each parameter

for TriTyp has four blocks, thus BCC requires 1 + 3 + 3 + 3 tests.

The base choice can be the simplest, the smallest, the first in some ordering, or

the most likely from an end-user point of view. Combining more than one invalid

value is usually not useful because the software often recognizes one value and neg-

ative effects of the others are masked. Which blocks are chosen for the base choices

becomes a crucial step in test design that can greatly impact the resulting test. It is

important that the tester document the strategy that was used so that further testing

can reevaluate those decisions.

Following the strategy of choosing the most likely block for TriTyp, we chose

“greater than 1” from Table 4.2 as the base choice block. Using the values from

Table 4.3 gives the base test as (2, 2, 2). The remaining tests are created by varying

each one of these in turn: {(2, 2, 1), (2, 2, 0), (2, 2, −1), (2, 1, 2), (2, 0, 2), (2, −1, 2),

(1, 2, 2), (0, 2, 2), (−1, 2, 2) }.

Sometimes the tester may have trouble choosing a single base choice and may

decide that multiple base choices are needed. This is formulated as follows:

Criterion 4.28 Multiple Base Choices (MBCC): At least one, and possibly more,

base choice blocks are chosen for each characteristic, and base tests are formed by

using each base choice for each characteristic at least once. Subsequent tests are

chosen by holding all but one base choice constant for each base test and using

each non-base choice in each other characteristic.

Assuming mi base choices for each characteristic and a total of M base tests,

MBCC requires M +
∑Q

i=1(M ∗ (Bi − mi )) tests.

For example, we may choose to include two base choices for side 1 in TriTyp,

“greater than 1” and “equal to 1.” This would result in the two base tests (2, 2, 2)

and (1, 2, 2). The formula above is thus evaluated with M = 2, m1 = 2, and



Input Space Partitioning 163

Base Choice

Coverage

BCC

Multiple Base

Choice Coverage

MBC

All Combinations

Coverage

ACoC

T-Wise Coverage

TWC

Pair-Wise

Coverage

PW

Each Choice

Coverage

ECC

Figure 4.2. Subsumption relations among in-

put space partitioning criteria.

mi = 1 ∀ i, 1 < i ≤ 3. That is, 2 + (2*(4 − 2)) + (2*(4 − 1)) + (2*(4 − 1)) = 18.

The remaining tests are created by varying each one of these in turn. The MBCC

criterion sometimes results in duplicate tests. For example, (0, 2, 2) and (−1, 2, 2)

both appear twice for TriTyp. Duplicate test cases should, of course, be eliminated

(which also makes the formula for the number of tests an upper bound).

Figure 4.2 shows the subsumption relationships among the input space partition-

ing combination strategy criteria.

EXERCISES

Section 4.2.

1. Enumerate all 64 tests to satisfy the All Combinations (ACoC) criterion for

the second categorization of TriTyp’s inputs in Table 4.2. Use the values in

Table 4.3.

2. Enumerate all 16 tests to satisfy the pair-wise (PWC) criterion for the second

categorization of TriTyp’s inputs in Table 4.2. Use the values in Table 4.3.

3. Enumerate all 16 tests to satisfy the multiple base choice (MBCC) criterion

for the second categorization of TriTyp’s inputs in Table 4.2. Use the values

in Table 4.3.

4. Answer the following questions for the method intersection() below:

public Set intersection (Set s1, Set s2)

// Effects: If s1 or s2 are null throw NullPointerException

// else return a (non null) Set equal to the intersection

// of Sets s1 and s2

// A null argument is treated as an empty set.



164 Coverage Criteria

Characteristic: Type of s1

- s1 = null

- s1 = {}

- s1 has at least one element

Characteristic: Relation between s1 and s2

- s1 and s2 represent the same set

- s1 is a subset of s2

- s2 is a subset of s1

- s1 and s2 do not have any elements in common

(a) Does the partition “Type of s1” satisfy the completeness property? If not,

give a value for s1 that does not fit in any block.

(b) Does the partition “Type of s1” satisfy the disjointness property? If not,

give a value for s1 that fits in more than one block.

(c) Does the partition “Relation between s1 and s2” satisfy the completeness

property? If not, give a pair of values for s1 and s2 that does not fit in any

block.

(d) Does the partition “Relation between s1 and s2” satisfy the disjointness

property? If not, give a pair of values for s1 and s2 that fits in more than

one block.

(e) If the “base choice” criterion were applied to the two partitions (exactly

as written), how many test requirements would result?

5. Derive input space partitioning tests for the BoundedQueue class with the

following signature:

� public BoundedQueue (int capacity);

� public void Enqueue (Object X);

� public Object Dequeue ();

� public boolean IsEmpty ();

� public boolean IsFull ();

Assume the usual semantics for a queue with a fixed, maximal capacity. Try

to keep your partitioning simple–choose a small number of partitions and

blocks.

(a) Identify all of the variables. Don’t forget the state variables.

(b) Identify several characteristics that suggest partitions.

(c) Identify the blocks in the partition for each characteristic. Designate one

block in each partition as the “Base” block.

(d) Define values for the blocks.

(e) Define a test set that satisfies base choice coverage (BCC).

6. Develop a set of characteristics and accompanying partitions for the pattern

checking procedure (the method pat() in Figure 2.21 in Chapter 2).

(a) Develop tests to satisfy the base choice criterion. Your tests should have

both inputs and expected outputs.

(b) Analyze your tests with respect to the data flow test sets developed in

Chapter 2. How well does input space partitioning do?



Input Space Partitioning 165

Table 4.7. Examples of invalid block combinations

Blocks

Characteristics 1 2 3 4

A: length and

contents

one element more than

one, unsorted

more than

one, sorted

more than

one, all

identical

B: match element not

found

element found

once

element found

more than

once

–

Invalid combinations: (A1, B3), (A4, B2)

4.3 CONSTRAINTS AMONG PARTITIONS

A subtle point about input space partitioning is that some combinations of blocks

are infeasible. This must be documented in the IDM. For example, Table 4.7 shows

an example based on the previously described boolean findElement (list, element)

method. An IDM with two parameters A, that has four partitions, and B, that has

three partitions, has been designed. Two of the partition combinations do not make

sense and are thus invalid. In this example, these are represented as a list of invalid

pairs of parameter partitions. In the general case other representations can be used,

for example, a set of inequalities.

Constraints are relations between blocks from different characteristics. Two

kinds of constraints appear. One kind says that a block from one characteristic can-

not be combined with a block from another characteristic. The “less than zero” and

“scalene” problem is an example of this kind of constraint. The other kind is the in-

verse; a block from one characteristic must be combined with a specific block from

another characteristic. Although this sounds simple enough, identifying and satisfy-

ing the constraints when choosing values can be difficult.

How constraints are handled when values are selected depends on the coverage

criterion chosen, and the decision is usually made when values are chosen. For the

ACoC, PWC, and TWC criteria, the only reasonable option is to drop the infeasible

pairs from consideration. For example, if PWC requires a particular pair that is not

feasible, no amount of tinkering on the test engineer’s part can make that require-

ment feasible. However, the situation is quite different for a criterion such as BCC.

If a particular variation (for example, “less than zero” for “Relation of Side 1 to

zero”) conflicts with the base case (for example, “scalene” for “Geometric Classi-

fication”), then the obvious thing to do is change the offending choice for the base

case so that the variation is feasible. In this case, “Geometric Classification” clearly

needs to change to “invalid.”

As another example, consider sorting an array. The input to our sort routine will

be a variable length array of some arbitrary type. The output will have three parts:

(1) a permutation of the input array, sorted in ascending order, (2) the largest value

(max), and (3) the smallest value (min). We might consider the following character-

istics:

� Length of array

� Type of elements



166 Coverage Criteria

� Max value

� Min value

� Position of max value

� Position of min value

These characteristics can, in turn, reasonably result in the partitioning summa-

rized as follows:

Length {0, 1, 2. .100, 101. .MAXINT}

Type {int, char, string, other}

Max {≤ 0, 1, > 1, ‘a’, ‘Z’, ‘b’, . . . , ‘Y’, blank, nonblank}
Min { · · · }

Max pos {1, 2..Length-1, Length}

Min pos {1, 2..Length-1, Length}

The discerning reader will of course notice that not all combinations are possible.

For example, if Length = 0, then nothing else matters. Also, some of the Max and

Min values are available only if Type = int, and others if Type = char.

4.4 BIBLIOGRAPHIC NOTES

In the research literature, several testing methods have been described that are

generally based on the model that the input space of the test object should be

divided into subsets, with the assumption that all inputs in the same subset cause

similar behavior. These are collectively called partition testing and include equiva-

lence partitioning [249], boundary value analysis [249], category partition [283], and

domain testing [29]. An extensive survey with examples was published by Grindal

et al. [143].

The derivation of partitions and values started with Balcer, Hasling, and Os-

trand’s category partition method in 1988 [23, 283]. An alternate visualization is

that of classification trees introduced by Grochtman, Grimm, and Wegener in 1993

[145, 146]. Classification trees organize the input space partitioning information into

a tree structure. The first level nodes are the parameters and environment vari-

ables (characteristics); they may be recursively broken into sub-categories. Blocks

appear as leaves in the tree and combinations are chosen by selecting among the

leaves.

Chen et al. empirically identified common mistakes that testers made during in-

put parameter-modeling [64]. Many of the concepts on input domain modeling in

this chapter come from Grindal’s PhD work [140, 142, 144]. Both Cohen et al. [84]

and Yin et al. [363] suggest functionality oriented approaches to input parameter

modeling. Functionality-oriented input parameter modeling was also implicitly used

by Grindal et al. [141]. Two other IDM-related methods are Classification Trees

[145] and a UML activity diagram based method [65]. Beizer [29], Malaiya [222],

and Chen et al. [64] also address the problem of characteristic selection.

Grindal published an analytical/empirical comparison of different constraint-

handling mechanisms [144].

Stocks and Carrington [320] provided a formal notion of specification-based test-

ing that encompasses most approaches to input space partition testing. In particular,



Input Space Partitioning 167

they addressed the problem of refining test frames (which we simply and informally

call test requirements in this book) to test cases.

The each choice and base choice criteria were introduced by Ammann and

Offutt in 1994 [16]. Cohen et al. [84] indicated that valid and invalid parameter val-

ues should be treated differently with respect to coverage. Valid values lie within

the bounds of normal operation of the test object, and invalid values lie outside

the normal operating range. Invalid values often result in an error message and the

execution terminates. To avoid one invalid value masking another, Cohen et al. sug-

gested that only one invalid value should be included in each test case.

Burroughs et al. [58] and Cohen et al. [84, 85, 86] suggested the heuristic pair-

wise coverage as part of the Automatic Efficient Test Generator (AETG). AETG

also includes a variation on the base choice combination criterion. In AETG’s ver-

sion, called “default testing,” the tester varies the values of one characteristic at a

time while the other characteristics contain some default value. The term “default

testing” was also used by Burr and Young [57], who described yet another varia-

tion of the base choices. In their version, all characteristics except one contain the

default value, and the remaining characteristics contain a maximum or a minimum

value. This variant will not necessarily satisfy “each choice coverage.”

The Constrained Array Test System (CATS) tool for generating test cases

was described by Sherwood [313] to satisfy pair-wise coverage. For programs with

two or more characteristics, the in-parameter-order (IPO) combination strategy

[205, 206, 322] generates a test suite that satisfies pair-wise coverage for the first

two parameters (characteristic in our terminology). The test suite is then extended

to satisfy pair-wise coverage for the first three parameters and continues for each

additional parameter until all parameters are included.

Williams and Probert invented T-wise coverage [354]. A special case of T-wise

coverage called variable strength was proposed by Cohen, Gibbons, Mugridge, and

Colburn [87]. This strategy requires higher coverage among a subset of characteris-

tics and lower coverage across the others. Assume for example a test problem with

four parameters A, B, C, D. Variable strength may require 3-wise coverage for pa-

rameters B, C, D and 2-wise coverage for parameter A. Cohen, Gibbons, Mugridge,

and Colburn [87] suggested using simulated annealing (SA) to generate test suites

for T-wise coverage. Shiba, Tsuchiya, and Kikuno [314] proposed using a genetic

algorithm (GA) to satisfy pair-wise coverage. The same paper also suggested using

the ant colony algorithm (ACA).

Mandl suggested using orthogonal arrays to generate values for T-wise coverage

[224]. This idea was further developed by Williams and Probert [353]. Covering ar-

rays [352] is an extension of orthogonal arrays. A property of orthogonal arrays is

that they are balanced, which means that each characteristic value occurs the same

number of times in the test suite. If only T-wise (for instance pair-wise) coverage is

desired, the balance property is unnecessary and will make the algorithm less effi-

cient. In a covering array that satisfies T-wise coverage, each T-tuple occurs at least

once but not necessarily the same number of times. Another problem with orthogo-

nal arrays is that for some problem sizes we do not have enough orthogonal arrays to

represent the entire problem. This problem is also avoided by using covering arrays.

Several papers have provided experiential and experimental results of using in-

put space partitioning. Heller [156] uses a realistic example to show that testing all



168 Coverage Criteria

combinations of characteristic values is infeasible in practice. Heller concludes that

we need to identify a subset of combinations of manageable size.

Kuhn and Reilly [195] investigated 365 error reports from two large real-life

projects and discovered that pair-wise coverage was nearly as effective at finding

faults as testing all combinations. More supporting data were given by Kuhn and

Wallace [196].

Piwowarski, Ohba, and Caruso [291] describe how to apply code coverage suc-

cessfully as a stopping criterion during functional testing. The authors formulated

functional testing as the problem of selecting test cases from all combinations of val-

ues of the input parameters. Burr and Young [57] show that continually monitoring

code coverage helps improve the input domain model. Initial experiments showed

that ad hoc testing resulted in about 50% decision coverage, but by continually ap-

plying code coverage and refining the input domain models, decision coverage was

increased to 84%.

Plenty of examples of applying input space partitioning in practice have been

published. Dalal, Jain, Karunanithi, Leaton, Lott, Patton, and Horowitz [91, 92]

report results from using the AETG tool. It was used to generate test cases for

Bellcore’s Intelligent Service Control Point, a rule-based system used to assign

work requests to technicians, and a GUI window in a large application. Previously,

Cohen, Dalal, Kajla, and Patton [85] demonstrated the use of AETG for screen

testing, by testing the input fields for consistency and validity across a number of

screens.

Burr and Young [57] also used the AETG tool to test a Nortel application that

converts email messages from one format to another. Huller [171] used an IPO re-

lated algorithm to test ground systems for satellite communications.

Williams and Probert [353] demonstrated how input space partitioning can be

used to organize configuration testing. Yilmaz, Cohen, and Porter [362] used cover-

ing arrays as a starting point for fault localization in complex configuration spaces.

Huller [171] showed that pair-wise configuration testing can save more than 60%

in both cost and time compared to quasi-exhaustive testing. Brownlie, Prowse, and

Phadke [50] compared the results of using orthogonal arrays (OA) on one version

of a PMX/StarMAIL release with the results from conventional testing on a prior

release. The authors estimated that 22% more faults would have been found if OA

had been used on the first version.

Several studies have compared the number of tests generated. The number of

tests varies when using nondeterministic algorithms. Several papers compared input

space partitioning strategies that satisfy 2-wise or 3-wise coverage: IPO and AETG

[205], OA and AETG [141], covering arrays (CA) and IPO [352], and AETG, IPO,

SA, GA, and ACA [87, 314]. Most of them found very little difference.

Another way to compare algorithms is with respect to the execution time. Lei

and Tai [206] showed that the time complexity of IPO is superior to that of AETG.

Williams [352] reported that CA outperforms IPO by almost three orders of magni-

tude for the largest test problems in his study.

Grindal et al. [141] compared algorithms by the number of faults found. They

found that BCC performs as well as AETG and OA despite fewer test cases.

Input space partitioning strategies can also be compared based on their code

coverage. Cohen et al. [86] found that test suites generated by AETG for 2-wise



Input Space Partitioning 169

coverage reach over 90% block coverage. Burr and Young [57] got similar results

for AETG, getting 93% block coverage with 47 test cases, compared with 85% block

coverage for a restricted version of BCC using 72 test cases.

NOTES

1 We choose to use blocks for simplicity. These are also sometimes called “partitions” in the
literature.


